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Abstract

Computational methods for inferring haplotype information from genotype data are used in studying the association between
genomic variation and medical condition. Recently, Gusfield proposed a haplotype inference method that is based on perfect
phylogeny principles. A fundamental problem arises when one tries to apply this approach in the presence of missing genotype
data, which is common in practice. We show that the resulting theoretical problem is NP-hard even in very restricted cases.
To cope with missing data, we introduce a variant of haplotyping via perfect phylogeny in which a path phylogeny is sought.
Searching for perfect path phylogenies is strongly motivated by the characteristics of human genotype data: 70% of real in-
stances that admit a perfect phylogeny also admit a perfect path phylogeny. Our main result is a fixed-parameter algorithm for
haplotyping with missing data via perfect path phylogenies. We also present a simple linear-time algorithm for the problem on
complete data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Single nucleotide polymorphisms (SNPs) are differences in a single base, across the population, within an otherwise
conserved genomic sequence [21]. SNPs account for the majority of the variation between DNA sequences of different
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individuals [19]. Especially when occurring in coding or otherwise functional regions, variations in the allelic content
of SNPs are linked to medical condition or may affect drug response.

The sequence of alleles in contiguous SNP positions along a chromosomal region is called a haplotype. A SNP
commonly has two variants, or alleles, in the population, corresponding to two of the four genomic letters A, C, G,
and T. For diploid organisms, the genotype specifies for every SNP position the particular alleles that are present at
this site in the two chromosomes. Genotype data contains information only on the combination of alleles at a given
site, it does not reveal the association of each allele with one of the two chromosomes. Current technology, suitable for
large-scale polymorphism screening, obtains only the genotype information at each SNP site. The actual haplotypes in
the typed region can be obtained at a considerably higher cost [19]. Due to the importance of haplotype information in
association studies, it is desirable to develop efficient methods for inferring haplotypes from genotype information.

Extant approaches for resolving haplotypes from genotype data include parsimony approaches [5,14], maximum
likelihood methods [8], and statistical methods [18,20]. In this paper we study a perfect-phylogeny-based technique for
haplotype inference, first introduced in a seminal paper by Gusfield [15]. This approach assumes that the underlying
haplotypes can be arranged in a phylogenetic tree, so that for each SNP site the set of haplotypes with the same state
at this site forms a connected subtree. Such an assumption is particularly appropriate for short genomic regions that
have not undergone recombination events. For longer regions, it is common practice to sidestep the recombination
problem by inferring haplotypes only for small blocks of data and then assembling these blocks to obtain the complete
haplotypes [7].

The theoretical elegance of the perfect phylogeny approach to haplotyping as well as its efficiency and good perfor-
mance in practice [3,6] have spawned several studies of the problem and its variants [1,6,16]. In particular, quadratic-time
algorithms have been devised for the case of complete input data [1,6].

A fundamental problem in applying this haplotyping approach in practice is the need to deal with missing data.
Real genotype data usually contain a small fraction of missing entries caused by technical problems in the process of
genotype detection. The perfect phylogeny haplotyping problem with missing data calls for finding a completion of
the input genotypes that admits a perfect phylogeny. Previous work on this problem by Halperin and Karp [16] gives
a polynomial algorithm for the case that the input genotypes satisfy the “rich-data hypothesis” (for any two SNPs
one observes exactly three out of four possible state combinations). The complexity of the problem for general inputs
remained open.

In this paper, we prove that the problem of perfect phylogeny haplotyping with missing data is NP-hard even under
very restrictive assumptions. Part of this result was independently obtained by Kimmel and Shamir [17]. On the positive
side, we introduce a novel approach to solve the perfect phylogeny haplotyping problem in the case of missing data.
Our approach is motivated by the observation that more than two thirds of the human genome can be covered by
yin-yang haplotypes, which are haplotype pairs that are heterozygous at every SNP site [16]. In the perfect phylogeny
model for haplotyping, the presence of yin-yang haplotypes implies that any phylogeny has to take the form of a path.
Therefore, we consider a variant of perfect phylogeny haplotyping in which one searches for underlying haplotypes
that form a perfect path phylogeny (a phylogeny with at most two leaves). For the case of complete input data, we
give an algorithm that solves the problem in linear time. For the case of incomplete data, this version of the problem
is still NP-hard, but we show that there exists a fixed-parameter algorithm for it with respect to the maximum number
of missing entries per SNP site. Our methods rely on a connection between the existence of a perfect path phylogeny
and the width of a certain partial order on the columns of the genotype matrix.

To determine the abundance of path phylogenies in genotype data we examined an extensive collection of real
genotype data sets. Our results show that in 70% of all cases in which the input matrix admits a perfect phylogeny,
it also admits a perfect path phylogeny. In contrast, the rich-data hypothesis applies only to 23% of these cases. In
particular, a large fraction of the data allows perfect path phylogenies but fails to satisfy the rich-data hypothesis. These
results demonstrate that our methods can cope with the majority of available genotype data.

The paper is organized as follows: In Section 2, we introduce the perfect phylogeny haplotyping problem and the
variants that are studied in this paper. In Section 3, we show that perfect phylogeny haplotyping with missing data and
restrictive variants of it are NP-hard. In Section 4, we outline the connections between perfect phylogeny haplotyping
and poset theory. Building on this theoretical framework, in Section 5 we present a linear-time algorithm for the
problem when the target phylogeny is a path. Finally, in Section 6 we show that in the presence of missing data, perfect
path phylogeny haplotyping is fixed-parameter tractable with respect to the maximum number of missing entries per
SNP site.
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2. Problem statement

When stripped of the biological context, the haplotype inference problem is a purely combinatorial problem, which
we describe in this section. We concentrate on bi-allelic SNPs, as sites with more alleles are rare. In the combinatorial
setting, a haplotype is a row vector with binary entries. Each position of the vector corresponds to a SNP site. When
we observe a certain base at the SNP site, the vector contains a 0-entry at the corresponding position; if we observe a
certain other base, the vector contains a 1-entry. For a haplotype h, let h[i] denote the ith position of h. A haplotype
matrix is a binary matrix whose rows are haplotypes.

A genotype is a row vector with entries in {0, 1, 2}, each corresponding to a SNP site. A 0- or 1-entry in a genotype
implies that the two underlying haplotypes have the same entry in this position. A 2-entry in a genotype implies
that the two underlying haplotypes differ at that position. A genotype matrix is a matrix whose rows are genotypes.
Two haplotypes h1 and h2 explain a genotype g if for each position i the following holds: g[i] ∈ {0, 1} implies
h1[i] = h2[i] = g[i]; and g[i] = 2 implies h1[i] �= h2[i]. Given an n × m genotype matrix A and a 2n × m haplotype
matrix B, we say that B explains A iff for every i ∈ {1, . . . , n} the haplotypes in rows 2i − 1 and 2i of B explain the
genotype in row i of A. For a genotype g and a value v ∈ {0, 1, 2}, the set of columns with value v in g is called the
v-set of g.

2.1. Perfect phylogeny haplotyping

The following definition of a haplotype matrix that admits a perfect phylogeny is adapted from [1].

