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ABSTRACT

Motivation:Data on protein–protein interactions (PPIs) are increasing

exponentially. To date, large-scale protein interaction networks are

available for human and most model species. The arising challenge

is to organize these networks into models of cellular machinery. As in

other biological domains, a comparative approach provides a powerful

basis for addressing this challenge.

Results: We develop a probabilistic model for protein complexes that

areconservedacross twospecies.Themodeldescribes theevolutionof

conserved protein complexes from an ancestral species by protein

interaction attachment and detachment and gene duplication events.

We apply our model to search for conserved protein complexes within

the PPI networks of yeast and fly, which are the largest networks in

public databases. We detect 150 conserved complexes that match

well-known complexes in yeast and are coherent in their functional

annotations both in yeast and in fly. In comparison with two previous

approaches, our model yields higher specificity and sensitivity levels in

protein complex detection.

Availability: The program is available upon request.

Contact: roded@tau.ac.il

1 INTRODUCTION

Recent technological advances enable the systematic characteri-

zation of protein–protein interaction (PPI) networks across multiple

species. Procedures such as yeast two-hybrid (Ito et al., 2001) and

protein co-immunoprecipitation (Mann et al., 2001) are routinely

employed nowadays to generate large-scale protein interaction

networks for human and most model species (Uetz et al., 2000;

Ito et al., 2000; Ho et al., 2002; Gavin et al., 2002; Stelzl et al.,
2005; Raul et al., 2005). An arising challenge is to organize the

accumulating network data into models of cellular machinery. As

in other biological domains, a comparative approach provides a

powerful basis for addressing this challenge, calling for better

understanding of protein network evolution.

Two types of processes have been invoked to explain the

evolution of PPI networks (Wagner, 2001; Berg et al., 2004):

link dynamics and gene duplication. The first consists of sequence

mutations in a gene that result in modifications of the interface

between interacting proteins. Consequently, the corresponding pro-

tein may gain new connections (attachment) or lose (detachment)

some of the existing connections to other proteins. The second

consists of gene duplication, followed by either silencing of one

of the duplicated genes or by functional divergence of the dupli-

cates. The corresponding event in the network is the addition of a

protein with the same set of interactions as the original protein,

followed by the divergence of their links. Berg et al. (2004) esti-

mated the empirical rates of link dynamics and gene duplication in

the yeast protein network, finding the former to be at least one order

of magnitude higher than the latter. Based on this observation, they

proposed a model for the evolution of protein networks in which

link dynamics are the major evolutionary forces shaping the topo-

logy of the network, while slower gene duplication processes

mainly affect its size.

Previous approaches to the problem of identifying protein com-

plexes within PPI data have shown the utility of a comparative

analysis that overcomes the high levels of noise characterizing

these data (Deng et al., 2003). Specifically, Sharan et al. (2005,

2004) have compared PPI networks from multiple species to pin-

point network regions that are conserved in evolution and have

shown that these regions match well-known protein complexes in

yeast. However, their scoring scheme treated the networks being

compared as independent of one another and did not take into

account the correspondence in interaction patterns between them

(see detailed discussion of this issue in Section 4). Another approach

by Koyuturk et al. (2005) applied an evolutionary based scoring

scheme, which takes into account duplication and link turnover

events. However, the scoring procedure was empirical with no

underlying probabilistic model.

Here we develop a probabilistic model for protein complexes that

are conserved across two species, which describes the evolution of

conserved protein complexes from an ancestral species through link

dynamics and gene duplication events. Pairs of extant complexes

are scored by their fit to the model versus the likelihood that they

arise at random. We apply our model to search for conserved protein

complexes within the PPI networks of yeast and fly, which are the

largest networks in public databases. We detect 150 significantly

conserved complexes that match well-known complexes in yeast

and are coherent in their functional annotations in both yeast and

fly. In comparison with the two previous approaches described

above, our model displays higher levels of specificity and sensitivity

in protein complex detection.

The paper is organized as follows. Section 2 presents the proba-

bilistic model for conserved protein complexes. Section 3 describes

the process of searching for high-scoring conserved complexes, and

presents measures for quality assessment. Section 4 presents the

results of applying our algorithm to detect conserved complexes in

the PPI networks of yeast and fly, as well as a comparison of the

algorithm’s performance to those of two existing approaches.

