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Abstract

We introduce a graph orientation problem arising in the study of biological networks. Given
an undirected graph and a list of ordered source-target vertex pairs, the goal is to orient the
graph such that a maximum number of pairs admit a directed source-to-target path. We study
the complexity and approximability of this problem. We show that the problem is NP-hard even
on star graphs and hard to approximate to within some constant factor. On the positive side, we
provide an Ω(log logn/ logn)-factor approximation algorithm for the problem on n-vertex graphs.
We further show that for any instance of the problem there exists an orientation of the input graph
that satisfies a logarithmic fraction of all pairs and that this bound is tight up to a constant factor.
Our techniques also lead to constant factor approximation algorithms for some restricted variants
of the problem.

Key words: network orientation, graph orientation, approximation algorithm, biological network,
protein-protein interaction

1 Introduction

A major role of a protein-protein interaction (ppi) network is to transmit signals within the cell in
response to genetic and environmental cues. Technologies for measuring ppis such as yeast two-
hybrid [5] and co-immunoprecipitation [9] are unable to provide information on the direction in which
∗Part of this work has been presented at the Workshop on Algorithms in Bioinformatics in the years 2008 [17] and

2010 [8].
†To whom correspondence should be addressed. Tel: +972-36407139. Fax: +972-36409357.
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the signal flows. Such information can be inferred from indirect, causal information on cellular events.
One such source of information are perturbation experiments in which a gene is perturbed (cause) and
as a result other genes change their expression levels (effects).

In graph theoretic terms, one is given an undirected graph and a list of source-target pairs that
represent the experimentally observed cause-effect pairs. The goal is to predict an orientation of the
graph, i.e. a directed graph on the same vertex set that contains a single directed version of every
undirected edge, so that for a maximum number of pairs the target is reachable from the source. We
study the complexity of approximating the resulting maximum-graph-orientation problem.

The algorithmic research on graph orientations that preserve reachability was initially focused on
producing strongly connected orientations. It started with the 1939 paper of Robbins [19] who was
motivated by applications in street network design and showed that an undirected graph has a strongly
connected orientation if and only if it has no bridge edge. Hakimi et al. [11] presented a polynomial
algorithm for the problem of orienting an undirected graph G = (V,E) to preserve reachability for a
maximum number of all vertex pairs (i.e., from the set V×V ). The problem we study is a generalization
of the latter as it considers any subset of pairs. We refer to the textbook of Bang-Jensen and Gutin [2]
for a comprehensive discussion of various graph orientation problems.

Yeang et al. [23] were the first to use perturbation experiments to annotate protein networks. They
proposed a probabilistic model and an accompanying inference approach to predict edge directions
and signs of activation and repression from cause-effect data. Ourfali et al. [18] provided an integer
linear program formulation for the problem of inferring edge signs that maximize the expected number
of explained cause-effect pairs. Gitter et al. [10] used satisfiability-based approximations to tackle
the orientation problem. The main caveat of all these approaches is that they depend on enumerating
all possible paths between a pair of genes and, hence, they are limited to paths of very short length (3
for the first two works and 5 for the latter). Finally, a work of Dorn et al. [3] studies the complexity of
solving the orientation problem with respect to structural parameters that measure how often vertices
(or edges) are used by source-to-target paths.

In this paper we show that the maximum-graph-orientation problem can be reduced to the
same problem on instances where the input graph is a tree. We focus on the latter problem, called
maximum-tree-orientation. We show that it is NP-hard and hard to approximate to within a factor
of 12/13. On the positive side, we show that for an n-vertex tree the problem can be approximated
to within a factor of Ω(log logn/ logn). We also study combinatorial properties of graph orientations,
showing that for every undirected graph and collection of source-target vertex pairs, there exists
an orientation that satisfies a logarithmic fraction of the pairs and that this bound is tight up to a
constant factor. We also present algorithms with constant approximation ratios for restricted instances
of maximum-tree-orientation. In particular, we provide a constant approximation algorithm for
instances where the distance between source and target vertices is bounded by a constant.

The paper is organized as follows: In Section 2 we define the graph orientation problem that we
consider and provide hardness results. In Section 3 we present combinatorial bounds on the number of
pairs that can be satisfied in different orientation instances. In Section 4 we provide a constant-factor
approximation algorithm for the restriction of maximum-tree-orientation where the end vertices of
pairs are connected by short paths. In Section 5 we present a sublogarithmic approximation algorithm
for the general case.

2 Preliminaries

Let G = (V,E) be an undirected graph on n vertices. We also use V (G) and E(G) to refer to its sets
V of vertices and E of edges, respectively. The graph G is a tree if it is connected and has no cycles.
An orientation of G is an assignment of directions to the edges of G such that each edge is assigned
a single direction.
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Given a source vertex s ∈V (G) and a target vertex t ∈V (G), we say that t is reachable from s if
there exists a path in G from s to t. In this case we also say that G satisfies the source-target vertex
pair (s, t). The problem we study is formally defined as follows:

Problem 2.1 (maximum-graph-orientation).

Input: An undirected graph G = (V,E) and a multiset of source-target vertex pairs P from G.

Output: An orientation G′ of G that satisfies a maximum number of pairs from P.

A tuple (G,P) of an undirected graph G and a multiset of source-target vertex pairs P from G is
called an orientation instance; |P| denotes the number of pairs in the multiset P.

Lemma 2.2. There exists a linear time algorithm that given an orientation instance (G,PG), computes
an orientation instance (T,PT ) with tree T , such that for every k ∈ N there exists an orientation G′

of G that satisfies k pairs from PG if and only if there exists an orientation T ′ of T that satisfies k
pairs from PT .