Definition 1. We say that a haplotype matrix B admits a perfect phylogeny if there exists a rooted tree TB such that:

(1) Every row of B labels exactly one leaf of TB , and each leaf is labeled by one row.
(2) Each column of B labels exactly one edge of TB .
(3) Every interior edge of TB is labeled by at least one column of B.
(4) For every two rows h1 and h2 of B and every column i, we have h1[i] �= h2[i] iff i lies on the path from h1 to h2

in TB .

The tree TB can be made more compact by placing the haplotypes also in interior nodes, rather than only at the
leaves. In this case, condition (1) in the definition above is replaced with the requirement that every row of B labels
exactly one node of TB ; and condition (3) is extended to all edges of TB . We use this compact representation in the
sequel.

Given an n × m genotype matrix A, we say that it admits a perfect phylogeny if there is a 2n × m haplotype matrix
B that explains A and admits a perfect phylogeny. The basic problem that we study in this paper is the following:

Problem 2 (Perfect Phylogeny Haplotyping, {0, 1, 2}-PPH).
Input: A genotype {0, 1, 2}-matrix A.
Question: Does A admit a perfect phylogeny?

In general, the haplotype labeling the root of a perfect phylogeny tree can have arbitrary ancestral states (0 or 1) at
each site. In the directed version of perfect phylogeny haplotyping the ancestral state of every SNP site is assumed to
be 0 or, equivalently, the root of the phylogenetic tree corresponds to the all-0 haplotype. As shown by Eskin et al. [6],
one can reduce {0, 1, 2}-PPH to the directed case using a simple transformation of the input matrix: In each column
of the genotype matrix search for the first non-2-entry from above; and if this entry is a 1-entry, exchange the roles of
0-entries and 1-entries in this column.

We now state an important characterization of directed perfect phylogenies, which is implicit in [15]:

Theorem 3. A genotype matrix A admits a directed perfect phylogeny iff there exists a rooted tree TA such that:

(1) Each column of A labels exactly one edge of TA.
(2) Every edge of TA is labeled by at least one column of A.
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Fig. 1. An example of a genotype matrix A and a directed perfect phylogeny TA for A. The edges of TA are labeled by the columns of A. The paths
induced by the first row a of A are shown in bold. The path corresponding to the 1-entries in row a leads from the root to an inner vertex of the tree
(solid); the path corresponding to the 2-entries is rooted at this inner vertex (dashed). The end points of the dashed path are the nodes to which the
two haplotypes 0110000 and 0101001 of row a are assigned in the tree TB .

(3) For every row r of A:
(a) The columns in the 1-set of row r label a path from the root to some node u.
(b) The columns in the 2-set of row r label a path that visits u and is contained in the subtree rooted at u.

Proof. If-Part: Suppose that a tree TA with the above properties exists. We construct a perfect phylogeny for A,
consisting of a tree TB and a haplotype matrix B. The topology of TB and its edge labels are the same as those of TA.
We assign node labels to TB as follows: for each row i of A we place the labels 2i − 1 and 2i on two specific nodes v

and v′: these nodes are the end points of the path in TB induced by the 2-entries of A in row i (possibly, these nodes
coincide if the path is just a single node). The haplotype matrix B can now be derived as follows: for each row i in A
we have two rows 2i − 1 and 2i in B. Each of these rows has a 1-entry exactly at those column positions that are on
the path from the root to the nodes v or w, respectively.

Only-If-Part: Suppose we are given a directed perfect phylogeny for A, consisting of a tree TB and a haplotype matrix
B. We claim that the tree TB , stripped of the node labels, is the desired tree TA: consider any row i of A and the two
nodes v and w to which the rows 2i − 1 and 2i of B are assigned. The two paths leading from the root to v and w are
identical up to some node u, where they split. By part 4 of Definition 1, exactly in those columns corresponding to the
edges on the path from the root to u, both row 2i − 1 and row 2i must have a 1-entry. Furthermore, on each column
corresponding to an edge on the paths from u to v and from u to w, exactly one of the two rows must have the value 1.
This shows that the columns in which A has a 1-entry in row i are the edges on the path from the root to u, and that the
columns in which A has a 2-entry in row i are the edges on the path between v and w. This path contains u. �

Given a genotype matrix A, we refer to the tree TA with the labeling as described in Theorem 3 as a directed perfect
phylogeny for A. An example of a genotype matrix and a directed perfect phylogeny for it is given in Fig. 1.

2.2. Perfect path phylogeny haplotyping

The variant of perfect phylogeny haplotyping that is central to this paper requires that the resulting perfect phylogeny
takes the form of a path. Formally, a perfect path phylogeny is a perfect phylogeny consisting of at most two disjoint
branches emanating from the root. It is convenient to consider a path phylogeny as partitioned into two sides, corre-
sponding to the two branches (one of which may be empty). The problem of haplotyping via perfect path phylogenies
is defined as follows:

Problem 4 (Perfect Path Phylogeny Haplotyping, {0, 1, 2}-PPPH).
Input: A genotype {0, 1, 2}-matrix A.
Question: Does A admit a perfect path phylogeny?

The motivation for considering path phylogenies in the context of haplotyping is the recent discovery that yin-yang
(complementary) haplotypes are very common in human populations [22]. A genotype composed of a pair of yin-yang
haplotypes results in an all-2 row in the genotype matrix, forcing any perfect phylogeny to take the form of a path.
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Table 1
Statistics on the frequency of perfect path phylogenies in genotype data from Gabriel et al. [10].

Population Window size Genotype matrices PPs (%) PPPs (%) RDHpp (%) RDHppp (%)

A 5 3029 51 40 16 11
8 2843 29 19 3 1

10 2720 20 13 < 1 < 1

B 5 2898 35 25 9 5
8 2715 14 9 < 1 < 1

10 2593 8 5 < 1 < 1

C 5 3000 59 51 21 15
8 2817 37 28 5 5

10 2695 27 20 2 1

D 5 2816 36 26 15 10
8 2634 14 8 2 1

10 2514 8 5 < 1 < 1

For each data set, genotype matrices were created by sliding a window of varying length over the original matrices. For the resulting matrices we list
the percentage of those that admit a perfect phylogeny (PP) and a perfect path phylogeny (PPP). We also indicate what percentage of the genotype
matrices satisfies the rich-data hypothesis while admitting a perfect phylogeny (RDHpp) or perfect path phylogeny (RDHppp)

To evaluate the abundance of perfect path phylogenies in real data, we considered genotype data sets from Gabriel
et al. [10]. The data are from individuals grouped into four populations. For each individual, the genotypes were
determined in 62 different regions of the genome. To assess the abundance of path phylogenies in these data sets, we
examined consecutive windows of varying length in each genotype matrix. For a given window length l, we computed
for every set of l consecutive columns in the input matrices: (a) whether these columns give rise to a perfect phylogeny;
and (b) whether they give rise to a perfect path phylogeny. In the computation, we omitted rows that contained missing
entries within the considered window. We checked whether these (complete) matrices admit a perfect phylogeny using
the program PPH developed by Chung and Gusfield [4].

As shown in Table 1, approximately 70% of the instances that admit a perfect phylogeny also admit a perfect path
phylogeny. Notably, only 23% of those genotype matrices admitting a perfect phylogeny satisfy the rich-data hypothesis
and, thus, meet the requirements of the algorithm given by Halperin and Karp [16].

