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SUMMARY

Phosphoproteomic experiments typically identify
sites within a protein that are differentially phosphor-
ylated between two or more cell states. However, the
interpretation of these data is hampered by the lack
of methods that can translate site-specific informa-
tion into global maps of active proteins and signaling
networks, especially as the phosphoproteome is
often undersampled. Here, we describe PHOTON, a
method for interpreting phosphorylation data within
their signaling context, as captured by protein-pro-
tein interaction networks, to identify active proteins
and pathways and pinpoint functional phosphosites.
We apply PHOTON to interpret existing and novel
phosphoproteomic datasets related to epidermal
growth factor and insulin responses. PHOTON
substantially outperforms the widely used cutoff
approach, providing highly reproducible predictions
that are more in line with current biological knowl-
edge. Altogether, PHOTON overcomes the funda-
mental challenge of delineating signaling pathways
from large-scale phosphoproteomic data, thereby
enabling translation of environmental cues to down-
stream cellular responses.

INTRODUCTION

Mass-spectrometry-based phosphoproteomic analysis is a

powerful approach for the elucidation of signaling changes in

cells upon perturbations. In this approach, phosphopeptides

are typically enriched by immobilized metal ion affinity chroma-

tography (IMAC), titanium dioxide or phosphotyrosine antibodies

followed by mass spectrometric (MS) analysis. Downstream

computational analysis identifies the phosphorylated peptides

and localizes the modification site. However, despite the great

depth of tens of thousands of phosphorylation sites in single

experiments (Humphrey et al., 2013, 2015; Sharma et al., 2014;

Yi et al., 2014), this technique still suffers from major limitations:

(1) the functionality of the great majority of phosphorylation sites
Cell
is unknown, and thus the phosphorylation change itself does not

necessarily reflect a change in the signaling functionality of the

protein; (2) the identification of the phosphosites by themselves

does not lead to an integrated view of a larger signaling network;

and (3) phosphoproteomic studies suffer under-sampling of the

phosphoproteome, which is estimated to include hundreds of

thousands of sites. As a result, the overlap of identified phospho-

sites between separate MS runs is always limited, leading to

reduced analytical reproducibility.

The end result of most phosphoproteomic studies is a list of

regulated phosphosites that differ between two or more cell

states. Only some studies follow up with a functional examina-

tion of only a few sites. While some studies rely on statistical

testing based on replicate analyses to extract regulated phos-

phosites from a large-scale dataset (Alcolea et al., 2012; Hum-

phrey et al., 2015; Wilkes et al., 2015), many phosphoproteomic

studies simply apply a fold-change cutoff, without proper statis-

tical consideration (Cantin et al., 2006; Dephoure et al., 2008;

Gruhler et al., 2005; Olsen et al., 2006, 2010; Pan et al., 2009;

Yu et al., 2011), or determine a specific deviation from the

mean (Humphrey et al., 2013; Rinschen et al., 2010; Wu et al.,

2011) in a single phosphorylation measurement. Due to the

under-sampling of the phosphoproteome, these site-centric ap-

proaches yield noisy and non-reproducible results. To alleviate

these issues, an alternative approach was proposed by Terfve

et al. (Terfve et al., 2015), where a Gaussian mixture model is

fitted to the distribution of each phospho-peptide across a

panel of kinase inhibitors to identify perturbed phosphorylation

sites. However, this approach requires a large number of experi-

mental conditions, making it inapplicable to standard proteomic

studies.

Recently, various tools were developed to derive kinase activ-

ities from phosphoproteomic data and to put the phosphoryla-

tion data in a network context. Tools such as Inference of Kinase

Activities from Phosphoproteomics (IKAP) (Mischnik et al., 2016)

and Kinase Set Enrichment Analysis (KSEA) (Casado et al., 2013)

exploit the kinase-substrate relations to derive the activity of a

kinase from the phosphorylation state of its substrates. Aiming

to put the regulated sites and proteins in a signaling context, net-

works in general and specifically kinase-substrate interactions

can be explored using several computational tools such as Kino-

meXplorer and PHONEMeS (AlQuraishi et al., 2014; Casado

et al., 2013; Horn et al., 2014; Mischnik et al., 2016; Schwartz
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andGygi, 2005; Terfve et al., 2015). All of thesemethods rely on a

limited number of known site-specific kinase-substrate interac-

tions. While a number of interactions is available in databases,

the majority of the site-specific interactions are unknown. Map-

ping the phosphorylation data to these partial interactions

greatly reduces the amount of data utilized in the analysis. For

example, in the IKAP method, less than 5% (1,069 / 24,714) of

the measured phosphorylation sites were used to predict the

activity of 118 kinases during mitosis (Mischnik et al., 2016). In

addition, such kinase-focused approaches ignore non-kinase

proteins, which have an important part in mediating signal

transduction. Similarly, placing phosphorylation events in a

known signaling context, such as the Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa et al., 2016) pathway

under study, enables the interpretation and visualization of the

data but excludes non-canonical interactions and cannot be

applied to novel signaling pathways. A complete but cluttered

picture of the signaling context can be obtained by extracting

the potential interactions of regulated proteins from interaction

databases.