Proof. The algorithm computes the tree T of G’s two-edge connected components. Vertex pairs PG

in G are transformed into vertex pairs PT in T by the following rule: For every pair (s, t) ∈ PG we
construct a pair (C,C′) where C and C′ are the two-edge connected components of G that contain s
and t, respectively. Computing the tree of two-edge connected components can be done in linear time
as shown by Tarjan [21, 22]; the transformation of the pairs can also be done in linear time.

An orientation G′ of G translates into an orientation T ′ of T by taking the oriented versions
of the bridge edges between two-edge connected components. For every vertex pair (s, t) ∈ PG that
is satisfied in G′, the corresponding pair of components (C,C′) is also satisfied in T ′. Conversely,
consider an orientation T ′ of T . We will use the orientations from the edges of T for the bridge
edges between the two-edge connected components in G and a strongly connected orientation for each
two-edge connected component. Such orientations exist by the Theorem of Robbins [19] and satisfy
every pair whose source and target vertices lie in the same two-edge connected component.

By Lemma 2.2, it is sufficient to solve maximum-graph-orientation for orientation instances
(T,P) with T being a tree. This results in the formal maximum-tree-orientation problem. In the
following, we show NP-hardness for an even more restricted problem variant where the input graph is
a star.

Theorem 2.3. maximum-tree-orientation is NP-hard to approximate to within a factor of 12/13.

Proof. We reduce from the problem maximum-directed-cut [14] where we are given a directed
graph G and wish to find a subset A⊆V (G) such that a maximum number of edges cross from A to
V (G)\A in G.

For the reduction, we map a directed graph G to an orientation instance (S,P) with S being a star
graph in the following way: We set V (S) =V (G)∪{vc} where vc is a vertex not in V (S) that will be
the vertex in the center of S. For every vertex v ∈V (G), we insert an undirected edge between v and
vc into the edge set E(S). We define P to be the set of directed edges of G. We claim that for every
k ∈N there exists a set A⊆V (G), such that at least k edges from E(G) go from A to V (G)\A if and
only if there exists an orientation S′ of S that satisfies at least k pairs from P.

For the “only if”-direction consider a set A ⊆ V (G) with k crossing edges. For all v ∈ A, orient
the edge between v and vc from v toward vc. All other edges are oriented away from vc. Every pair
with a corresponding edge that goes from A to V (G)\A is satisfied by this orientation.

For the “if”-direction let S′ be an orientation of S that satisfies k pairs from P. Let A be the set
of vertices from V (S)\{vc} whose incident edges are oriented toward vc. Pairs that are satisfied in S′
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have their source vertices in the set A and their target vertices in the set V (S)\A. To each of these
pairs corresponds an edge that goes from A to V (G)\A in G.

Since maximum-directed-cut is NP-hard to approximate to within a factor of 12/13 [12] and the
reduction is approximation-preserving, the claim follows.

The maximum-tree-orientation problem is also NP-hard when restricted to complete binary
trees [17] or caterpillar trees of degree at most 3 like [16]. In contrast, on path graphs (graphs
like ) it can be solved in polynomial time by a dynamic programming algorithm [17, 3].

3 Combinatorial Logarithmic Bounds

In this section we prove bounds on the number of pairs that can be satisfied in various orientation
instances. We first introduce the concept of covers and show that orientation instances with restricted
covers admit orientations satisfying a constant fraction of the pairs. Then we turn to general orientation
instances and show that they always admit an orientation satisfying a logarithmic fraction of their pairs
and that this is tight up to a constant factor.

3.1 Constant Factor Bounds

In the following we will consider tree instances and, instead of orienting edges individually, partition
the input tree into subtrees and orient all edges of a subtree at the same time in a consistent direction.

A cover for T is a tuple (T ,W) that consists of: (1) a class T = {T1, . . . ,Tl} of induced subtrees of
T where every Ti is connected and E(T1), . . . ,E(Tl) is a partition of E; and (2) a collection of vertices
W = {w1, . . . ,wl} with wi ∈ V (Ti) for every i ∈ {1, . . . , l}. The size of the cover is |T | = |W|. For
every subtree Ti, we consider two orientations: the orientation T receiver

i , where all edges are oriented
toward the vertex wi (i.e., every edge is oriented toward its incident vertex nearest to wi), and the
orientation T sender

i , where all edges are oriented in the opposite direction. We consider the collection
of orientations of T that are produced by choosing, for every subtree Ti, one of T receiver

i and T sender
i and

combining them to an orientation for T . For a cover of size l this collection contains 2l orientations.
For an orientation instance (T,P), we define a pair-cover as a cover (T ,W) for T , such that for every
pair (s, t) ∈ P there exists an orientation in the cover that satisfies (s, t). The crossing number of a
pair-cover is the maximum number of subtrees whose edges are used by a pair on the path from its
source to its target vertex.

Lemma 3.1. Let (T,P) be an orientation instance admitting a pair-cover (T ,W) with crossing number
c. Then there exists an orientation T ′ of T that satisfies at least |P|/2c pairs from P.

Proof. We consider a uniform probability distribution on the collection of orientations of T that can
be constructed with respect to (T ,W). Note that it is equivalent to say that we choose, for every
subtree Ti ∈ T , with probabilities 1/2 the orientation T receiver

i or the orientation T sender
i . For every

pair (s, t), we consider a random variable X(s,t) that is evaluated to 1 if the particular orientation
satisfies (s, t) and 0, otherwise. The satisfaction of a pair depends only on the orientations of the at
most c subtrees whose edges are used by its source-to-target path. Thus every pair is satisfied with
probability at least 1/2c (in particular, E[X(s,t)] ≥ 1/2c). Let us denote by X the random variable
that equals the total number of pairs that are satisfied in an orientation. By linearity of expectation,
E[X ] = ∑(s,t)∈P E[X(s,t)]≥ |P|/2c. Thus, there must exist an orientation as desired.