We end this section with a useful observation on perfect path phylogenies.

Lemma 5. Let A be a matrix admitting a perfect path phylogeny TA. If two columns c and d of A contain the submatrix(
x
0

0
y

)
for some x, y ∈ {1, 2}, then they lie on different sides of TA.

Proof. Consider the path in TA from the root to the edge labeled by c. By part 3 of Theorem 3, the columns that label
edges on this path must attain a non-zero value in every row in which c attains a non-zero value. Hence, d cannot label
an edge on this path. For the same reason, c cannot lie on the path from the root to d. �

2.3. Incomplete perfect phylogeny haplotyping

In practice, due to experimental noise, genotype data contain missing entries, manifested as question marks in the
genotype matrix. A matrix with missing entries is called incomplete. An incomplete matrix can be pp-completed (ppp-
completed) if the missing entries can be completed with values from {0, 1, 2} such that the resulting genotype matrix
admits a perfect (path) phylogeny. The two arising problems are the incomplete perfect phylogeny haplotyping problem
({0, 1, 2, ?}-PPH) and the incomplete perfect path phylogeny haplotyping problem ({0, 1, 2, ?}-PPPH).

Problem 6 ({0, 1, 2, ?}-PPH).
Input: A genotype {0, 1, 2, ?}-matrix A.
Question: Can A be pp-completed?
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Problem 7 ({0, 1, 2, ?}-PPPH).
Input: A genotype {0, 1, 2, ?}-matrix A.
Question: Can A be ppp-completed?

3. Hardness of haplotyping with missing data

In this section, we study the complexity of perfect phylogeny haplotyping with missing data. We show that already
the special case of directed {0, 2, ?}-PPPH is NP-hard. In this version of the problem, the entries of the input matrix and
its completions cannot attain the value 1. The hardness of this variant implies the NP-hardness of many other variants,
see Theorem 9. In particular, perfect phylogeny haplotyping is NP-hard both in the undirected and the directed case,
which was independently shown by Kimmel and Shamir [17].

Theorem 8. Directed {0, 2, ?}-PPPH is NP-complete.

Proof. Membership in NP is clear. The NP-hardness of {0, 2, ?}-PPPH is shown by reduction from NAE3SAT [11].
Given a Boolean formula in conjunctive normal form with three literals per clause, NAE3SAT calls for deciding whether
there is an assignment to the variables such that in every clause at least one literal and at most two literals are satisfied.

Construction: Let � be a 3-CNF formula over variables v1, v2, . . . , vn and clauses C1, C2, . . . , Cm. Each clause Cj

consists of three literals {l1, l2, l3}, where each literal lr is either a variable vi or a negated variable v̄i . We map � to a
matrix A with entries from {0, 2, ?} with 2n + 3m rows and 2n + 3m columns. For x ∈ {0, 2, ?} and a positive integer
i, let xi denote the all-x column vector of height i. For each variable vi we define two column vectors:

〈vi〉 :=
⎛
⎜⎝

?2(i−1)

2
0

?2(n−i)

⎞
⎟⎠ and 〈v̄i〉 :=

⎛
⎜⎝

?2(i−1)

0
2

?2(n−i)

⎞
⎟⎠ .

For each clause Cj = {l1, l2, l3} we define a 3-column matrix:

〈Cj 〉 :=

⎛
⎜⎜⎜⎜⎜⎝

〈l1〉 〈l2〉 〈l3〉
03(j−1) 03(j−1) 03(j−1)

2 0 ?
0 ? 2
? 2 0

23(m−j) 23(m−j) 23(m−j)

⎞
⎟⎟⎟⎟⎟⎠ .

The matrix A is composed of the following columns: For every variable vi it contains the two literal columns
( 〈vi 〉

23m

)
and

( 〈v̄i 〉
23m

)
. For each clause Cj it contains the three clause columns of 〈Cj 〉. The resulting matrix is illustrated in

Fig. 2. We claim that � is satisfiable iff A can be ppp-completed.
If-Part: Let A′ be a completion of A that admits a directed perfect path phylogeny TA′ . We construct an assignment

�: {v1, . . . , vn} → {0, 1} from TA′ as follows: choose any side of TA′ and let �(vi) = 1 iff the literal column
( 〈vi 〉

23m

)
labels an edge on this side. We make the following observations:

(1) By Lemma 5, the two columns of a variable must lie on different sides of TA′ , since they induce the submatrix(
2
0

0
2

)
.

(2) A clause column c corresponding to a literal l and the literal column corresponding to l lie on the same side of TA′ .

To see that, observe that c and the literal column that corresponds to l̄ induce the submatrix
(

0
2

2
0

)
or the submatrix(

2
0

0
2

)
. Hence, Lemma 5 implies that they lie on different sides of TA′ . The previous observation shows that the

two literal columns, corresponding to l and its negation, lie on different sides. Since TA′ has at most two sides, the
claim follows.
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Fig. 2. Illustration of the matrix A from the proof of Theorem 8. It is constructed from a 3-CNF formula with variables v1, v2, . . . , vn and clauses
C1, C2, . . . , Cm. In the above example, C1 = {v1, v̄2, vn}.

(3) Each matrix 〈Cj 〉 contains the submatrix

(
2 0 ?
0 ? 2
? 2 0

)
. Every completion of the missing entries induces one of the

submatrices
(

0
2

2
0

)
and

(
2
0

0
2

)
. Hence, by Lemma 5, at most two edges out of the three edges labeled by these

clause columns can lie on the same side of the perfect path phylogeny.

It follows that for any clause C = {l1, l2, l3} the literal and clause columns corresponding to these literals cannot all
be on the same side of TA′ and, thus, at most two literals of C are set to true and at most two are set to false by �.

Only-If-Part: Let �: {v1, . . . , vn} → {false, true} be a satisfying assignment. We extend it such that values are also
assigned to the negated literals. We show how to derive a completion A′ of A that admits a perfect path phylogeny.
We start with the missing entries in the first 2n rows. We fill these entries in such a way that each of the completed
rows equals one of the following two sequences of 0’s and 2’s: In the first sequence, the ith position is 2 if the literal
corresponding to the ith column is assigned true by �, and the ith position is 0 if the literal is assigned false. In the
second sequence, the roles of 0- and 2-entries are exchanged. Note that for each of the first 2n rows the nonmissing
entries in that row are, indeed, consistent with exactly one of these two sequences.

For the completion of the lower part of the clause columns consider a clause C = {l1, l2, l3}. Exactly two of the
literals are assigned the same truth value by �. If li and lj are these two literals, where j = (i + 1) mod 33, we replace
the question mark in li’s column by 2 and the question mark in lj ’s column by 0. The question mark in the remaining
column can be resolved arbitrarily, so we resolve it to, say, 0.

It remains to show that the resulting matrix A′ has a perfect path phylogeny TA′ . We construct TA′ as follows: all
columns corresponding to literals that are assigned a value of 1 by � are assigned to one side of TA′ , called the true
side; all other literal columns are assigned to the other side of TA′ . Within each side, the edges labeled by these literal
columns are ordered according to the literal indices, where a smaller index means that the edge is closer to the root of
TA′ . Next, we add to each side of TA′ edges labeled by clause columns. These edges are placed farther from the root than
the literals’ edges. Clause columns corresponding to literals that are assigned a value of true by � are assigned to the
true side; all other clause columns are assigned to the other side. The edges labeled by the clause columns are ordered
according to the clause indices. Within each clause, if li and lj are assigned to the same side and j = (i + 1) mod 33,
li is put closer to the root than lj .