Beyond the elucidation of signaling networks,MS-basedphos-

phoproteomicshas thepotential to unravel novelphosphorylation

sites and reveal newmodesof protein regulation. To date, the site

information was implemented into several databases, such as

PhosphoSitePlus (Hornbeck et al., 2015), PHOSIDA (Gnad

et al., 2007), andPhospho.ELM (Dinkel et al., 2011), but functional

information is available only for a small number of well-studied

sites. Even on a small scale, the experimental validation of a site’s

function is difficult (Lienhard, 2008), making computational ap-

proaches for function prediction much-needed. Toward this

goal the PHOSIDA database (Gnad et al., 2007) provides func-

tional annotations based on sequence, from which evolutionary

(Tan et al., 2009) and structural evidence is derived.

In this work, we developed a phosphoproteomic analysis pipe-

line, which we termed PHOTON (phosphoproteomics dissection

using networks), to tackle the above mentioned shortcomings

of current approaches. First, we obtained robust estimates of

protein signaling functionality from the raw phosphorylation

data. After extracting a set of significantly functional proteins,

we integrated those into a high-confidence protein-protein inter-

action (PPI) network and extracted the subnetwork linking the

signaling source and the downstream effects. We benchmarked

our approach using two published datasets related to epidermal

growth factor (EGF) and insulin signaling.We further validated our

approach against a novel dataset of EGF signaling, showing that

it leads to results that better agree with current biological knowl-

edge and exhibit higher reproducibility compared to the cutoff

approach.

RESULTS

Signaling Functionality-Based Reconstruction of
Phosphoproteomic Data
MS-based phosphoproteomic analysis has become the main

experimental approach for the discovery of novel phosphoryla-

tion sites and elucidation of signaling pathways. The output

of such experiments includes ratio values (between distinct

samples) of thousands of phosphorylation sites; however, the

functional significance of these sites and their integration into
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signaling networks is still a major obstacle in subsequent ana-

lyses. To transform the raw ratio data into functionality scores

of proteins in the context of a signaling network, we first mapped

the phosphorylation changes onto a weighted protein-protein

interaction (PPI) network. The weights of the edges between

the proteins provide a confidence measure for each protein-pro-

tein interaction, which is based on the experimental techniques

by which each interaction was measured and the number of

times it was observed (see STAR Methods). We postulate that

the signaling functionality of a protein can be determined based

on the phosphorylation changes of its interactors; for example,

when the phosphorylation levels of multiple binding partners of

a protein increase, we predict that it is functional. Since the

PPI network includes multiple proteins with no catalytic activity

(e.g., adaptor proteins), functionality does not necessarily refer

to enzymatic activity but more broadly denotes the active medi-

ation of signal transduction. To calculate the signaling function-

ality of each protein, we averaged the phosphorylation changes

measured on the neighbors of each protein, weighted by the

confidence of the corresponding interactions. By comparing

the resulting functionality across proteins, we could estimate

the p value for elevated or reduced functionality and infer a func-

tionality score a of the protein (Figure 1A; and STAR Methods).

The sign of the score corresponds to the direction in which the

functionality changes (increases or decreases).

To examine the utility of the computed signaling functionality

scores, we evaluated our approach on two publicly available

studies (Humphrey et al., 2013; Olsen et al., 2006). The first study

by Olsen et al. (Olsen et al., 2006) recorded phosphorylation

changes after EGF treatment in the human HeLa cell line. The

second study by Humphrey et al. (Humphrey et al., 2013)

measured the insulin response ofmouse adipocytes. After deter-

mining the functional proteins in these datasets, we examined

the power of the signaling functionality scores by computing

their enrichments with relevant Gene Ontology (GO) terms and

KEGG pathways. In the Olsen dataset we identified 118 proteins

that were significantly functional (upon 10 min EGF stimulation).

We termed those the ‘‘functional group.’’ For comparison, we

used two approaches to define the significant changes based

on the raw phosphorylation change, without signaling function-

ality calculation. The first approach was based on the fold

change between the stimulated sample and the control. In order

to obtain a group of proteins of the same size, we applied an

absolute fold-change threshold of 2.31 and termed these sites

the ‘‘phosphorylated group.’’ The second approach based on

significant outlier detection (STAR Methods) resulted in 139

changing proteins and was termed the ‘outlier group’. Enrich-

ment analysis to identify the relevance of these results showed

much higher enrichment of EGF receptor (EGFR)-related path-

ways in the functional group. For example, the ‘‘regulation of

epidermal growth factor receptor signaling pathway’’ category

was found to be most highly enriched in the functional group

ðq= 3:20 � 10�8Þ, while the same category was ranked 58th in

the phosphorylated group ðq= 3:74 � 10�4Þ. In the outlier group,

it ranked 70th ðq= 3:26 � 10�2Þ (Figure 1B; Table S1). Addition-

ally, the functional group contained more than three times the

number of proteins from this category compared to the other

groups (15 vs. 4 and 4, respectively). Similarly, the category

‘‘ERBB signaling pathway,’’ which underlies the data, was found
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Figure 1. Signaling Functionality-Based Data Reconstruction

(A) For each protein i, phosphorylation measurements were aggregated across its interactors. The empirical distribution of the aggregated measurements, ui ,

was estimated using random permutations of the input data. The resulting p value was log-transformed to yield the final signaling functionality score.