Since the conditional expectation with respect to partial orientations of the tree can be computed
in polynomial time by deleting all non-satisfied pairs from P, contracting the oriented edges, and
computing the expectation value for the remaining instance, we can apply the method of conditional
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expectations [1] to construct a deterministic polynomial-time algorithm that produces the orientations
from Lemma 3.1.

In some restricted cases, the input trees admit the polynomial-time construction of pair-covers with
small crossing numbers and, hence, orientations satisfying a constant fraction of all input pairs. This
leads to the following bounds for star and caterpillar graphs:

Lemma 3.2. The following two properties hold:

1. Let (S,P) be an orientation instance with a star graph S. Then there exists a polynomial-time
computable orientation S′ of S that satisfies at least |P|/4 pairs from P.

2. Let (C,P) be an orientation instance with a caterpillar graph C. Then there exists a polynomial-
time computable orientation C′ of C that satisfies at least |P|/8 pairs from P.

Proof. To prove the lemma we show that orientation instances with star graphs and caterpillar graphs
admit polynomial-time computable pair-covers with crossing number 2 and 3, respectively. Examples
of the constructed pair-covers are given in Figure 1.

We start with orientation instances (S,P) where S is a star with center node vc. We define the pair-
cover (T ,W) to be the collection of all edges from E(S) together with wi = vc for all i∈{1, . . . , |E(S)|}.
It can be computed in polynomial time for a given star graph and, since it has crossing number at
most 2, applying Lemma 3.1 and the subsequent derandomization proves the claim.

Recall that a caterpillar graph is made up by a backbone path and edges attached to this path. For
caterpillars, we construct a pair-cover (T ,W) by taking the backbone path and the edges attached to
it into the collection T . Note that all graphs in T are paths. For each of them we use any end vertex
as wi. This cover is polynomial-time computable and has crossing number at most 3. Similar to the
star graph case, the claim follows.

Figure 1 shows examples of the pair-covers constructed in the proof of Lemma 3.2.
We note that maximum-tree-orientation on star graphs reduces to maximum-directed-cut by

the following two-step reduction: Without loss of generality, we start with an orientation instance (S,P)
with a center vertex vc where each pair has distinct end vertices. First, consider pairs (s, t) where one
of s and t equals vc. Delete (s, t) from P, insert a new vertex v(s,t) into V (S) that is connected to
vc, and insert a copy of (s, t) into P where the vertex equal to vc is replaced by v(s,t). This does not
change the size of an optimal orientation and no pair contains the center vertex. Next, consider the
new instance (S′,P′) from the first step, and construct the graph (V (S′),P′). Similar to the proof of
Theorem 2.3, every optimal orientation for (S′,P′) can be turned into an optimal cut for (V (S′),P′),
and vice versa. It follows that the orientation problem on stars admits a 0.874-approximation by using
the corresponding approximation algorithm for maximum-directed-cut [15].

(a) (b)

Figure 1: (a) A star tree and (b) a caterpillar tree along with their pair-covers as constructed in the
proof of Lemma 3.2. The cover subtrees from T are depicted with gray background bars, the vertices
from W are filled in black.
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3.2 Logarithmic Factor Bounds

Lemma 3.3. Let (T,P) be an orientation instance with a tree T . There exists an orientation T ′ of T
that satisfies at least |P|/(4dlogne) pairs from P.

Proof. We partition the multiset P into dlogne multiset P1, . . . ,Pdlogne, such that every orientation
instance (T,Pi) admits an orientation satisfying at least |Pi|/4 of the pairs in Pi. Taking the instance
with the largest set Pi and an orientation that satisfies at least 1/4 of its pairs, results in an orientation
that satisfies 1/(4dlogne) of all pairs.

Let v∈V (T ) be a vertex whose removal breaks the tree into components of size at most d|V (T )|/2e;
such a centroid vertex always exists in trees and can be found in polynomial time [6]. Let P1 be the
pairs from P with source-to-target paths crossing the vertex v and consider the orientation instance
(T,P1). We construct a pair-cover (T1,W1) for (T,P1) where T consists of all subtrees rooted at v
and vertices in W equal v. This pair-cover has crossing number 2. Thus, by Lemma 3.1, there exists
an orientation satisfying a fraction of 1/4 of the pairs P1. Next, let F be the forest that arises by
deleting v from T . Note that the path of every pair from P\P1 lies completely inside one of the trees
from this forest. We consider centroid vertices for all trees of F and let P2 be the multiset of pairs
from P \P1 that cross any of these vertices. We use the same construction of pair-covers as above
for every tree of the forest, and merge the covers to obtain a pair-cover with crossing number 2 for
the orientation instance (T,P2). It witnesses that there exists an orientation T ′ of T satisfying 1/4
of the pairs from P2. We proceed recursively by breaking F into subforests using centroid vertices.
This produces dlogne orientation instances (T,P1), . . . ,(T,Pdlogne), each admitting an orientation that
satisfies a fraction of 1/4 of its pairs using the same arguments.

The following lemma shows that the logarithmic bound from Lemma 3.3 is tight up to a constant
factor. We refer to Appendix A for its proof.