2 A PROBABILISTIC MODEL FOR CONSERVED
PROTEIN COMPLEXES

In this section we present a probabilistic model for protein com-

plexes that are conserved across two species. The model is based on�To whom correspondence should be addressed.
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specifying the pattern of interactions in an unobserved common

ancestor of the two species and on describing the evolutionary

events that have yielded the observed complexes in each of the

species.

We first present the model assuming that the interaction data are

accurate and complete, that is each interaction is true and each

non-interaction is also true. We then generalize the model to

account for probability assignment to the interactions to reflect

their reliabilities. Our full model consists of a conserved protein

complex model, MC, and a null model, MN. Candidate conserved

complexes are scored by their ratio of likelihoods according to each

of the models. In the following sections we describe these models

and their underlying assumptions.

2.1. Conserved protein complex model

As suggested by Berg et al. (2004) the evolution of a PPI network is

shaped by link turnover and gene duplication events. For a con-

served protein complex, consisting of a pair of species-specific

complexes, we assume the existence of an ancestral complex in

the common ancestor of the two species under study, from

which its current forms have evolved through duplication and

link turnover events.

Let the two species under study be indexed by 0 and 1, respec-

tively. Denote their sets of proteins by P0 and P1. Denote the set of

proteins of a common ancestor of the two species by P. Let f(·) be a

mapping from proteins in P0 [ P1 to P, where f(x) ¼ f(y) for x 6¼ y
iff x and y are homologous. In other words, f(x) is the ancestral

protein from which x originated. Ways to compute f are described

in Section 4.1.

Consider a given conserved protein complex, and denote by S0, S1

and S the sets of proteins comprising it in species 0, species 1 and the

ancestral species, respectively. Our model for the interaction pattern

of the ancestral complex is based on the assumption that a protein

complex induces a dense subnetwork of PPIs. This assumption is in

agreement with known complexes and has already been used

successfully by us in a previous work (Sharan et al., 2004). Speci-

fically, we assume that within a complex each interaction occurs

with high probability b, independently of the other protein pairs in

the complex.

The interaction patterns of the extant protein sets, S0 and S1, are

assumed to have evolved from the ancestral interaction pattern. Let

m be the number of protein pairs in the ancestral complex S. For

each of these pairs, pi¼ (ai, bi), let Ii be the set of equivalent pairs in

S0 and S1 under f: Ii ¼ {(x, y) 2 S0 : f(x) ¼ a, f(y) ¼ b} [ {(x, y) 2
S1 : f(x) ¼ a, f(y) ¼ b}. We assume that each interaction in Ii
evolved from pi, independently of all other events, i.e. interactions

are attached with some probability PA and detached with proba-

bility PD
1.

To handle duplications in extant species, we have to specify

separately our assumption regarding interactions between dupli-

cates, since such interactions did not evolve from an ancestral

protein pair as the duplication is assumed to have happened after

the speciation event. We choose to treat such interaction in the same

manner that we treat interactions in the ancestral species and assume

that they occur with probability b independently of all other protein

pairs.

For two proteins x,y, let us denote by Txy the event that these

two proteins interact and by Fxy the event that they do not interact.

Let Oxy 2 {0,1} denote the observation on whether x and y interact.

Let OS denote the entire set of observations on the members of S. Let

DS be the set of duplicated pairs in S. We can finally state the

likelihood of a set of observations on a conserved complex:

P
�
OS0

‚OS1
jMC

�
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Ym

i¼1
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�
OIi jMC

�
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Y
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2.2 The null model

The null model assumes that each edge in the PPI networks of the

two species is present with probability that one would expect if the

edges were randomly distributed, but respected vertex degrees.