(B) Enrichments of the target categories (ERBB signaling pathway and insulin receptor pathway) were higher for functional over phosphorylated proteins in GO

and KEGG.

(C) Hierarchical clustering of signaling functionality scores at different time points of insulin stimulation. Representative enriched pathways in selected clusters are

indicated.
significantly enriched for the functional ðq= 2:75 � 10�6Þ, phos-
phorylated ðq= 7:86 � 10�3Þ, and outlier groups ðq= 2:5 � 10�2Þ.
Further comparing the two significant enrichments, the expected

category was not only more highly ranked in the functional

group compared to the phosphorylated or outlier group (13 vs.

26 and 43) but also contained more proteins (24 vs. 9 and 9;

Table S1). For the KEGG database, we found an even larger dif-

ference between the methods; in the functional group, the

‘‘ErbB signaling pathway’’ ranked first ðq= 9:30 � 10�6Þ, while be-

ing non-significant ðq> 0:1Þ in the phosphorylated and outlier

groups.

The Humphrey et al. (Humphrey et al., 2013) dataset yielded

275 significantly functional signaling proteins. A set of proteins

of the same size was extracted by applying a fold-change cutoff

of 2.76, yielding the phosphorylated group. Significant outlier

detection yielded 183 proteins. Additionally, since multiple

replicates were available (as opposed to the Olsen dataset),

we also applied a moderated Student’s t test to the data, which

yielded 365 significant proteins, termed ‘‘t-test group.’’ Themost

enriched GO category for the functional group was the ‘‘insulin

receptor signaling pathway’’ ðq= 1:94 � 10�15Þ with 37 protein

hits. While the same category was also found significantly
enriched in the phosphorylated ðq= 2:95 � 10�4Þ and outlier

ðq= 2:15 � 10�2Þ groups, it was lower ranked at positions 11

and 7 and contained fewer protein hits (17 and 13). The insulin

receptor signaling pathway group was not found to be signifi-

cantly enriched in the t-test group, which in general produced

only few significant enrichment hits, with the top-ranked one

being ‘‘eukaryotic translation initiation factor 4F complex’’

ðq= 3:38 � 10�2Þ. Similar to the Olsen dataset, the KEGG enrich-

ment analysis showed a greater difference between the

methods. For the functional group, the ‘‘PI3K-Akt signaling

pathway’’ ðq= 5:60 � 10�10Þ ranked first, with ‘‘insulin signaling

pathway’’ ranking fifth ðq= 9:52 � 10�7Þ. In the phosphorylated,

outlier, and t-test groups, none of these pathways were signifi-

cantly enriched. Neither the significant outlier detection nor the

moderated t test, proved advantageous over the fold-change

cutoff. This was also true for a combined approach using both

the phosphorylated proteins and significantly functional proteins

(Figure S1A). Therefore, in the following analyses, we focused

exclusively on comparing between the signaling functionality-

based approach and the fold-change cutoff.

Notably, when we tried to restrict our analysis to the kinase-

substrate interactions from PhosphoSitePlus (Hornbeck et al.,
Cell Systems 3, 585–593, December 21, 2016 587
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Figure 2. Signaling Network Reconstruction

(A) Reconstructed signaling pathway for the Olsen dataset. The measured phosphorylation state of each protein is displayed as a pie chart. The interactive

visualization enables the exploration of the data, with additional information being displayed for selected proteins.

(B) Using the sets of functional and phosphorylated proteins as sources, we inferred signaling networks. The networks derived from functional signaling proteins

showed higher enrichment than their phosphorylated counterparts.
2015), most of the data could not be mapped. While 40% of

the 3652 phosphorylation sites in the Olsen dataset could

be mapped to the PPI network, only 167 sites (4.5%) had

a known kinase in the PhosphoSitePlus kinase-substrate

network, and not a single protein was found to be significantly

functional (Figure S2). Therefore, the broad PPI view is

capable of capturing considerably larger areas of the network.

Altogether, these results highlight the power of the signaling

functionality determination in increasing the coverage and

significance of the known, biologically relevant signaling

pathways.

To examine the quantitative capabilities of the signaling func-

tionality scores, we took advantage of the entire time course

in the published Humphrey dataset, which included eight time

points and unstimulated control cells. After calculation of the

signaling functionalities of the proteins across the entire dataset,

we extracted 2,340 significantly changing proteins (in any of the

eight time points; p< 0:05). Hierarchical clustering of the signifi-

cant proteins showed nine protein clusters representing the

patterns of signaling functionality changes during 60min of insu-

lin stimulation. Enrichment analysis showed the pathways and

processes that are regulated in each pattern. For example, the

cluster of proteins that are stimulated within oneminute of insulin

treatment were enriched for ‘‘insulin receptor signaling,’’ ‘‘AKT

signaling,’’ ‘‘glycogen metabolism,’’ etc. (cluster 1) (Figure 1C;

Table S2). A slower stimulation pattern, which initiates only after

5 min, showed enrichment for ‘‘ribosome’’ and ‘‘autophagy’’

(cluster 4). Four of the clusters showed patterns involving

reduced functionality upon insulin stimulation. These were found

to be enriched for epigenetic regulators and splicing factors

(clusters 5), ‘‘mediator complex,’’ and ‘‘RNA polymerase II’’

(cluster 8) and cell cycle and DNA damage regulation (cluster 9).