Lemma 3.4. For every r ∈N, there exists an orientation instance (Tr,Pr) with |V (Tr)|= 2r+1−1 and
|Pr|= 2r4r−1, such that every orientation of Tr satisfies at most (4r−1)/3 pairs. This is a fraction of
less than 2/(3r) of all pairs, which is logarithmic in the size of Tr.

4 Constant Factor Approximation for Pairs of Bounded Distance

In this section we consider tree orientation instances (T,P) where the distance between the source and
target vertices of each pair is at most a constant d ∈ N. We prove that such instances always admit
orientations satisfying a fraction of 1/(4d) of the input pairs (Lemma 4.1) and provide a polynomial-
time algorithm with approximation ratio 1/(2d) (Lemma 4.3).

Lemma 4.1. Let d ∈ N. Let (T,P) be an orientation instance with a tree T , such that for every pair
(s, t) ∈ P the path from s to t in T has length at most d. Then there exists an orientation T ′ of T that
satisfies at least |P|/(4d) pairs from P.

Proof. Choose any vertex r ∈V (T ) and consider, for every pair (s, t)∈ P, the unique vertex v(s,t) from
the s-t path that has shortest distance to r. We partition the pairs P into d multisets P0, . . . ,Pd−1 as
follows: A pair (s, t) ∈ P lies in Pi if and only if i≡ d(s,t) mod d where d(s,t) is the distance between
r and v(s,t). An example instance and its partition are depicted in Figure 2.

We prove that for every orientation instance (T,Pi) there exists an orientation satisfying at least
|Pi|/4 pairs. Taking such an orientation for the largest multiset Pi results in an orientation that satisfies
at least |P|/(4d) pairs. We use Lemma 3.1 and the following pair-cover with crossing number 2: For
an instance (T,Pi), we produce T by splitting T at every vertex v whose distance from r modulo d
is i. For every subtree Tj from T its vertex w j equals the vertex from V (Tj) with lowest distance to
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r in T . Since the distance between the source and target vertices of each pair is at most d, the path
of every pair lies in at most two subtrees from T . Moreover, every pair in Pi can be satisfied by an
orientation with respect to this pair-cover: either it lies completely inside a subtree Tj and one of its
end vertices is w j, or it lies in two subtrees Tj and Tk with w j = wk.

r

t1

s1

s2
t2

s3
t3

Figure 2: An example orientation instance (T,P) with P = {(s1, t1),(s2, t2),(s3, t3)} is shown. The
construction from the proof of Lemma 4.1 for the depicted root node r and source-to-target distance 3
partitions P into P0 = {(s1, t1)}, P1 = ∅, and P2 = {(s2, t2),(s3, t3)}. The multiset for a pair (s, t) is
chosen with respect to the vertex v(s,t) and its distance from r. The distances of the vertices from the
root modulo 3 are depicted using different shades of grey.

Let (T,P) be an orientation instance with tree T . The conflict graph of (T,P), denoted by C(T,P),
is the undirected graph with vertex set P and there is an edge between two pairs p1 = (s1, t1) ∈ P
and p2 = (s2, t2) ∈ P if and only if p1 and p2 can not be satisfied at the same time in any orientation
of T – equivalently the path from s1 to t1 and the path from s2 to t2 use some edge in different
directions. We say that p1 and p2 are conflicting if there is an edge between them in the conflict graph
and non-conflicting, otherwise. Sets of non-conflicting pairs can be satisfied simultaneously, which
implies the following fact:

Fact 4.2. Let (T,P) be an orientation instance with a tree T . For every k∈N there exists an orientation
of T that satisfies at least k pairs from P if and only if there exists an independent set of size at least
k in C(T,P).

Theorem 4.3. Let d ∈N. There exists a polynomial-time algorithm that, given an orientation instance
(T,P) where for every pair the length of the path between the source and the target vertex is at most
d, approximates its optimum solution to within a factor of 1/(2d).

Proof. Let opt be the size of an optimal solution to maximum-tree-orientation for the given orien-
tation instance (T,P). The algorithm consists of two steps: First it computes a subset P′ of the pairs
P with 2 ·opt/d ≤ |P′|. Then it computes an orientation T ′ for T satisfying |P′|/4 pairs. As a result
we will satisfy at least opt/(2d) of the pairs.

For the first step of the algorithm consider a vertex r ∈ V (T ) and the partition of the pairs P
into multisets P0, . . . ,Pd−1 from the proof of Lemma 4.1. Let C′(T,P) be the graph that arises from the
conflict graph C(T,P) of (T,P) by deleting all edges between pairs (si, ti) and (s j, t j) with v(si,ti) = v(s j,t j).
Two pairs (si, ti) and (s j, t j) from the same set Pi have the same vertex v(si,ti) = v(s j,t j) or their paths
do not overlap. Thus, the partition P0, . . . ,Pd−1 is a valid coloring with d colors of C′(s,t). For graphs
with colorings of d colors we can use an algorithm of Hochbaum [13] that computes an independent
set whose size approximates the size of a maximum independent set to within a factor of 2/d in time
O(nm logn), where n = |P| and m≤ |P|2 are the number of vertices and edges in the considered graph.
Let P′ be such a set for C′(s,t). Since C′(s,t) is a subgraph of C(s,t), we have 2 ·opt/d ≤ |P′| .
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For the second step consider the partition P′0, . . . ,P
′
d−1 with P′i = Pi∩P′ of P′. Similar to the proof

of Lemma 4.1, we compute an orientation that satisfies 1/4 of the pairs for every orientation instance
(T,P′i ), but this time we are not limited to use only the orientation of a single instance. Since P′ is an
independent set there are no conflicts between pairs from different sets P′i and P′j. Thus, we are able
to merge the orientations for the instances (T,P′i ) into an orientation that satisfies a fraction of 1/4 of
all pairs from P′. Altogether this results in a set of satisfied pairs of size at least opt/(2d).