Formally, for a given PPI network G and a given protein pair

(x, y), the probability that x and y interact is defined as the fraction

of graphs with the same degree sequence as G that contain an edge

between x and y. We estimate these probabilities using a Monte-

Carlo approach as suggested by Sharan et al. (2004). This allows us

to compute

PðOS0
‚OS1

jMNÞ ¼
Y

x‚ y2S0

PðOxy jMNÞ ·
Y

x‚ y2S1

PðOxy jMNÞ:

2.3 Putting it all together

The above description assumed that interactions and non-

interactions are known. In practice, we have partial, noisy obser-

vations on PPIs. As in Sharan et al. (2004), we tackle this problem

by generalizing our model to consider the interaction data as noisy

observations. To this end, we redefine Oxy as the set of experimental

observations on whether x and y interact (rather than denoting their

status of interaction, which is unknown). As before, let Txy and Fxy

denote the hidden events of whether x and y interact or not, respec-

tively. We can now use Bayes theorem to compute the likelihood of

the observations on an interaction given some model M as follows:

PðOxy jMÞ ¼ PðOxy j TxyÞPðTxy jMÞ
þ PðOxy jFxyÞPðFxy jMÞ:

P(Txy jM) and P(Fxy jM) are computed as described above [where

Txy (Fxy) corresponds to the event Oxy ¼ 1 (Oxy ¼ 0) in the previous

1Note that PA and PD are related: empirical evidence suggests that the overall

rate of interaction attachment equals that of interaction detachment (Berg

et al., 2004).
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notation]. P(Oxy j Txy) and P(Oxy jFxy) can be computed from inter-

action reliabilities as shown in Sharan et al. (2005).

Finally, the likelihood ratio score that we assign to a putative

conserved complex is

LðOS0
‚OS1

Þ ¼ PðOS0
‚OS1

jMCÞ
PðOS0

‚OS1
jMNÞ

:

3 SEARCHING FOR CONSERVED COMPLEXES
AND VALIDATION CRITERIA

A common approach to the problem of identifying conserved com-

plexes, which we adopt in this work, is the use of an alignment graph

in which the two studied networks are compared (Kelley et al.,
2003; Sharan et al., 2005). We describe this approach briefly below.

Given PPI data for two species, we translate it into two separate

interaction graphs, one for each species. In an interaction graph,

each node is a protein and each edge corresponds to a PPI. These

two graphs are then combined into a network alignment graph in

which each node represents a pair of sequence-similar proteins, one

from each species, and each edge represents a conserved interaction

between the corresponding protein pairs within each species. More

precisely, in our setting two nodes (u, u0) and (v, v0) are linked if at

least one of the pairs (u, v),(u0, v0) is observed to interact and the

other pair spans proteins of distance at most two in the correspond-

ing interaction graph.

By construction, an induced subgraph of the alignment graph

corresponds to two species-specific sets of proteins, S0 and S1,

and is assigned the score L(S0, S1). We perform a bottom-up search

for heavy subgraphs in the alignment graph, starting with seeds

around each of the nodes, constructed as follows: for each node i
in the alignment graph we identify a neighbor pi of i such that the

weight of this pair is maximum among all pairs (i, v), where v is

adjacent to i. We use as seeds around node i high weight 4-node

subsets that consist of i, p(i) and two of their neighbors. These seeds

are then expanded by local search, each time adding or deleting a

node whose modification increases the weight of the current sub-

graph the most (Sharan et al., 2005). The resulting subgraphs may

overlap considerably, and we use a greedy algorithm to filter them,

so that the intersection of any two subgraphs in their node sets and in

their species-specific protein sets is below a threshold (80%; com-

puted w.r.t. the smaller set). The algorithm iteratively finds the

highest scoring subgraph, adds it to an output list and removes

all the subgraphs that (sufficiently) intersect it from consideration.

3.1 Significance evaluation

The output of the previous stage undergoes further filtering to

remove non-significant findings. The statistical significance of

the subgraphs is evaluated by comparing their scores with those

obtained on randomized instances of the data. These instances are

created by shuffling the edges of the two interaction graphs while

preserving vertex degrees, as well as shuffling the pairs of sequence-

similar proteins while preserving the number of homologs per

protein. This process yields empirical P-values for the output

subgraphs; only significant results with P < 0.05 are retained.

Henceforth, we call the significant subgraphs detected conserved

clusters.