Thus, the functionality view provides a means of evaluating the

dynamic changes in biological processes in the course of a

measured response.
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Reconstruction of Signaling Pathways Using ANAT
Next, we used the Advanced Network Analysis Tool (ANAT)

algorithm (Yosef et al., 2011) to reconstruct the signaling

pathways underlying the measured responses. Starting from a

global PPI network, the reconstruction aims to connect in an

efficient manner a set of affected proteins, which we call ‘‘termi-

nals,’’ to the source of the response. In our case, we selected

EGF (Olsen) or insulin (Humphrey) as the response source and

examined the pathway reconstruction for two choices of termi-

nals: (1) a set derived from the raw phosphorylation data and (2)

a set based on significantly functional signaling proteins (as

described above). These networks provide a powerful visualiza-

tion of the interaction between the signaling proteins and their

measured phosphorylation states (Figures 2A, S3, and S4).

The source is located at the center of the network, and for

each protein between the source and the terminals, the phos-

phorylation state of each site is indicated. Each node (protein)

is represented as a pie chart, divided into slices according to

the number of measured phosphorylation sites and colored ac-

cording to the ratio of that specific site. In general, the insulin

network is much larger than the EGF one, due to the higher

coverage of the phosphoproteome in that study, and also

shows a higher fraction of downregulated sites than in the

EGF data, presumably due to different signaling dynamics of

these systems. A closer investigation of these networks shows

MAPK1 and AKT as the major nodes downstream of both re-

ceptors. Specifically, the insulin network also shows the nuclear

factor kB (NF-kB) pathway (e.g., IKBKG and IRAK) to be

affected by insulin, and BCL2 and other family members are

shown to be activated downstream of the insulin receptor, as

well as MDM2 and its interactors.

To evaluate the two networks, we calculated their enrichment

with the two relevant GO processes and respective KEGG

pathways: ERBB signaling pathway for the Olsen data, and

insulin receptor signaling pathway for the Humphrey study. The



enrichments of the target categories were dramatically improved

when network reconstruction was based on the functional group

(Figure 2B). To ensure that the observed enrichments were not

merely an artifact of the PPI network and the signaling pathway

reconstruction, we computed their empirical p value as follows.

We compared the enrichment scores from n = 1,000 random

network reconstructions, which were generated by choosing a

random set of potentially functional proteins as terminals, to

the original reconstruction that used the significant proteins.

Reassuringly, we found the p values for the target pathways to

be significant ðp%0:001Þ for all datasets. Overall, these networks

reinforce the advantage of functionality-based analysis and pro-

vide a global visualization of the pertaining signaling network.

Analysis of EGF Stimulation of MCF7 Cells
After establishing the utility of our method, we applied it to

analyze a novel phosphoproteomic dataset, which measured

the response of human MCF7 cells to EGF stimulation. Overall,

we identified 4,269 phosphorylation sites on 1,786 proteins.

We filtered the data to retain only sites with localization proba-

bility higher than 0.75 (class I) to focus the analysis on confident

phosphosites only. Following the same workflow of signaling

functionality determination, using this in-house EGF stimulation

dataset, we reproduced protein-functionality predictions of a

curated Boolean model of the EGFR signaling pathway (Samaga

et al., 2009). This Boolean model was built using antibody-

based analysis and heavily depended on prior knowledge

and small-scale experiments. In contrast, our method, which is

derived from large-scale phosphoproteomics, enables predic-

tion of functional proteins without any prior knowledge and

therefore can be much more broadly applied. Notably, splitting

the proteins according to their functionality, as predicted by

the Booleanmodel, resulted in a significant ðp= 0:0059Þ increase
in the calculated functionality score of the functional group (Fig-

ure 3A), providing further support to our predictions.

Based on the computed signaling functionality scores, we

extracted a group of 128 significantly functional proteins, and

inferred the underlying signaling network (Figure S5), as

described above. We found the resulting network to be highly

enriched in relevant, signaling-related categories, such as

‘‘epidermal growth factor signaling pathway’’ ðq= 2:92 � 10�17Þ.
The superiority of our method over the fold-change approach

was confirmed by its higher enrichments of the target GO and

KEGG categories (Figure 3B; Table S1). A comparison between

the two EGF datasets in HeLa and inMCF7 cells showedmultiple

similarities, including the three central hubs of the EGF receptor,

MAPK1, and AKT1, and in addition both showed the E3 ubiquitin

ligase CBL as a central node, signaling to CRK, NCK, and PLC-

gamma. Beyond these parallels, we also found signaling hubs

with cell specificity, including RPS6KB1 and its effectors, which

were specifically activated in MCF7 cells, or signaling to CDK2,

which was more prominent in HeLa cells. These analyses show

the ability to extract valuable signaling information and perform

functional comparisons between systems.