We now show that the resulting path TA′ satisfies the conditions of Theorem 3. Since A′ does not contain 1-entries,
it suffices to check that condition (3b) holds for every row of the matrix A′. The condition requires that the edges
corresponding to 2-entries in each row form a path in TA′ that visits the root. First, consider the two rows 2i − 1 and
2i of A′ that correspond to variable vi . The columns in which row 2i − 1 has value 2 form a complete path from the
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root to one end of TA′ (corresponding to literals with the same truth value), and the columns in which row 2i has value
2 form a complete path from the root to the other end of TA′ . Second, consider any three rows of A′ in the lower part
corresponding to a clause Cj , namely rows 2n + 3j − 2, 2n + 3j − 1, and 2n + 3j . For each of the three rows, the
set of columns in which this row has value 2 forms a path in TA′ ; this path extends between two clause columns that
correspond to two literals of Cj that are assigned opposite truth values (including these columns or stopping just before
them). �

The above theorem implies the hardness of more general variants of incomplete perfect phylogeny haplotyping:

Theorem 9. Directed {0, 1, 2, ?}-PPPH and directed {0, 1, 2, ?}-PPH are NP-complete.

Proof. Observe that directed {0, 1, 2, ?}-PPPH can be reduced to directed {0, 1, 2, ?}-PPH by adding an all-2 row to
the {0, 1, 2, ?}-PPPH instance. By Theorem 3, this additional row ensures that any directed perfect phylogeny for the
{0, 1, 2, ?}-PPH instance is necessarily a path. Hence, it suffices to establish the hardness of directed {0, 1, 2, ?}-PPPH.
We reduce directed {0, 2, ?}-PPPH to directed {0, 1, 2, ?}-PPPH using the identity mapping: Let A be an input instance
for {0, 2, ?}-PPPH. We map it to an instance Â = A for the problem {0, 1, 2, ?}-PPPH. Clearly, a solution to A is also a
solution to Â. Conversely, let Â′ be a completion of Â that admits a perfect phylogeny. Let T

Â′ be a perfect phylogeny

path for Â′. Consider the matrix C that is obtained from Â′ by replacing every 1-entry with a 2-entry and let TC be the
phylogeny obtained from T

Â′ by replacing the column labels from Â′ with the corresponding columns in C. Then C is
also a completion for A with only 0-entries and 2-entries. Since TC satisfies the conditions of Theorem 3, C admits a
perfect phylogeny. �

Since the directed variants of perfect phylogeny haplotyping can be reduced to the undirected ones by adding an
all-0 row to the input matrix, we conclude:

Corollary 10. {0, 1, 2, ?}-PPPH and {0, 1, 2, ?}-PPH are NP-complete.

4. A partial-order perspective on haplotyping

This section provides the basic structural results for the design of our haplotyping algorithms. The main result of this
section relates the existence of a perfect path phylogeny to properties of a partial order on the columns of the genotype
matrix. The different partial orders studied in this section all require that a directed phylogeny is sought and we restrict
attention to the directed case in the sequel. As mentioned earlier, for complete data one can reduce the undirected
haplotyping problem to a directed one, see [6]; for incomplete data we show a result of this flavor in Section 6.1.

Let A be a genotype matrix and let TA be a perfect phylogeny for A. Consider the following partial orders on the
columns of A:

(1) The ancestor relation induced by the column labels of TA. A column c is larger than another column c′ with respect
to this relation if c lies on the path from c′ to the root.

(2) The partial order �: Let 1 	 2 	 0 and extend this order to {0, 1, 2}-columns by setting c�c′ if c[i]�c′[i] for all
rows i.

(3) The leaf count order: The leaf count of a column c is twice the number of 1-entries plus the number of 2-entries in c.
This relation orders columns by increasing leaf count and considers columns as incomparable if they are different
but have the same leaf count.

The first and the last order were introduced by Gusfield [15]; the order � was introduced by Eskin et al. [6], who
implicitly showed that each order extends the one above it. Note that the last two relations exist even when there is no
perfect phylogeny for A. In particular, they can be computed before the tree TA is known. We note in passing that the
set of all {0, 1, 2}-columns together with � is a graded lattice, where the leaf count provides the rank.

Let us review some basic definitions from poset theory. A chain is a linearly ordered subset of a poset. An antichain
is a set of incomparable elements. The width of a poset is the size of its largest antichain. An element x dominates
another element y if x 	 y.
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The following theorem shows that the existence of a perfect path phylogeny for a matrix A with column set C can
be decided based on properties of (C, �) alone.

Definition 11. Two columns are separable if each has a 0-entry in the rows where the other has a 1-entry. We say
that a set C of {0, 1, 2}-columns has the ppp-property if it can be covered by two (possibly empty) chains (C1, �) and
(C2, �), so that their maximal elements (if they exists) are separable. The pair (C1, C2) is called a ppp-cover of C.

Theorem 12. A genotype matrix A admits a directed perfect path phylogeny iff its column set has the ppp-property.

Proof. First, assume that A has a perfect path phylogeny TA. If TA has only one leaf, the claim holds, so assume TA

has two leaves. Let C1 and C2 be the sets of columns labeling the two paths from the root of TA to each of its two
leaves. Since � extends the ancestor relation in TA, both (C1, �) and (C2, �) are chains. By part 3 of Theorem 3, for
i ∈ {1, 2}, if a column c ∈ Ci is maximal and has a 1-entry in some row r, then every column with a non-zero entry in
this row must be in Ci . Consequently, all columns in the other chain must have a 0-entry in row r.

Conversely, assume that the column set C of A has the ppp-property and let (C1, C2) be a ppp-cover of C. For
i ∈ {1, 2} let pi be a path whose edges are labeled by the columns in Ci . We construct TA as follows: Let v1 and v2 be
the end points of p1 and p2 that are incident to the edges labeled with the maximum elements of C1 and C2. We merge
p1 and p2 by identifying v1 with v2, making the resulting vertex the root of TA. Since the maximal elements of the two
chains are separable, if a column in one chain has a 1-entry in row r, then all columns in the other chain have 0-entries
in this row. Since the columns respect the � ordering, for x, y ∈ {0, 1, 2} with x 	 y a column with an x-entry in row
r labels an edge that is closer to the root than a column along the same path with a y-entry in this row. Hence, the result
is a perfect path phylogeny for A in the form of Theorem 3. �

We now introduce a compact representation of sets of columns with the ppp-property. It allows the ppp-property of
a larger set to be checked given only the representation of the smaller set and the additional columns.

Let C be a set of {0, 1, 2}-columns. A maximal antichain in (C, �) is highest of cardinality i if it has cardinality i
and no element of any other antichain of cardinality i dominates any of its elements. If a highest maximal antichain of
cardinality i exists, it is unique and we denote it by hmai (C). Otherwise, let hmai (C) be the empty set. Let hma(C) :=
hma1(C) ∪ hma2(C).