3.2 Quality assessment

We used four measures to evaluate the biological significance of

the results. The first three quantify the similarity between a given

collection of conserved clusters and a reference, putatively true,

catalog of protein clusters. As a reference we used known yeast

clusters cataloged in the MIPS Database (2005, http://mips.gsf.de/)

(we excluded category 550, which was obtained from high through-

put experiments, and retained only manually annotated clusters).

The fourth measure assesses the functional coherency of the con-

served clusters based on the gene ontology (GO) annotation (The

Gene Ontology Consortium, 2000). These measures are described

below.

Specificity and sensitivity To measure the level of correspondence

between conserved clusters and true complexes, we computed sta-

tistically significant matches between the two collections and used

these matches to evaluate the specificity and sensitivity of the sug-

gested solution. Specifically, for each conserved cluster we found a

true complex with which its intersection was the most significant

according to a hypergeometric score. Significance levels were com-

pared with those obtained for 10 000 random sets of proteins of

the same size, and empirical P-values were calculated for each of

the conserved clusters. These P-values were further FDR corrected

for testing multiple conserved clusters. Let C be the initial set of

conserved clusters, and let C* � C be the subset of clusters that had

a significant match (P < 0.05; only clusters with at least one anno-

tated protein are considered). The specificity of the solution is

defined as jC* j / jC j . Let M be the set of true complexes, and

let M* �M be the subset of complexes with a significant match by a

conserved cluster. The sensitivity of the solution is defined as

jM* j / jM j .

Purity This is an alternative measure for the specificity of the

solution. A conserved cluster is called pure if there exists a true

complex whose intersection with the cluster covers at least 75% of

the MIPS annotated proteins in the cluster (considering only clusters

with at least 3 MIPS annotated proteins). Let C be the set of all

clusters with at least 3 MIPS annotated proteins, and let C* be a

subset of pure clusters. The purity of the solution is defined as

jC* j / jC j .

Functional enrichment We used the GO process annotation for

yeast and fly to evaluate the functional coherency of the conserved

clusters returned by the algorithm. For each cluster and each GO

term, we computed the enrichment of the term in the cluster using a

specially designed hypergeometric score, which takes into account

ontology relations between terms. Specifically, since the GO terms

are not independent but are rather connected by an ornithology of

parent–child relationship, we computed the enrichment of each term

conditioned on the enrichment of its parent term, as done in Sharan

et al. (2005) (see also Grossmann et al., 2006). For each cluster

we chose the term that yielded the highest significance level. We

compared this significance level with those obtained for random sets

of proteins of the same size as the cluster and derived an empirical

P-value for the cluster. These P-values were further FDR corrected

for multiple testing. Finally, we report the fraction of functionally

enriched clusters (P < 0.05; only clusters with at least one GO

annotated protein are considered). This procedure is done separately

for yeast and fly.
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4 EXPERIMENTAL RESULTS

We applied our method to search for conserved protein complexes

in the PPI networks of yeast (Saccharomyces cerevisiae) and fly

(Drosophila melanogaster), which are the two largest networks in

public databases. In the following sections we describe our results

and present a comparison with two existing methods for conserved

complex detection by Sharan et al. (2005) and Koyuturk et al.
(2005).

4.1 Data description and parameter estimation

We downloaded protein interaction data for yeast and fly from the

database of interacting proteins [DIP Database (July 2005 down-

load, http://dip.doe-mbi.ucla.edu/)]. The yeast network contained

15 147 interactions, spanning 4738 proteins; the fly network con-

tained 23 484 interactions, spanning 7165 proteins. We used a

previously published logistic regression method (Sharan et al.,
2005) to assign reliabilities to the PPIs. The reliabilities were

based only on the experimental evidence for each interaction.

The network alignment graph was constructed over pairs of pro-

teins with some interaction information whose BLAST E-value

�10�10. Overall, it contained 890 nodes and 1070 edges, spanning

482 and 453 distinct proteins in yeast and fly, respectively.