Inference of Functional Activity of Phosphorylation Sites
In addition to reconstructing the signaling network for each

dataset, we aimed to generalize this knowledge by linking a

phosphorylation site to its function, providing basic biochemical
information on protein regulation based on the specific phos-

phorylation site. To this end, we trained a logistic-regression

model to predict functional phosphorylation sites. For each

site, we assembled four features: (1) the observed phosphoryla-

tion fold change, (2) the derived signaling functionality score of

the protein, (3) the evolutionary conservation of the phosphory-

lation site, and (4) the number of phosphorylation sites on the

protein. For the in-house dataset, complete information was

available for 984 sites on 353 proteins. As a training set, we ob-

tained a list of known functional sites from PhosphoSitePlus

(Hornbeck et al., 2015). We assigned a positive label to 106 sites

that were listed in the reference, while the remaining 878 sites

were labeled as negatives.

We measured the performance of our model in a 10-fold cross

validation procedure using the area under the curve (AUC) of the

receiver-operator characteristic (ROC). The functional phos-

phorylation site predictor achieved an average AUC of 0.71. In

comparison to baseline methods, such as ranking the sites

by the phosphorylation change or the raw protein signaling

functionality, the logistic-regression classifier showed superior

performance in functional site prediction (Figure 3C). Addition-

ally, the coefficients of the logistic regression model can be

used to understand the contribution of each of the features.

We found that high protein signaling functionality, increased

phosphorylation, and a small number of evolutionary conserved

sites on the same protein characterize functional phosphoryla-

tion sites (Figure 3D). The 20 highest-scoring predictions include

phosphorylations on 17 proteins, among them the EGF receptor

itself, Shc1, Gab2, and Sos1, which are components of the

signaling complex of the EGFR (see Table S3 for the entire list).

While most of these sites are known, their activities are not anno-

tated in PhosphositePlus and were therefore not included in the

training set. In addition to those, we found several components

of the S6 kinase signaling pathway, including RPS6KA1 and

URI1. Our predictions included phosphorylation of RPS6KA1

on Ser389 (residue 380–381 in other isoforms), which was shown

to be induced upon mitogen-activated protein kinase (MAPK)

activation and autophosphorylation of the enzyme (Dalby et al.,

1998). We also identified two core components of the MAPK

family, namely MAPK14 (p38) and MAP2K2 (Mek2). These re-

sults demonstrate our ability to derive reliable functional infor-

mation. Similar results were obtained for the Olsen dataset.

Here, the classifier was evaluated on 63 positive and 813 nega-

tive samples. We again found the logistic regression model to

outperform the baseline methods with a mean AUC of 0.70

(Figure S6). The same analysis could not be performed on the

Humphrey dataset due to phosphorylation site mapping incom-

patibility of the mouse proteins.

Consistency and Reproducibility
A major challenge in phosphoproteomic analysis is the lack of

reproducibility, which results from undersampling of the phos-

phoproteome and identification of distinct sites in independent

experiments. To test whether PHOTON improves on standard

phosphoproteomic analyses in terms of consistency and repro-

ducibility, we compared its results obtained from the two EGF

datasets to the standard (site and protein-centric phosphoryla-

tion). We considered the overall set of proteins and sites under

study, and the set of proteins of interest, as chosen by the
Cell Systems 3, 585–593, December 21, 2016 589
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Figure 3. Analysis of the In-House EGF Dataset

(A) Calculated signaling functionality scores were compared to model predictions by the Boolean model from Samaga et al. (2009). Functional proteins showed a

significantly increased score.

(B) Comparison of the enrichment in the target GO and KEGG categories for the different methods. ‘‘Phosphorylated’’ proteins were identified using the cutoff

approach; ‘‘Functional’’ proteins were found to have significant signaling functionality scores. Additionally, both protein sets were extended using the network

reconstruction approach, which is denoted by ‘‘+ Network.’’

(C) Receiver-operator characteristic curves for functional phosphorylation site prediction. Four baseline predictors were used: (1) ranking phosphorylation sites

by their fold-change, (2) ranking by the signaling functionality score of the protein, (3) ranking by the evolutionary conservation of the site, and (4) ranking by the

number of known sites on the protein. The logistic-regression model was found superior to any single approach.

(D) The logistic regression coefficients for each feature. The value of the coefficient is an estimate of the influence of each feature on the log-odds of the

functionality of a phosphorylation site. The features were z -scored in order to make the coefficients comparable. The large negative constant coefficient implies

that most phosphorylation sites are not functional. The odds of being functional are further decreased if the number of sites on the protein is large. The odds are

improved, however, if the site is phosphorylated, resides on a functional signaling protein, or is evolutionary conserved.
respective method (Figure 4). Looking at the overlap between

these protein sets, we found the signaling-functionality-based

approach to be more consistent. 865 (59%) of the proteins

were tested in both datasets, and within the group of proteins

found to be significantly functional, 46 (23%) were found in

both datasets. In contrast to the signaling-functionality-based

approach, from a site-centric perspective, 627 of the 7,196

phosphorylation sites (9%) were experimentally observed in

both datasets. The intersection of the 239 differentially phos-

phorylated sites in both datasets was found to contain only a

single phosphorylation site. In conclusion, our approach leads

to higher reproducibility across multiple samples.