Theorem 13. Let C and D be sets of columns so that no column in C has a larger leaf count than any column in D.
Assume that C has the ppp-property. Then C ∪ D has the ppp-property if and only if hma(C) ∪ D has it. Furthermore,
hma(C ∪ D) = hma(hma(C) ∪ D).

Proof. First, observe that the ppp-property is hereditary. In particular, if C ∪ D has it, then so does hma(C) ∪ D.
Conversely, let (C1, C2) be a ppp-cover of C and let (D1, D2) be a ppp-cover of hma(C) ∪ D. We distinguish three
cases:

(1) hma(C) = {c}, where c is the maximal element of C. Since all elements of D have at least the leaf count of c, c is
a minimal element of either D1 or D2. In the first case (D1 ∪ C, D2) is a ppp-cover of C ∪ D, in the second case
(D1, D2 ∪ C) is one.

(2) hma(C) = {c1, c2}, where c1 and c2 are the (only) two maximal elements of C. Without loss of generality we may
assume that c1 is the maximal element of C1, c2 is the maximal element of C2, c1 ∈ D1 and c2 ∈ D2. Since all
elements in D have at least the leaf counts of c1 and c2, (D1 ∪ C1, D2 ∪ C2) is a ppp-cover of C ∪ D.

(3) hma(C) = {c, c1, c2}, where hma1(C) = {c} and hma2(C) = {c1, c2}. Without loss of generality we may assume
c1 ∈ C1 ∩ D1 and c2 ∈ C2 ∩ D2. Let C0 be the chain {c′ ∈ C | c′ 	 c1} = {c′ ∈ C | c′ 	 c2}. If c ∈ D1, then
(D1 ∪C0 ∪C1, D2 ∪C2\C0) is a ppp-cover of C ∪D. If c ∈ D2, then (D1 ∪C1\C0, D2 ∪C0 ∪C2) is a ppp-cover
of C ∪ D.

Next, we show that hma(C ∪ D) = hma(hma(C) ∪ D). Denote E := hma(C) ∪ D. First, a maximum element of
C ∪ D is also a maximum element of E and, thus, hma1(C ∪ D) = hma1(E). Let H = {h1, h2} = hma2(C ∪ D).
Suppose to the contrary that H�E. The two elements h1 and h2 cannot be both in C or in D (or, else, H would have
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been a subset of E), so without loss of generality h1 ∈ C\hma(C) and h2 ∈ D. By definition, there exists an element
h ∈ hma(C) that dominates h1. Since the leaf count of h2 is at least as high as that of h, they are incomparable. Hence,
H is not the highest antichain of cardinality 2 in C, a contradiction.

It remains to consider the case that H ⊆ E. Suppose to the contrary that hma2(E) �= H . Then one of the elements
of hma2(E) dominates h1 or h2 (or both). But then {h1, h2} is not the highest maximal antichain of cardinality 2 in
C ∪ D, a contradiction. �

5. A linear-time algorithm for PPPH

In this section we present a linear-time algorithm for directed {0, 1, 2}-PPPH. The algorithm can be implemented
efficiently and no large “hidden constants” are involved. In contrast, the fastest known algorithm for {0, 1, 2}-PPH is
super-linear [15], and practical algorithms require quadratic time [1,6]. Our algorithm is based on a reduction to the
problem of determining whether a given poset, together with a linear extension of it, has width at most 2. Felsner et
al. [9] recently showed that this problem is solvable in linear time. The difference between their algorithm and the
algorithm presented in the following is that instead of checking whether the poset � has width 2, we check whether
it has the ppp-property. Recall that in addition to � having width 2, the ppp-property requires that the top elements of
the ppp-cover are separable. The ideas used in the algorithm will also play a role in the more elaborate fixed-parameter
algorithm presented in the next section.

The algorithm for PPPH: We order the columns C = {c1, . . . , cm} in order of ascending leaf counts. The algorithm
constructs three stacks, denoted s, t1, and t2, having the following properties:

(1) The elements of each stack form a chain with respect to � with the largest element on top.
(2) All elements in s are larger than every element in t1 or t2.
(3) The top of stacks (tos) of t1 and t2 are incomparable.

In its main loop the algorithm iterates over the columns c1, . . . , cm. For column ci , the algorithm first checks whether
this column and the tos of the non-empty stacks have the ppp-property. If this is the case, it checks whether ci can be
added on top of the stack s without violating the first two properties. If so, the algorithm pushes it onto s and proceeds
with the next column. Otherwise, it checks whether ci can be pushed onto t1 or t2 without violating the property that
these stacks must be chains. If ci cannot be added to either stack, no perfect path phylogeny exists since tos(t1), tos(t2),
and c are three incomparable columns. Otherwise, ci is pushed onto the stack admitting it, and stack s is moved on top
of the other stack. For pseudo-code see Fig. 3.

Theorem 14. Algorithm PPPH solves directed {0, 1, 2}-PPPH in linear time.

Fig. 3. A linear-time algorithm for computing a perfect path phylogeny. In the algorithm, if a stack is empty, a condition like c�tos(s) is considered
to be true.
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Proof. Correctness: Whenever the algorithm outputs “no”, it has detected a set of columns in the genotype matrix that
violates the ppp-property. It remains to show that on output “yes” a perfect path phylogeny exists.

Let C={c1, . . . , cm} be the set of columns of A in order of ascending leaf counts. After column ci has been processed
in iteration i, let Si := {tos(s)} (let Si be empty if s is empty) and Ti := {tos(t1), tos(t2)}. We prove by induction that

Si = hma1({c1, . . . , ci})
and

Ti = hma2({c1, . . . , ci}).
For i=0 we have S0 =T0 =∅ and the claim is trivially true. Assume that the claims hold for i−1 and we add the column
ci . If the first push-statement is executed, Si = {ci}. Since ci dominates every other element, Si = hma1({c1, . . . , ci}).
Furthermore, we have Ti = Ti−1 and hma2({c1, . . . , ci}) = hma2({c1, . . . , ci−1}).

If either the second or third push-statements are executed, the set Ti contains two incomparable elements and no
element dominates either of them. This shows hma1({c1, . . . , ci}) = ∅ and hma2({c1, . . . , ci}) = Ti . Since the stack s
is emptied, we have Si = ∅.

Putting it all together, we conclude that at the end of each iteration of the algorithm Ti ∪ Si = hma({c1, . . . , ci}). As
we also check every time whether {ci} ∪ Ti−1 ∪ Si−1 has the ppp-property, Theorem 13 tells us that after each iteration
{c1, . . . , ci} has the ppp-property. Thus, the final output “yes” is correct.