5 Sublogarithmic Factor Approximation

In this section we devise a deterministic algorithm that achieves a sublogarithmic approximation
guarantee of Ω(log logn/ logn) for maximum-tree-orientation. Since general instances reduce to
tree instances in an approximation preserving manner, this leads to the same approximation ratio for
the general problem maximum-graph-orientation.

The algorithm first partitions the input pairs P into Ω(log logn/ logn) multisets Pi. For each
orientation instance (T,Pi) it computes an orientation that satisfies a constant fraction of the optimal
number of satisfiable pair. Consequently, the above-mentioned approximation ratio follows by picking,
out of the set of all the computed orientations, the one that satisfies a maximum number of pairs.
Below we describe the partition and orientation steps in detail.

5.1 Pair Partitioning

The process by which we partition the pairs is a modification of the centroid decomposition used in
the proof of Lemma 3.3. Specifically, we will use a decomposition that splits a tree into k = dlogne
subtrees of almost the same size, formalized by the concept of an almost-balanced decomposition: Let
T = (V,E) be a tree. An almost-balanced k-decomposition of T is a partition of T into k edge-disjoint
subtrees T1, . . . ,Tk such that each subtree contains between |E|/(3k) and 3|E|/k edges and the number
of vertices shared by at least two subtrees is at most k. Gamzu and Segev [7] showed that for every
tree T and integer k ≤ |E(T )| there exists an almost-balanced k-decomposition for T , and that such a
decomposition can be computed in polynomial-time.

The partition of the pairs corresponds to a recursive decomposition of the input tree T . Let
T1 = {T1, . . . ,Tk} be an almost-balanced k-decomposition of T . We say that a decomposition separates
a pair (si, ti) when its end vertices reside in different subtrees of the decomposition (see Figure 3 for
an example). The first multiset of pairs, P1, consists of all pairs separated by T1. To partition the
remaining set of pairs, P\P1, we recursively apply the previously-described procedure with respect to
the collection of subtrees in T1. Specifically, in the second level of the recursion, an almost-balanced
k-decomposition is computed in each of the subtrees T1, . . . ,Tk, to obtain a set T2, comprising of k2

subtrees. The second multiset of pairs, P2, consists of all pairs from P\P1 that are separated by T2.
The remaining multisets P3,P4, . . . are defined in a similar manner. The recursive process ends as soon
as we arrive at a subtree with strictly less than k edges. In this case we use the decomposition that
breaks a tree into its individual edges.

For k = dlogne, the overall number of levels in the recursion, or equivalently, the number of pair
multisets is O(logk n) = O(logn/ log logn).

5.2 A Constant Factor Approximation for a Single Part

Notice that a multiset of pairs, say P̀ , generally consists of several subsets of pairs, each created
when different subtrees in T`−1 are partitioned by the decomposition T`. More specifically, assuming
that the subtrees in T`−1 are T1,T2, . . ., the class P̀ can be written as the disjoint union of P1

` ,P
2
` , . . .,

where P j
` is the set of pairs that are first separated when Tj is partitioned. Recall that the path of any
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s1

t1

s2

t2

s3

t3

Figure 3: The example shows a tree T = (V,E) with 32 edges and an almost-balanced 7-decomposition
for it. The 7 subtrees of the decomposition are highlighted with gray backgrounds, the 5 border vertices
(see below) are filled in black. The number of edges in the subtrees varies between 3 and 7; this
satisfies the lower bound |E|/3k = 32/21≤ 3 and upper bound 3|E|/k = 96/7≥ 7 for the number of
edges that are allowed in the trees of almost-balanced 7-decompositions. The pairs (s1, t1) and (s2, t2)
are separated by the decomposition, while the pair (s3, t3) is not separated.

pair separated by some subtree decomposition must be contained in that subtree (otherwise, this pair
would have been separated in previous recursion steps). This observation implies that it is sufficient
to compute an orientation for a single subtree decomposition and its induced set of separated pairs.
Given a polynomial-time algorithm that computes such an orientation, one can apply it to each of
the subtree decompositions in the same recursion level. The resulting orientations of edge-disjoint
subtrees define an orientation for the whole input tree, satisfying at least as many pairs as the overall
number of pairs satisfied in all individual subtrees.

In what follows, we focus our attention on a single decomposition, and devise a randomized
algorithm that computes an orientation which satisfies, in expectation, a constant fraction of the
optimal number of satisfiable pairs for this decomposition. Formally, an instance of the problem in
question consists of a tree T = (V,E), and a partition T = {T1, . . . ,Tk} of this tree into k edge-disjoint
subtrees, where k ≤ dlogne, and the number of vertices shared by at least two subtrees is less than k.
In addition, we are given a multiset P of pairs that are separated by the the decomposition T .

We need the following notation (exemplified in Figure 4). Let opt denote the number of satisfied
pairs in some fixed optimal orientation of T . Let VB ⊆ V be the set of border vertices of T , that is,
the set of vertices that are shared by at least two subtrees in T . Moreover, let S ⊆ T be the skeleton
of T , namely, the minimal subtree spanned by all border vertices. Note that this subtree consists of
the union of paths connecting any two vertices in VB. Finally, let VJ ⊆V the set of junction vertices,
defined as non-border skeleton vertices with degree at least 3 (counting only skeleton edges).