PHOTON Software
The PHOTON pipeline was implemented as an easy-to-use

graphical application running in the browser (Figure S7A). The
590 Cell Systems 3, 585–593, December 21, 2016
user interface allows for the adjustment of parameters and the

application of PHOTON analyses to novel phosphoproteomic

datasets (Figure S7B). Additionally, PHOTON includes a com-

mand-line tool suitable for running batch jobs. PHOTON can

be installed on all major operating systems using Docker. The

installation instructions, alongside with the source code, are

available at the PHOTON website (https://www.github.com/

jdrudolph/photon/). The PHOTON source code is published un-

der an open-source license and is accessible to the scientific

community.

DISCUSSION

We presented an integrative approach for the analysis of phos-

phoproteomic data in the context of signaling pathways. Using

this integrated approach, we were able to extract proteins of

https://www.github.com/jdrudolph/photon/
https://www.github.com/jdrudolph/photon/
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Figure 4. Reproducibility Analysis

(A) Overlap between the Olsen et al. and in-house EGF datasets for different analyses. Top row: experimentally observed phosphorylation sites. The second and

third rows compare phosphorylated proteins with their functional counterparts.

(B) Consistency of the two datasets for the settings shown in (A). The overlap was quantified by the ratio of the sizes of the intersection and the union. The

signaling-functionality-based approachwas found to bemost consistent. 59%of the proteins were tested in both datasets, andwithin the group of proteins found

significantly functional, 24% were found in both datasets.
higher relevance, and with higher reproducibility, compared to

other commonly used approaches. The derived protein signaling

functionality scores allow for amore natural interpretation of pro-

tein action (promotion or repression of signal transduction) than

changes in the phosphorylation of a specific site. While on a

biochemical level only kinases phosphorylate specific residues

on specific proteins, we did not limit our network only to kinases

and substrates but rather considered all proteins of possible

kinase-substrate complexes, including their adaptor proteins,

as captured by the PPI network, to participate in the phos-

phorylation and signal transduction process. Regardless of

the choice of network, the empirical scoring scheme used

for signaling functionality determination is designed to correct

for any biases introduced by the network. Due to the great

complexity of the phosphoproteome, current high-throughput

data are still considered sparse, therefore, gaps in the knowl-

edge that one can derive from such data are expected. The

network reconstruction with ANAT narrows those gaps and addi-

tionally provides a coherent interpretation of the data. The visu-

alization of the resulting subnetwork allows for the exploration of

the data and the generation of specific hypotheses for further

testing.

Zooming in from the pathway view to a specific site, we pro-

posed a data-driven approach for functional phosphorylation-

site prediction based on a logistic-regression model. Previous

computational approaches focused exclusively on protein struc-

ture or evolutionary conservation (Gnad et al., 2007). The integra-

tion of quantitative information outperformed predictions made

on the basis of sequence-based information only. While our

method is currently limited by training-data availability, it imple-

ments a promising data-driven approach and can be considered

as a first step toward more involved classifiers. Additional data,

such as kinase motifs, derived from the already used static

sequence, protein structure data, or aggregates from multiple

quantitative phosphoproteomics experiments, could be used

to further improve future predictions.

PHOTON is applicable to the analysis of diverse datasets. If

the process under study is not triggered by a single stimulus,
the network reconstruction can be adjusted to account for mul-

tiple stimuli, or unstimulated scenarios, as described by Yosef

et al. (Yosef et al., 2011). When changes in the protein level are

expected for the process under study, site-occupancy data

could be used as an input to PHOTON, though currently, their

low coverage is limiting. Other post-translational modifications

can be studied in the same manner as phosphorylation using

PHOTON. Label-free approaches to peptide quantification could

be accommodated for by adjusting the scoring scheme tomodel

the difference between the case and control groups. In general,

the empirical approach used to derive protein signaling function-

ality provides a flexible framework for any scoring function.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Titanium dioxide GL Sciences 5020-75010

SCX column- Resource S GE Healthcare

Epidermal Growth Factor human Sigma/Aldrich E-9644

Deposited Data

Raw MS files are deposited in

PRIDE- ProteomExchange

PRIDE: PXD005032

Experimental Models: Cell Lines

MCF7 cells American Type Culture Collection

(ATCC, Manassas, VA, USA)

ATCC HTB-22

Software and Algorithms

ANAT Yosef et al. (2011) http://www.cs.tau.ac.il/�bnet/ANAT/

MUSCLE Edgar (2004) http://drive5.com/muscle/

PHOTON This paper https://www.github.com/jdrudolph/photon

Protein Residue Conservation Prediction Capra and Singh (2007) http://compbio.cs.princeton.edu/conservation/

Other
CONTACT FOR REAGENT AND RESOURCE SHARING

As Lead Contact, Tamar Geiger is responsible for all reagent and resource requests. Please contact Tamar Geiger at geiger@tauex.