Running time: We claim that the algorithm runs in O(mn) time for an n × m matrix. Computing the leaf count of
a column takes time O(n), so computing all leaf counts takes time O(mn). For the sorting we use bucket sort. There
are at most 2n buckets since the leaf counts range from 0 to 2n. Thus the sorting can also be done in time O(mn). The
main loop has at most m iterations, each requiring O(n) time. Overall, the algorithm runs in time O(mn). �

6. A fixed-parameter algorithm for incomplete PPPH

In this section we develop a fixed-parameter algorithm for {0, 1, 2, ?}-PPPH, where the parameter is the maximum
number of missing entries in a column. The section is organized as follows: In Section 6.1 we examine the characteristics
of real genotype data sets. We show that one can restrict attention to the directed case for virtually all considered sets
and that parameterizing the maximum number of missing entries in a column is adequate given the distribution of
missing entries in real data. In Section 6.2 we give an overview of the structure of the fixed-parameter algorithm. The
algorithm consists of two phases, a preprocessing phase and a dynamic programming phase, whose descriptions are
given in Sections 6.3 and 6.4, respectively.

6.1. Characteristics of genotype matrices

Eskin et al. have given a reduction from undirected to directed perfect phylogeny haplotyping on complete data [6].
However, for incomplete matrices no general reduction to the directed case is known. Below we describe an extension
of the reduction in [6] to incomplete matrices. Although this extension cannot be applied in all cases, it works for
virtually all real data sets we examined.

We say that a genotype matrix A can be directed if one can transform A into a genotype matrix Ã such that A admits
an undirected perfect phylogeny if and only if Ã admits a directed perfect phylogeny. Key to the reduction in [6] is the
following proposition:

Proposition 15. Let A be a genotype matrix. For every pair of columns in A let there exist a row with either two
0-entries or one 0-entry and one 2-entry in these columns. Then A admits a perfect phylogeny if and only if A admits a
directed perfect phylogeny.

Using this proposition, one proceeds as follows to direct a genotype matrix A: every column is relabeled such that
when going down the column, its first entry with a value different from 2 is a 0-entry. If this is not the case, we exchange
the 0- and 1-entries within that column.

We can extend this transformation to genotype matrices with missing data by trying to permute the rows of A such
that within each column there are no missing entries up to the first 0- or 1-entry. If such a permutation of rows exists,
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Table 2
Statistics on the distribution of ?-entries in genotype data from [10]

Population A B C D

Number of individuals (rows) 93 50 42 96
Number of genotype matrices 62 62 62 62
Average maximum number of ?’s per column 21.7 10.5 8.3 21.3
Average number of ?’s per column 6.2 2.7 1.6 6.8
Percentage of genotype matrices that can be directed 97% 100% 100% 100%

it can be found greedily and we can proceed as in the original reduction of Eskin et al. [6] to produce a matrix Ã for
which we can search for a directed perfect phylogeny.

The above reduction to the directed case depends on the existence of an appropriate row permutation. To check how
often such a permutation exists, we examined an extensive collection of real data sets from [10]. As shown in Table 2,
virtually all data sets that we checked can be directed (246 out of 248). Thus, the data suggest that we can focus on
solving the haplotyping problem in the directed case.

In addition, we tested the assumptions made on the distribution of missing entries by evaluating what portion of the
data is missing and whether the missing data entries are distributed in a random way. The results are summarized in
Table 2. One observes that the maximum number of missing entries per column is approximately one fifth of the total
column size, and the average number of missing entries per column is small.

6.2. Structure of the algorithm

The input to the algorithm is a {0, 1, 2, ?}-matrix A of dimension n × m with at most k missing entries per column.
The algorithm proceeds in two phases. In the first phase, which we call the preprocessing phase, the input is simplified
by collapsing multiple columns to one consensus column under certain conditions, reducing the size of the matrix. In
the second phase, dynamic programming is used to compute a completion of the missing entries in a way admitting a
perfect path phylogeny.

The core idea of the preprocessing phase is the following: suppose several columns become identical when some
?-entries are completed appropriately, and suppose we replace them with that one “consensus” column. Clearly, if we
can find a perfect path phylogeny for this new matrix, we can also find one for the original matrix. The more difficult
observation is that the reverse implication is also true if the number of columns that formed the consensus is large
enough.

The dynamic program iterates over the columns of the preprocessed input matrix in order of increasing leaf count,
building perfect path phylogenies from the leaves toward the root. The preprocessing ensures that for each leaf count
there is only a fixed number of columns with that leaf count. For each column we consider all possible ways to complete
the ?-entries in it. For each possible completion we check whether a perfect path phylogeny exists and, if so, record
information about it. The crucial observation, which makes the dynamic programming feasible, is that the perfect path
phylogenies for columns up to a certain leaf count can be constructed from the information we stored for columns of
a constant-size range of leaf counts preceding the current leaf count.

6.3. Preprocessing phase

The objective of the preprocessing is to ensure that there will only be a fixed number of columns that have any given
leaf count. For a complete matrix, three or more distinct columns with the same leaf count imply that the matrix does
not admit a perfect path phylogeny due to Lemma 5.

In the presence of missing data there can be an arbitrary number of distinct columns that have the same leaf count (just
like 0-entries, ?-entries do not count), but still the genotype matrix allows a perfect path phylogeny. The reason is that
we may be able to “collapse” all the different columns into one column by filling up the missing entries appropriately.
However, we cannot just collapse everything that can be collapsed, as there are cases in which it is necessary not to
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Fig. 4. The preprocessing procedure.

collapse columns in order to obtain a perfect path phylogeny. For example, consider the following matrix:( ? 0 0 2 0
0 ? 0 0 2
2 2 ? 0 0

)
.

The first three columns can be collapsed to the single column

(
0
0
2

)
, but the resulting matrix

(
0 2 0
0 0 2
2 0 0

)
does not admit

a perfect path phylogeny. However, completing the ?-entries in the first two columns to 2 and in the third column to 0,
yields a matrix that admits a perfect path phylogeny.

In the following we identify situations in which it is safe to collapse columns.
Terminology: A (partial) completion of a column c with ?-entries is a column c′ obtained by replacing (some of)

the ?-entries with 0, 1, or 2. A completion of a set C of columns with ?-entries is a set containing one completion of
each c ∈ C. Let completions (C) denote the set of all completions of a set C of columns. For convenience, we define
completions(∅) := {∅}. Since every column has at most k ?-entries, every column has at most 3k completions. Thus,
|completions(C)|�3k|C|.

A consensus for a set C of columns is a column c that is a partial completion of all c′ ∈ C. The columns in C are
said to be consenting to c. Note that two columns c and c′ are consenting if and only if c[i] �= c′[i] implies c[i]=? or
c′[i]=? for all rows i. A consensus can contain ?-entries only in rows in which all columns in C have a ?-entry. For
an incomplete genotype matrix A and a column c (not necessarily in A), the dimension of c in A is the size of largest
subset C of columns of A such that c is a consensus of C.

The preprocessing procedure: Define �(l) := 6l · l!. The preprocessing algorithm repeatedly does the following: for
l = 1, . . . , k, it scans the input matrix for a collapsible set of columns of size at least �(l), and collapses those. If no
such set is found, the algorithm stops. We find the collapsible sets as follows: first, we compute for each column c of
A all possible partial completions. Since each column admits at most 4k distinct partial completions, there are at most
4km “candidates” for a consensus. Let Pl be the set of all candidates that have exactly k − l question mark entries. We
can then check for each p ∈ Pl whether there are more than �(l) different columns in A that have p as consensus. For
pseudo-code see Fig. 4.

To prove the correctness of the algorithm, we use the following two lemmas.