To determine duplicates and cluster extant proteins according to

their ancestral origin, we used the InParanoid algorithm (Remm

et al., 2001). InParanoid clusters sequence-similar proteins from

two species, so that each cluster corresponds to one ancestral protein

and contains its present-day descendants and their in-paralogs

(duplications after the speciation event). We used an Inparanoid

clustering for yeast and fly from InParadoid Database (December

2005 download, http://inparanoid.cgb.ki.se/), containing 1128 clus-

ters over the proteins in the yeast and fly PPI networks. Note that

nodes of the alignment graph may contain pairs of proteins that

do not map to the same InParanoid cluster. The inclusion of these

nodes reflects our previous observations that functional orthology

does not necessarily imply sequence orthology (Sharan et al., 2005;

Bandyopadhyay et al., 2006).

While previous works have tried to estimate the probabilities of

edge attachment and detachment (Wagner, 2001; Berg et al., 2004),

these computations were limited to mean estimates over the entire

PPI network and do not directly apply to estimating the rate of these

events within conserved complexes. Hence, we set these values

empirically as follows: PD, the probability that an interaction within

a conserved complex is removed in an extant species, was set to

0.01. The algorithm had similar performance when varying PD from

0.01 to 0.1. PA, the probability that an interaction is introduced into a

conserved complex, was computed from PD assuming that the rate

of interaction attachment within conserved complexes is equal to

that of interaction detachment, as is the case over the entire network

(Berg et al., 2004). PA attained a value of �0.001. The last parame-

ter, b, was set to 0.8 as in our previous work Sharan et al. (2005),

and similar results were obtained when varying b from 0.7 to 0.9.

For validation purposes, we downloaded the MIPS complex cata-

log (December 2005 download, http://mips.gsf.de/). We used com-

plexes at level 3 or lower with at least one protein in the yeast PPI

network. Overall, there were 113 such complexes spanning

697 proteins; 68 of these complexes had at least 3 proteins in

the network. We also extracted 4818 and 6140 GO process anno-

tations for yeast and fly, respectively (December 2005 download).

4.2 Application to yeast–fly PPI data

We applied our algorithm to the yeast–fly network alignment graph

in search for conserved protein clusters. The algorithm identified

150 significant, non-redundant conserved clusters spanning

224 proteins in yeast and 196 proteins in fly. The sizes of the clusters

ranged from 4 to 14, with an average size of 7. Four representative,

high-scoring conserved clusters are detailed in Table 1 and depicted

in Figure 1.

We assessed the biological significance of the conserved clusters

by comparing them with known MIPS complexes and testing their

functional enrichment (see Section 3.2 for a description of the

measures we used). Of the clusters, 94 significantly matched a

MIPS complex, yielding a specificity level of 76% and a sensitivity

level of 19%. Moreover, 78% of the clusters had an enriched GO

annotation in yeast, and 43% were enriched for fly annotations. The

enriched annotations in the two species matched in the majority

of the cases, as exemplified by the clusters in Table 1. Further

information on the identified clusters is given in Table 1.

4.3 Comparison with extant methods

We compared our approach with two previously published methods:

(1) NetworkBLAST by Sharan et al. (2005), which is based on a

similar probabilistic model, but treats the two species independently

in its score and (2) MaWish by Koyuturk et al. (2005), which is

based on evolutionary principles but has no underlying probabilistic

model.

Table 1. High-scoring conserved clusters

Cluster ID Size MIPS category P-value Yeast GO process P-value Fly GO process P-value

#114 5 Cytoskeleton 0.01 Structural constituent

of cytoskeleton

0.0048 Structural constituent

of cytoskeleton

0.015

#225 7 RNA processing 0.037 pre-mRNA splicing

factor activity

0.0206 RNA-binding 0.0029

#342 7 Proteasome 0.0002 Proteasome endopeptidase

activity

0.0001 Endopeptidase activity 0.0035

#479 7 Replication 0.0001 DNA clamp loader

activity

0.0001 Nucleotidyl transferase

activity

0.007199

High-scoring conserved clusters identified by our algorithm. For each cluster, shown are its size, best matching MIPS complex (andP-value), and most enriched GO annotations in yeast

and fly (and P-values). MIPS identifiers for the categories mentioned above are as follows: Cytoskeleton, 140.20.20, RNA processing, 440.30.10, Proteasome, 360.10.10 and