tau.ac.il with requests and inquiries.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental Data
The in-house EGF data was generated by stimulating MCF7 cells for 10 min with EGF. MCF7 cells were obtained from the American

Type Culture Collection (ATCC, Manassas, VA, USA), where they were authenticated. Cell were routinely verified as having no my-

coplasma contamination. For SILAC labeling cells were cultured in RPMI devoid of lysine and arginine and supplemented with light or

heavy versions of these amino acids. After EGF stimulation cells were lysedwith SDS-based buffer (4%SDS, 100mMDTT in Tris-HCl

pH 7.5). Proteins were digested using the FASP protocol followed by peptide separation into ten fractions on an SCX Resource S

column. Phosphopeptide enrichment was performed with titanium dioxide. Phosphopeptides were analyzed on the LTQ-Orbitrap

Velos mass spectrometer, with higher energy collisional dissociation fragmentation. Raw MS data were analyzed by MaxQuant

(Cox and Mann, 2008), and included phospho(STY) sites as variable modifications. All protein identifiers were mapped to Entrez

Gene IDs with duplications removed. Experiments were performed using two biological replicates. Replicate measurements were

averaged and transformed into a z -scored log2 fold change. In the cases that the phosphorylation site was identified only in a single

replicate the site was excluded from the analysis.

After pre-processing, which included the deletion of reverse hits, common contaminants, and sites with localization probability

below 0.75, the in-house dataset contained 4269 sites on 1786 proteins measured in duplicates (Table S4). From the Olsen

et al. (Olsen et al., 2006) time-series dataset we extracted the 10min / 0min ratio and obtained a single dataset of 3650 sites

on 1637 proteins. Both datasets measured the response of human cell lines to stimulation with epidermal growth factor

(EGF). A third dataset by Humphrey et al. (Humphrey et al., 2013) measured the response of mouse adipocytes to 20 min of

insulin stimulation. In order to be able to compare the results directly to the human datasets, all mouse proteins were mapped

to their human counterparts. To this end, a table of mouse ortholog genes was downloaded from MGI (Eppig et al., 2015) and

used for the mapping, resulting in a dataset of 17177 sites on 3841 proteins. For the quantitative analysis, the entire time course

was used (eight time points and control). For differential phosphorylation analysis the medians were used as provided by the

authors.
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METHOD DETAILS

Protein-Protein Interaction Network
A human PPI network was obtained from BIOGRID (Chatr-Aryamontri et al., 2015). Interactions between two proteins ði; jÞ were

assigned a confidence score cij reflecting their reliabilities according to the logistic-regression framework described in Yosef et al.

(Yosef et al., 2009) In brief, each interaction is scored according to the experimental techniques by which it was measured and

the number of times it was observed. A high confidence subnetwork was obtained by applying a confidence cutoff of 0.5 and

removing proteins with more than 150 interactions.

Signaling Functionality Scoring
We calculated a signaling functionality score ai for each protein i in the network as follows: Phosphorylation measurements zjs were

collected from all proteins j ˛ NðiÞ and sites s ˛ Sj in the neighborhood of protein i. Each measurement zjs was assigned a weight cij
reflecting the confidence in the interaction between the proteins i and j. Aiming to derive elevated, or reduced, functionality from the

measurements zi = fðcij; zjsÞ; j ˛ NðiÞ; s ˛ Sjg, we calculated the weighted mean of the phosphorylation measurements:

ui =

P
ðcij ;zjsÞcijzjs

P
ðcij ;zjsÞcij

:

In order to ensure robust estimation, proteins, which had fewer than jzi j <no = 4 observations on their interaction partners, were not

considered. By exploring the empirical distribution of u for all proteins, we estimated two p values for elevated ðp+ Þ, and reduced

ðp�Þ functionality. The p value estimates for a score ofuwere then given by p+ =
P

r Ifu<urg=r and p� = 1� p+ , whereur was calcu-

lated for r = 10;000 random permutations of the phosphorylation data (Figure 1A).

The final signaling functionality scorewas the log transform of the lower of both p values. The sign of the score was chosen to corre-

spond to increased or decreased functionality. In order to ensure that the functionality score is always finite, a continuity correction

e= 1=r was added.

ai = � 1Ifp+ <p�g log10

�
min

�
p+ ;p��+ e

�
:

After correcting for multiple testing using the Benjamini-Hochberg method at significance level a= 0:05, we obtained a set of signif-

icantly functional signaling proteins.

Evolutionary Conservation of Phosphorylation Sites
To calculate the evolutionary conservation of the phosphorylation sites, we used the InParanoid (Sonnhammer and Östlund, 2015)

database, which provides ortholog protein information. From the evolutionary tree provided by the database we extracted a subtree

(of depth 6) including humans and 18 other closely related species (M.putorius, F.catus, M.musculus, R.norvegicus, C.porcellus,

O.garnettii, S.tridecemlineatus, N.leucogenys, C.jacchus, G.gorilla, P.troglodytes, P.abelii, C.familiaris, A.melanoleuca, L.africana,

E.caballus, B.taurus, O.cuniculus). We obtained orthologs for the proteins observed in the phosphoproteomic datasets across all

chosen species.MUSCLE (Edgar, 2004) was usedwith default settings to obtainmultiple sequence alignments for all proteins. Evolu-

tionary conservation scores were then derived from the multiple sequence alignment using the method of Capra and Singh (Capra

and Singh, 2007). Phosphorylation sites which could not be assigned a conservation score due to e.g., missing orthologs were as-

signed a median conservation score.