Lemma 16. For x, y1, y2, y3 ∈ {0, 1, 2} and x /∈ {y1, y2, y3}, the matrix C =
(

y1 x x

x y2 x

x x y3

)
does not admit a perfect

path phylogeny.

Proof. For 1� i < j �3 consider the submatrix
(

yi

x
x
yj

)
and consider a resolution of this genotype submatrix into

haplotypes. This resolution must contain the identity submatrix. By Lemma 5 the columns i and j cannot be placed on
the same side in a perfect path phylogeny. �
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Lemma 17. Let A be a genotype matrix with at most k missing entries per column. Let C be a set of columns in A
and let l�1 be minimal such that the columns in C have a consensus c containing k − l missing entries. If |C| > �(l),
then the matrix obtained from A by replacing all columns in C by c can be ppp-completed if and only if A can be
ppp-completed.

Proof. Clearly, if the collapsed matrix can be ppp-completed, so can A. Suppose to the contrary that A has a completion
A′ that admits a perfect path phylogeny, but the collapsed matrix cannot be ppp-completed. Let C′ be the set of columns
in A′ that complete the columns in C. There can be no column d ′ ∈ C′ that is consenting with c since, otherwise, d ′
would complete all columns in C and, therefore, the collapsed matrix could be ppp-completed.

We prove our claim by induction on l. For l = 1, our assumption is that |C| > 6. The consensus c contains k − 1
question mark entries. Thus, each column d ∈ C can contain at most one additional ?-entry. Since d is consenting with
c but the corresponding completed column d ′ ∈ C′ is not, we conclude that d ′ and c disagree in the position at which
d has its additional question mark. We call this the disputed position of d.

We extract those rows in C, C′, and c that contain the disputed positions of columns in C. Since no two columns in C
are identical, every disputed ?-entries in C must be in a different row. Thus, we extract at least seven rows, at least three
of which must have the same value in the consensus. We extract such three rows from C along with three columns that

have a ?-entry in these rows. The resulting submatrix is of the form:

(
? x x

x ? x

x x ?

)
, where x ∈ {0, 1, 2}. Since the columns

disagree with the consensus c, the ?-entries cannot be completed to x. By Lemma 16, for all x ∈ {0, 1, 2} both this
matrix and hence also A itself cannot be ppp-completed, a contradiction.

For the inductive step, suppose that we have already established the claim for l − 1 (and all k). Now, suppose a
consensus c with k− l question mark entries exists that has dimension larger than �(l), but that every column with k− l′
question mark entries has dimension at most �(l′) for all l′ < l. Consider those rows in C that contain a ?-entry, while
the corresponding position in c contains no question mark. The submatrix of C obtained in this way has the following
property: Each row contains at most �(l − 1) missing entries. Indeed, if this were not the case, then the columns of C
containing these ?-entries would have a consensus c̃ having at least one more ?-entry than c does and dimension more
than �(l − 1). This would contradict the minimality of l.

For each column d ∈ C, there is at least one ?-entry that faces a non-question mark entry in c and that is completed
differently in C′ from the entry in c. As above, let us call these positions the disputed positions of d.

We form sets Cx for x ∈ {0, 1, 2} containing those columns in C that have a disputed position facing entry x in the
consensus c. Since every column in C has a disputed position, we have C =C0 ∪C1 ∪C2. We claim that each of the sets
C0, C1, and C2 has size at most 2l · �(l − 1), which would imply that C has size at most 6l · �(l − 1), a contradiction.

Let us start with C0. We construct a graph G0 whose vertex set is exactly C0. Let there be an edge between a vertex
d ∈ C0 and e ∈ C0 if there is a row in which both d and e have a disputed position that faces a 0-entry in c. We claim
that the maximum degree of G0 is less than l�(l − 1). To see this, first note that every vertex (which is a column) has at
most l disputed positions. Next, we already saw that in each row there are at most �(l − 1) many question mark entries.
Thus, each vertex can be adjacent to at most l · (�(l − 1) − 1) different vertices.

We claim that the largest independent set in G0 has size at most 2. To see this, assume that three independent columns
are given and consider those rows where these columns have a disputed position. Stripped of everything but these three

columns and rows, the matrix is once more

(
? 0 0
0 ? 0
0 0 ?

)
. Since all the question marks are at disputed positions, we know

that in the matrix A′ they are all completed differently from 0. By Lemma 16, this is not possible.
We have just shown that the graph G0 has maximum degree l · (�(l − 1) − 1) and independence number at most 2.

This implies that it can have at most 2l · (�(l − 1) − 1) + 2 < 2l · �(l − 1) vertices, where the inequality follows from
the assumption l > 1. Therefore, |C0| < 2l · �(l − 1). Using the same argument we can prove the same bounds for C1
and C2. �

Theorem 18. Algorithm preprocess is a fixed-parameter algorithm that transforms a genotype matrix A into a genotype
matrix Ā such that Ā can be ppp-completed if and only if A can. Furthermore, if more than �(k) := (4k + 2)�(k)

columns in Ā have the same leaf count, then neither A nor Ā can be ppp-completed.

Proof. Correctness: By Lemma 17, whenever columns are collapsed in the algorithm, the resulting matrix can be
ppp-completed if any only if the A can. Consider the matrix Ā that is output at the end of the algorithm. For a leaf
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count i, consider the set D of columns in Ā having leaf count i. Suppose |D| > (4k + 2)�(k). Since no more than �(k)

columns in Ā have a consensus, in any completion of Ā the columns in D must be completed in at least 4k +3 different
ways. On the other hand, each completion of a column from D must have a leaf count between i and i +2k and a perfect
path phylogeny can contain at most two columns with the same leaf count. Thus, there are at most 2(2k + 1) = 4k + 2
different ways of completing columns in D; a contradiction. This shows that Ā cannot be ppp-completed if more than
(4k + 2)�(k) columns have the same leaf count.

Running time: In each iteration of the main repeat-loop the number of columns in the genotype matrix decreases
by at least 1 since some columns are collapsed. Thus there can be at most m iterations of the main loop. The two for
each-statements iterate over at most m4k candidates and computing each candidate takes time at most O(n). Computing
the set C from a given column p can be done in time O(mn). Putting it all together, the algorithm terminates after at
most O(k4km3n) steps. �

6.4. Dynamic programming phase

The input for the dynamic programming phase is a preprocessed n × m matrix A. Observe that the leaf counts of the
columns of A range between 0 and some number L�2n. We use A[i,i′] with 0� i� i′ �L to denote set of columns of A
that have leaf counts between i and i′. The set A[i−2k,i] contains all columns of A whose leaf count could become i after
completion of the missing entries. For a set C of {0, 1, 2}-columns, we use C=j to denote the columns in C that have
leaf count j; C � j and C � j are similarly defined. Thus, we use subscripts to refer to the leaf count before replacing
question marks, and superscripts to refer to the leaf count after completion. We say that two sets of completed columns
are consistent if, whenever both sets contain completions of the same original column, these completions are identical.