Replication, 410.40.30.
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In order to allow a fair comparison we used the same PPI net-

works, alignment graph, search heuristic and validation methods,

thus emphasizing the scoring component of each method. Table 2

summarizes the performance of the three methods when applied to

the yeast–fly alignment graph. It can be seen that our algorithm

outperforms MaWish by a significant margin in all measured

parameters and manages to discover 1.5-fold more significant con-

served clusters. Overall, the solutions are very different with only

25% intersection. In comparison with NetworkBLAST, our algo-

rithm has an overall similar performance, which is reflected also in

the high overlap between the two solutions (89%). Nevertheless, our

algorithm exhibits better correspondence with the MIPS catalog,

with higher specificity and purity levels than those attained by

NetworkBLAST.

Due to the overall similarity between the solutions of our algo-

rithm and NetworkBLAST, we conducted a more refined analysis of

the differences between the two approaches. Intuitively, if we

consider two species-specific clusters spanning matching sets of

proteins, NetworkBLAST will not distinguish between the case

that the interaction sets of the two clusters identify and the case

that the interactions sets are randomly distributed w.r.t. each other

(Fig. 2). Thus, the key difference between the two approaches is the

way they treat conserved interactions within conserved clusters.

While the scoring of NetworkBLAST depends only on the total

Fig. 1. Illustration of four high-scoring conserved clusters presented in Table 1. Shown are the alignment subgraphs corresponding to each conserved cluster.

Nodes represent pairs of proteins, one from each species. Edges represent conserved (solid) or semi-conserved (dashed; direct in one species and distance 2 in the

other) interactions. Edges spanning a direct interaction in one species and the same protein in the other species also appear solid. Colors within nodes indicate

whether they participate in the best matching MIPS complex or GO term.

Table 2. A comparison of our algorithm with two existing approaches for conserved complex detection

Algorithm No. of complexes % Intersection Specificity (%) Purity (%) Sensitivity (%) Functional enrichment

Yeast (%) Fly (%)

This study 150 — 76 70 19 78 43

NetworkBLAST

(Sharan, 2005)

146 89 74 65 19 79 46

MaWish (Koyuturk,

2005)

97 25 69 55 13 67 38

Performance measures of our algorithm, NetworkBLAST and MaWish when applied to the yeast–fly alignment graph. Details on all measures can be found in Section 3.2. The third

column specifies the percentage of overlapping clusters with our solution (�80% overlap).
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number of interactions within each species, our model distinguishes

between a conserved interaction and a pair of species-specific

interactions with no match in the other species.

In the light of the discussion above, we focused the comparison

with NetworkBLAST on clusters containing conserved interactions.

We recomputed the quality measures of the two solutions when

restricting the computations to conserved clusters that contain at

least k conserved interactions, for k ¼ 1,4. The existence and bio-

logical significance of such clusters are supported by empirical

observations on the tendency of interaction conservation across

species (Matthews et al., 2001). The results, summarized in

Table 3, demonstrate the superiority of our algorithm in this setting.

Moreover, we also applied the two algorithms to a conserved core

of the network data, obtained by considering only proteins that

participate in nodes of the alignment graph that are involved in a

conserved interaction. Again, our new algorithm is shown to out-

perform NetworkBLAST (Table 4). For comparison purpose, we

also detail the performance of MaWish on these data. Evidently, it is

less aligned with the MIPS complex data, although displaying high

functional enrichment levels.

5 CONCLUSIONS

We have presented a probabilistic model for the detection of con-

served complexes across two species based on the evolutionary

processes shaping their networks. Our model has relatively few

parameters related to the density of protein complexes and to the

determination of gene duplications and link turnover rates. We

applied our approach to study the conservation between the PPI

networks of yeast and fly. We successfully identified putatively

conserved complexes that matched well-known complexes in

yeast and displayed functional coherency in both species. Moreover,

we have shown that our model aligns with the biological data better

than previous approaches. We expect our model to be more advan-

tageous when comparing evolutionarily closer PPI networks as

those become available. The probabilistic framework we have

devised is extensible to more than two species and such extension

is expected to assist in overcoming the high noise rates in current

network data.
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