We are now ready to present the orientation algorithm. Our algorithm consists of two phases:
segment guessing, where the optimal direction state of disjoint subpaths of the skeleton is attained,
followed by randomized assignment, in which individual edges are assigned a direction.

Segment guessing. Let us name the vertex set VB∪VJ the core of the skeleton S. One can verify that
|VB∪VJ|< 2k as |VJ|< |VB|< k. We now partition the skeleton into a collection Σ(S) of edge-disjoint
paths, which are referred to as segments. Each such segment is a subpath of S whose endpoints are
core vertices, but its interior traverses only non-core vertices. Clearly, |Σ(S)|= |VB∪VJ|−1 < 2k. We
now argue that one could obtain in polynomial time the direction state that the optimal orientation
induces on each segment σ ∈ Σ(S), simultaneously for all segments. To this end, notice that any
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Figure 4: An almost-balanced 5-decomposition. Black vertices are border vertices, gray vertices are
junction vertices, and the gray areas make up the skeleton of the decomposition.

skeleton segment σ = 〈v1,v2, . . . ,v`〉 may be in one of three possible direction states:

• Right direction: all edges are consistently directed from v1 toward v`, which means v1→ v2,v2→
v3, . . . ,v`−1→ v`.

• Left direction: all edges are consistently directed from v` toward v1, namely, v1 ← v2,v2 ←
v3, . . . ,v`−1← v`.

• Mixed direction: the direction of segment edges is non-consistent.

These definitions imply that the total number of segment direction states to be examined is of
polynomial size since 3|Σ(S)| < 32k ≤ 32dlogne = O(n2·log3). As a consequence, we may assume without
loss of generality that the set of direction states induced by the optimal orientation on all the segments
of Σ(S) is known in advance. This assumption can be enforced by enumerating over all O(n2·log3)
possible segment direction states.

Randomized assignment. The goal of this phase is to orient the graph while making sure that the
edge directions respect the outcome of the segment guessing phase. For this purpose, we begin by
considering skeleton segments that have a consistent direction, namely, segments in either right or left
direction states, and assign all the edges in these segments their implied direction. The assignment
procedure proceeds with two randomized assignment steps: (1) Each segment in a mixed direction
state is assigned, independently and uniformly at random, a right or left direction. All segment edges
are oriented according to the chosen direction. (2) Each of the decomposition subtrees T1, . . . ,Tk is
assigned, independently and uniformly at random, the role of a sender or a receiver. All the non-
skeleton edges of each sender subtree are oriented toward the skeleton (in its simplest form, when the
subtree contains a single border vertex, all edges are oriented toward that vertex). In contrast, all the
non-skeleton edges of each receiver subtree are oriented away from the skeleton. We refer the reader
to an example in Figure 5(a).

We turn to prove that the expected number of satisfied pairs is within a constant factor of optimal,
as formally stated in the following claim.

Claim 5.1. The resulting orientation satisfies at least opt/16 pairs in expectation.

Proof. Recall that we have previously assumed the endpoints of each pair to reside in different subtrees
of the decomposition T . In particular, this implies that each pair path must traverse at least one border
(core) vertex. For this reason, as shown in Figure 5(b), we can divide each pair path, with endpoints
si and ti, into five (some possibly empty) parts: (1) A subpath between si and its closest skeleton
vertex vsi . (2) A subpath, along a partial skeleton segment, between vsi and its closest core vertex rsi .
(3) A subpath between ti and its closest skeleton vertex vti . (4) A subpath, along a partial skeleton

10



(a)

rsi

vsi

si

rti

vti

ti

Tsi Tti

(b)

Figure 5: (a) An orientation of a sender subtree, where the thick edges are part of the skeleton. (b)
A partition of a pair path into five parts.

segment, between vti and its closest core vertex rti . (5) A subpath between rsi and rti , along a sequence
of complete skeleton segments.

With these definitions in mind, let us focus on some pair (si, ti) that is satisfied in the optimal
orientation. We now argue that, with probability at least 1/16, this pair is satisfied in the random
orientation constructed by the algorithm. Consequently, by linearity of expectation, the overall expected
number of satisfied pairs is opt/16. The key observation we make to establish this argument is that
all the segments along the subpath between rsi and rti must have a consistent direction in the optimal
orientation; otherwise, this pair would not have been satisfied. Accordingly, we may assume that our
algorithm assigned the same direction to all the edges in these segments. Now, notice that the pair
under consideration is satisfied if the following four probabilistic events occur: (1) the edges in the
subpath between si and vsi are oriented toward vsi ; (2) the edges in the subpath between vsi and rsi are
oriented toward rsi ; (3) the edges in the subpath between vti and rti are oriented toward vti ; and (4) the
edges in the subpath between ti and vti are oriented toward ti. One can validate that these four events
are independent, and that each one of them occurs with probability of at least 1/2. For example, the
edges in the subpath between si and vsi are oriented toward vsi if the underlying subtree Tsi is selected
as a sender. As a result, the probability that pair i is satisfied in the random orientation is at least
1/16.

Derandomization. The extent to which we utilize randomization is limited; its purpose is to make the
presentation of our algorithm simpler. Each segment in a mixed direction state is randomly assigned
one of two possible directions, resulting in at most 2|Σ(S)| < 22k ≤ 22dlogne = O(n2) possibilities.
Each decomposition subtree is randomly assigned one of two possible roles, resulting in at most
2k≤ 2dlogne=O(n) possibilities. To obtain a deterministic polynomial-time algorithm, we can construct
the whole space of possible assignments.