The dynamic programming algorithm fills a table H(R, i), where the “row” R indexes sets of completed columns
of A, and the “column” i indexes leaf counts. A column i will be processed only if some column of A can be completed
so that its leaf count becomes i; otherwise it will be skipped during a run of the algorithm. Column i has a row entry for
every R ∈ completions(A[i−2k,i]). Informally, an entry H(R, i) stores information about all completions of columns
in A[0,i] that are consistent with R and that allow a perfect path phylogeny. Formally,

H(R, i) := {hma(C � i )|C ∈ completions(A[0,i]),
C is consistent with R,

C has the ppp-property}. (1)

As we show in the following lemma, the information recorded in each entry of the table suffices for extending the
perfect path phylogeny in the subsequent dynamic programming step:

Lemma 19. Let i ∈ {1, . . . , L} and R ∈ completions(A[i−2k,i]). Then

H(R, i) = {hma(R=i ∪ H)|S ∈ completions(A[i−1−2k,i−1]),
S is consistent with R,

H ∈ H(S, i − 1),

R� i ∪ H has the ppp-property}. (2)

Proof. Left-to-right-inclusion: Consider any hma(C � i ) ∈ H(R, i), where by definition C ∈ completions(A[0,i]), C
is consistent with R, and C has the ppp-property. Since C is consistent with R, we must have R ⊆ C. In particular,
C=i = R=i . Since C � i = C=i ∪ C � i−1, Theorem 13 implies that

hma(C � i ) = hma(C=i ∪ C � i−1) = hma(C=i ∪ hma(C � i−1)).

Set H := hma(C � i−1). Observe that R� i ∪ H has the ppp-property since its superset C has it. Hence, it suffices
to prove the existence of a set of columns S ∈ completions(A[i−1−2k,i−1]), such that S is consistent with R and
H ∈ H(S, i − 1). Let S be the set of columns from C that had leaf counts in the range [i − 1 − 2k, i − 1] before their
completion. Since C is consistent with R, so is S. Furthermore, H ∈ H(S, i − 1) since the set of all columns in C
that had leaf count in the range [0, i − 1] before their completion is in completions(A[0,i−1]), is consistent with S, and
inherits the ppp-property from C.
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Fig. 5. The fixed-parameter algorithm for directed {0, 1, 2, ?}-PPPH.

Right-to-left-inclusion: Let S ∈ completions(A[i−1−2k,i−1]) be given and H ∈ H(S, i − 1) such that S is consistent
with R and H ∪ R� i has the ppp-property. By definition H = hma(D� i−1) for some D ∈ completions(A[0,i−1])
that is consistent with S and has the ppp-property. Note that D is also consistent with R and, thus, we can decompose
D ∪ R = (D ∪ R)� i−1 ∪ (D ∪ R)� i = D� i−1 ∪ R� i . Since H ∪ R� i has the ppp-property, Theorem 13 implies
that D� i−1 ∪ R� i also has it. Let C := D� i−1 ∪ R� i = D ∪ R. Then C is consistent with R, it has the ppp-
property, and C ∈ completions(A[0,i]). Thus, hma(C � i ) ∈ H(R, i). Since C � i = R=i ∪ D� i−1, we conclude that
hma(C � i ) = hma(R=i ∪ hma(D� i−1)) = hma(R=i ∪ H). �

The algorithm for incomplete PPPH: The dynamic programming algorithm starts with a preprocessed matrix A.
The algorithm’s objective is to fill the dynamic programming table H column-wise. First, we fill column 0. For each
R ∈ completions(A[0,0]), we store {hma(R=0)} in H(R, 0) if R has the ppp-property; otherwise the table entry is set
to ∅. Note that if H(R, 0) �= ∅, then either H(R, 0) = {∅} (when R=0 = ∅) or H(R, 0) is exactly the set containing
the all-0 column.

For the dynamic programming step, assume that we have filled column i − 1 and now wish to fill column i. We
compute the entries H(R, i) using Eq. 2. We iterate over all sets S ∈ A[i−1−2k,i−1] that are consistent with R. For each
such set S we iterate over all the elements H ∈ H(S, i −1). If R� i ∪H has the ppp-property, we add hma(H ∪R=i ) to
H(R, i). At the end, we check whether the last column L contains some non-empty entry. For pseudo-code see Fig. 5.

Note that the algorithm only determines whether the matrix admits a perfect path phylogeny, but can be easily
modified to output a perfect path phylogeny if such exists.

Theorem 20. Algorithm INCOMPLETE-PPPH is a fixed-parameter algorithm that solves directed {0, 1, 2, ?}-PPPH, where
the parameter is the maximum number of missing entries in a column.

Proof. Correctness: Eq. (1) trivially holds for the first column of the dynamic programming table. By Lemma 19, we
correctly fill all other columns of H. Thus, on the one hand, after the algorithm has terminated every non-empty entry
in the last column of H corresponds, by Eq. (1), to a completion A′ of the input matrix that admits a perfect path
phylogeny. On the other hand, every ppp-completion A′ of A is in particular a completion of the columns in A[L−2k,L].
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Hence, by Eq. (1), the entry of the dynamic programming table that corresponds to this completion is non-empty, since
it contains hma(A′ �L

).
Running time: We start with a loose bound on the size of the entries H(R, i). Every entry is a list of hma-sets, which

are sets containing at most three completed columns. There are at most 33km3 ways to choose the hma-sets. This shows
that |H(R, i)|�33km3. (With a more elaborate argument one can show a bound that is linear in m.)

The algorithm iterates over columns of the table H, whose number is at most L�2n. For each column two nested for
each-loops iterate over the elements of the sets completions(A[i−2k,i]) and completions(A[i−1−2k,i−1]). By Theorem
18, |A[i−2k,i]|�(2k + 1) · �(k) and, thus, |completions(A[i−2k,i])|�3k(2k+1)·�(k). Finally, in each update of H(R, i)

the algorithm iterates over all elements of a list with at most 33km3 elements and performs a check that takes time
O(n). In total, since the preprocessing can be done in O(4km3n), the total running time of the algorithm is bounded by
3O(k2·6k ·k!) n2m3. �

7. Conclusions

In this paper, we have introduced the concept of perfect path phylogenies and demonstrated how it can be applied to
haplotyping with missing data. While the general problem of incomplete perfect phylogeny haplotyping was shown to
be NP-hard even in very restricted cases, we have given a fixed-parameter algorithm for the problem when the sought
phylogeny is a path. We have also shown that the majority (70%) of real data sets that admit a perfect phylogeny also
admit a path phylogeny.

Our work is a step toward coping with the abundance of missing entries in genotype data. Our algorithms exploit
connections between a perfect phylogeny for genotype matrices and a partial order on its columns. Instead of path
phylogenies one could study phylogenies whose underlying posets have bounded width. It would be interesting to
generalize our methods to this case and to check how well real data conforms to this relaxed restriction.

We remark that there exist different results that relate the complexity of perfect phylogeny haplotyping problems
to classical problems on hypergraph realization, see [2,15]. Our proof of the NP-hardness of {0, 2, ?}-PPPH implies
the NP-hardness of certain sandwich problems arising in hypergraph realization, see [12] for details. In particular, our
results imply that the sandwich problem for hypergraph tree realization is NP-hard.

Two remaining open questions are whether the fixed-parameter tractability of the incomplete perfect path phy-
logeny haplotyping with respect to the number of missing entries can be maintained for the undirected case and, more
importantly, for general (non-path) phylogenies.
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