Predicting Functional Phosphorylation Sites
We constructed a logistic-regression model to classify sites as functional or non-functional. As a positive set, a list of regulatory sites

(5202), and another list of disease-associated sites (443), were retrieved from the PhosphoSitePlus database (Hornbeck et al., 2014).

After removing overlaps, 5308 unique sites on 1815 proteins with known functionality were collected. The negative set was chosen to

contain all phosphorylation sites not listed in the positive set. Each experimentally observed site ðj; sÞ on protein j was labeled as a

positive sample if it had known function and as a negative sample otherwise. Assuming that the signaling functionality of each protein

is modulated by the differential regulation of few of its evolutionary conserved phosphorylation sites the following four features were

selected: (i) the log-fold change in phosphorylation of the site zjs, (ii) the signaling functionality score of the protein aj, (iii) the evolu-

tionary conservation of the site ejs, and (iv) the number of sites on the protein nj. The logistic-regression model assumes indepen-

dence between the features and no additional interaction terms were added.

logit
�
pjs

�
= b0 + b1zjs + b2aj + b3ejs + b4nj:

The area under the receiver-operator curve was used to measure the predictive performance of the classifier across a 10-fold

cross-validation. The b coefficients were extracted after fitting the model on all the available data.

We observed that proteins with a great number of detected phosphorylation sites, such as SRRM2 artificially bloated the ROCAUC

of the logistic-regression model. These proteins contributed a large number of uncharacterized sites to the analysis, therefore giving

the trivial prediction ‘non-functional’ for all sites a high performance score. We therefore decided to remove proteins with a large

number of sites (> 100) from the analysis.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Differentially Phosphorylated Proteins
Three approaches were tested for extracting proteins of interest directly from their phosphorylation changes, using either (i) a fold-

change cutoff, (ii) significant outlier detection or (iii) a moderated t test.

After ranking all experimentally observed proteins according to their phosphorylation change, a cutoff was used to extract a set of

proteins with differentially regulated phosphorylation sites. We chose the log2 fold-change cutoff such that the resulting regulated

group of proteins is of the same size as the functional group. The resulting cutoff on the mean absolute z-scored log2 fold change

was therefore different for each dataset (2.38 for in-house, 2.31 for Olsen, and 2.76 for Humphrey).

Using a statistically more informed approach, we applied two-sided significant outlier detection SignificanceA (Cox and Mann,

2008) as implemented in the Perseus (Tyanova et al., 2016) (version 1.5.4.0) software. Significance A identifies significant outliers

from a potentially asymmetrical distribution with normal tails. Prior to analysis, replicates were log-transformed, averaged and

z-scored. The resulting p values were adjusted for multiple testing using Benjamini-Hochberg FDR correction at a= 0:01

For the two-sided moderated t test, we used the limma (Ritchie et al., 2015) R package to analyze the in-house (2 replicates) and

Humphrey (3 replicates) datasets. The Olsen dataset could not be analyzed using this approach, since only a single replicate was

available. All analyses were done on z-scored log fold-changes values and p values were adjusted for multiple testing using Benja-

mini-Hochberg FDR correction at a= 0:01.

Applying cutoff of a= 0:01, as compared to a= 0:05, for outlier detection and moderated t test, yielded significant groups more

similar in size to the regulated sets of proteins. Using a less stringent cutoff of a= 0:05 yielded qualitatively similar results (Figure S1).

Enrichment Analysis
GO term and KEGG pathway enrichments were computed via a hypergeometric test. The background set was chosen according to

four different settings. For (i) differentially phosphorylated proteins, as determined by fold-change cutoff, outlier detection, or moder-

ated t test, it was chosen to contain all experimentally observed proteins. Since the signaling functionality scores are derived from the

network, the background for (ii) the analysis of the functional proteins was chosen to contain all network proteins, for which signaling

functionality scores could be computed. For (iii) the proteins within reconstructed networks, the background contained all network

proteins. For (iv) the combined approach, the backgrounds in (i) and (ii) were combined. An additional analysis was performed to

probe the effect of the different background sets on the results. The combined background, containing experimental, and network

proteins, was chosen as a common background for all methods. In this setting, too, PHOTON outperforms all other approaches (Fig-

ure S1B). All enrichment analyses were performed using the ‘goenrich’ (https://www.github.com/jdrudolph/goenrich) python

package.

DATA AND SOFTWARE AVAILABILITY

Software
The PHOTON software, including installation instructions, and source code, are available at the PHOTON website (https://www.

github.com/jdrudolph/photon/). The PHOTON source code is published under an open-source license, and accessible to the scien-

tific community.

Data Resources
The in-house data is available in Table S4. The accession number for themass spectrometry proteomics data reported in this paper is

PRIDE: PXD005032.
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