In summary, we obtain the following theorem:

Theorem 5.2. There exists a polynomial-time algorithm that approximates maximum-tree-orientation
to within a factor of Ω(log logn/ logn) on n-vertex trees.

Theorem 5.2 and Lemma 2.2 imply the same approximation bound for the problem on general
graphs:

Corollary 5.3. There exists a polynomial-time algorithm that approximates maximum-graph-orientation
to within a factor of Ω(log logn/ logn) on n-vertex graphs.
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6 Conclusions

In this paper we studied the complexity and approximability of the maximum graph orientation prob-
lem. We showed that this problem is NP-hard to approximate to within a factor of 12/13. On the
positive side, we provided an Ω(log logn/ logn)-approximation algorithm for the problem. In addition,
we provided insights into the combinatorial structure of the problem, showing that every orientation
instance admits an orientation that satisfies a fraction of 1/(4dlogne) of its pairs, and that this bound is
tight up to a constant factor. We also designed constant factor approximation algorithms for restricted
variants of the problem where the instance can be decomposed by restricted covers, including star
graphs, caterpillars and graphs in which the distances between the source and target vertices of every
pair are bounded.

There are several directions for future research: One direction is to close the gap between our
approximation and hardness-of-approximation results. Another direction is to develop algorithms that
work on instances in which some of the graph’s edges are pre-directed. This problem is motivated by
biological scenarios in which the directions of some of the edges are known, such as for protein-dna
interaction and kinase-substrate interactions. We have recently developed a polynomial integer linear
programming formulation for the problem and showed that the resulting orientations are much more in
line with current biological knowledge compared to orientations that ignore the pre-set directions [20].
We also proved a sub-linear approximation ratio for this problem [4]. It is open whether this ratio
can be improved. A third research direction is to understand the structure of real world instances and
exploit it for algorithms solving the NP-complete orientation problem fast in practice. A recent work
in this direction by Dorn et al. [3] determines the values of many structural parameters for different
ppi networks and studies the complexity of the orientation problem when parameterized by them.
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A Appendix: Proof of Lemma 3.4

Proof. Let r ∈N. The orientation instance (Tr,Pr) is made up by an undirected rooted complete binary
tree with depth r and the following multiset of pairs: For every ordered pair (v,w) of distinct leaves
in Tr we insert 2(2r−d(v,w))/2 copies of the pair (v,w) into Pr, where d(v,w) is the distance between v
and w. Figure 6 shows an example of this orientation instance.

Let opt(r) denote the maximum number of satisfied pairs from Pr in any orientation of Tr. Let
opt(r,k) denote the maximum number of satisfied pairs from Pr in orientations where the root can be
reached from exactly k leaves. Due to the definition of the pairs, this is equivalent to saying that there
exist exactly k leaves that are reachable from the root – if we flip all edge orientations, then a pair
(v,w) is satisfied if, and only if, the pair (w,v) was satisfied before. Thus, flipping all edge orientations
does not change the number of satisfied pairs. By definition we have opt(r) = max0≤k≤2r opt(r,k).

The main technical arguments of this proof are encapsulated by the following claim. For k ≥ 1,
define g(k) = 2blogkc – the largest power of two that is at most k. We claim that for every r ≥ 1 and
k ≥ 0, we have

opt(r,k) =

{
4r+2g(k)2

3 −g(k)k if k ≥ 1
4r−4

3 if k = 0
.

Once the claim is proven, we know that opt(r,k) is maximized for k = 1 since opt(r,k) is monotone
decreasing in k, starting from k≥ 1. Thus opt(r) = opt(r,1) = (4r−1)/3. An example of an optimal
orientation where exactly one leaf has a path to the root is shown in Figure 6(b).
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(a) Orientation instance (T3,P3):

root

(b) An optimal orientation T ′3 of T3 and the satisfied pairs from P3:

root

Figure 6: (a) The orientation instance constructed in the proof of Lemma 3.4 is shown for r = 3. The
tree T3 is drawn by using solid edges; it has 24−1 vertices. The pairs from P3 are grouped to pairs
having the same end vertices (though, not necessarily the same source and target vertices); every group
is depicted by a grey bidirectional path that connects the two end vertices. The number of ordered
combinations of two leaves whose pairs cross the root is 2 ·42; 42 combinations with first vertex on
the left and second vertex on the right side. In P3 there is exactly one copy for each of these pairs and,
thus, the number of pairs in P3 that cross the root is 2 ·42. All leaf combinations whose pairs do not
cross the root, but a vertex one level beneath, appear twice in P3. In total, the corresponding number
of pairs is 2 ·42. The same holds if we go one level further beneath where all leaf combinations appear
4 times as pairs in P3. In total, the number of pairs in P3 is 3 ·2 ·42. (b) An optimal orientation T ′

of Tr that satisfies 1+4+16 = (43−1)/3 pairs. The pattern of edge orientations in this example (for
every vertex, one child edge is oriented upwards, and the other child edge is oriented downwards) can
be generalized to construct optimal orientations for every orientation instance (Tr,Pr).

We prove the claim by induction over r. For r = 1, we have T1 =
root

and by checking all 4
orientations for this tree we can see that the claim holds for all k. We assume that the claim holds for
some r ≥ 1 and all k, and prove that is also holds for r+1 and all k.

Before we proceed with the proof, we will make a short break for a technical observation that is
enabled by the induction hypothesis and used later on. We define diffopt(r,k) = opt(r,k)−opt(r,k+
1), which is the change of the number of satisfied pairs in optimal orientations if we require that one
more leaf has a path to the root. So far g(k) is only defined for k ≥ 1. We extend its definition to
g(0) =−1 and show diffopt(r,k) = g(k) for all k ≥ 0. For k = 0, we have diffopt(r,0) = opt(r,0)−
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opt(r,1) = (4r−4)/3− (4r−1)/3 =−1. For k ≥ 1, we consider the equalities

diffopt(r,k) = opt(r,k)−opt(r,k+1)

= 4r+2g(k)2

3 −g(k)k−
(

4r+2g(k+1)2

3 −g(k+1)(k+1)
)

= 2
3(g(k)

2−g(k+1)2)−g(k)k+g(k+1)(k+1) .

If g(k) = g(k+1), which happens if k+1 is not a power of 2, we can derive diffopt(r,k) = g(k). If
g(k) 6= g(k+1), we know g(k+1) = k+1 = 2g(k) and can extend the equations from above to

diffopt(r,k) = 2
3(g(k)

2−4g(k)2)−g(k)k+4g(k)2

= g(k)(2g(k)− k) = g(k)(k+1− k) = g(k) .

We proceed to prove the claim for (Tr+1,Pr+1) and first consider the case k = 0. The orientations
that are possible in this case do not satisfy any of the pairs that cross the root (because there is no path
from a leaf to the root.) As a result, we can restrict to optimally orient the two orientation instances that
correspond to the two subtrees beneath the root; they equal Tr, but with each pair from (the multiset)
Pr occurring twice. Thus, by using the induction hypothesis and the fact that opt(r,k) is maximized
for k = 1, we can derive opt(r+1,0) = 2 ·2 ·max0≤k≤2r opt(r,k) = 4 · (4r−1)/3 = (4r+1−4)/3 .

Next, we consider k ≥ 1 and optimal orientations among the orientations where exactly k leaves
have a path to the root. We distinguish two cases: In the first case, both edges incident to the root are
directed toward the root, and in the second case one edge incident to the root is oriented away from
the root and the other toward the root.

We start with the first case and consider orientations of the form
root

. Since no pair that crosses
the root is satisfied and a total of k leaves have a path to the root, we obtain the equation opt(r+1,k) =
max0≤l≤k 2 ·opt(r, l)+ 2 ·opt(r,k− l) where l and k− l are the number of leaves with paths to the
root from the left and right subtrees, respectively. Which l maximizes the expression 2 ·opt(r, l)+2 ·
opt(r,k− l)? We consider the difference between the expression for two consecutive values of l and
derive the following equalities by using the induction hypothesis and the technical observation from
above:

2 ·opt(r, l)+2 ·opt(r,k− l)− (2 ·opt(r, l +1)+2 ·opt(r,k− l−1))

= 2 ·diffopt(r, l)−2 ·diffopt(r,k− l−1) = 2(g(l)−g(k− l−1)) .

The expression 2(g(l)−g(k− l−1)) is at most 0 for l = 0 and at least 0 for l = k−1. Moreover, it
is monotonically increasing for constant k and increasing l. Thus the value of l where 2(g(l)−g(k−
l−1)) is the first time at least 0 gives us an l that maximizes 2 ·opt(r, l)+2 ·opt(r,k− l). If k is a
power of 2, this happens for l = k/2 = g(l) and implies

opt(r+1,k) = 2 ·opt(r, l)+2 ·opt(r,k− l) = 4 ·opt(r, k
2) =

4r+1+2g(k)2

3 −g(k)k .

If k is not a power of 2, which means k = 2t +d for some t and d with 0< d < 2t , it happens at l = 2t−1,
whenever d < 2t−1, and d, whenever d ≥ 2t−1. Both times we have g(l) = g(k− l−1) = g(k)/2. This
implies

opt(r+1,k) = 2 ·opt(r, l)+2 ·opt(r,k− l)

= 2 ·opt(r, l)−2 ·diffopt(r,k− l−1)+2 ·opt(r,k− l−1)

= 2
(

4r+2g(l)2

3 −g(l)l
)
−2g(k− l−1)+2

(
4r+2g(k−l−1)2

3 −g(k− l−1)(k− l−1)
)

= 4r+1

3 + 8
3

g(k)2

4 −g(k)(l + k− l−1+1) = 4r+1+2g(k)2

3 −g(k)k .
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Now we consider the second case with orientations like
root

. In this case, we can write the
optimum as opt(r+ 1,k) = max0≤l≤2r 2 ·opt(r, l)+ 2 ·opt(r,k)+ lk where l denotes that number of
leaves that are reachable from the root in the left subtree. Similar to the above case, we write down
the difference between two subsequent expressions, this time deriving the equation

2 ·opt(r, l)+2 ·opt(r,k)+ lk− (2 ·opt(r, l +1)+2 ·opt(r,k)+(l +1)k)

= 2 ·diffopt(r, l)− k = 2g(l)− k .

The expression 2g(l)−k increases with growing values of l and has its first positive value at l = g(k).
This can be used to derive

opt(r+1,k) = 2 ·opt(r, l)+2 ·opt(r,k)+ lk

= 2
(

2r+2g(k)2

3 −g(k)k
)
+2
(

2r+2g(k)2

3 −g(k)2
)

= 4r+1+2g(k)2

3 −g(k)k .

Taking all steps of the induction proof together proves the claim.
Note that the proved statement also holds if the orientation instance pairs are kept in sets instead

of multisets. In this case we cannot have multiples copies of the same pair, but the proof can be fixed
by replacing every leaf with a cycle whose size equals the number of pairs that use the leaf as an end
vertex. Then the pairs are redirected to have unique end vertices. Since for optimal orientations we
can restrict to the case that cycles are oriented in a consistent direction, the proof generalizes to this
case.
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