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Abstract

Protein-protein interactions (PPIs) govern basic cellular processes through signal transduction and complex formation. The
diversity of those processes gives rise to a remarkable diversity of interactions types, ranging from transient
phosphorylation interactions to stable covalent bonding. Despite our increasing knowledge on PPIs in humans and other
species, their types remain relatively unexplored and few annotations of types exist in public databases. Here, we propose
the first method for systematic prediction of PPI type based solely on the techniques by which the interaction was detected.
We show that different detection methods are better suited for detecting specific types. We apply our method to ten
interaction types on a large scale human PPI dataset. We evaluate the performance of the method using both internal cross
validation and external data sources. In cross validation, we obtain an area under receiver operating characteristic (ROC)
curve ranging from 0.65 to 0.97 with an average of 0.84 across the predicted types. Comparing the predicted interaction
types to external data sources, we obtained significant agreements for phosphorylation and ubiquitination interactions,
with hypergeometric p-value = 2.3e254 and 5.6e228 respectively. We examine the biological relevance of our predictions
using known signaling pathways and chart the abundance of interaction types in cell processes. Finally, we investigate the
cross-relations between different interaction types within the network and characterize the discovered patterns, or motifs.
We expect the resulting annotated network to facilitate the reconstruction of process-specific subnetworks and assist in
predicting protein function or interaction.
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Introduction

Protein-protein interactions (PPIs) play a key role in a diverse

range of biological processes. As proteins interact in a specific

manner, a large number of interaction types exists [1]. Under-

standing the nature and mechanism of these interactions is crucial

in deciphering cellular processes at the molecular level. To explore

the molecular mechanisms of protein interactions and chart a cell-

wide interaction map, many experimental techniques have been

developed to date. The different methods make use of biochem-

ical, biophysical and imaging techniques in order to monitor

interactions in scales ranging from single proteins (e.g., confocal

microscopy) to genome wide screening (e.g., yeast two-hybrid and

tandem affinity purification). Presently, more than half a million

interactions are cataloged in public databases [2], calling for

computational methods to categorize them according to their

different types.

Several previous attempts were made to classify protein

interactions into different types. One approach exploits protein

structural information in order to predict protein docking mode

and subsequently the interaction type [3–5]. Another approach

makes use of sequence data of the interacting interface in order to

predict interaction types [6,7]. For example, [7] explores the

difference in amino acid compositions and residue-residue

preferences of protein interfaces to classify protein interactions

into six types: homo- and hetero- structural domain, obligate and

transient interaction and homo- and hetero- oligomers. A caveat of

these approaches is that they rely on prior structural information;

in addition they use a coarse classification to high level classes of

types.

Here we propose a method for predicting interaction type based

on the experimental techniques by which the interaction was

detected, using no prior biological information. We compiled a

dataset of 180,353 PPIs and their corresponding detection

methods from multiple databases and applied logistic regression

to predict for each PPI its interaction types. We applied this

method separately on ten interaction types including covalent

binding, disulfide bond, protein cleavage and cleavage, deacetyla-

tion, dephosphorylation, methylation, phosphorylation, ubiquiti-

nation and ADP ribosylation. We validated our predictions using

internal cross-validation and external data sources, obtaining high

areas under the ROC curve. In addition, we chart the distribution

of interaction types in biological pathways, showing that different

cellular processes tend to be mediated by different interaction
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types. Finally, we illuminate inter-relations between types by

analyzing recurrent network motifs spanning multiple types.

Results

We compiled a human protein-protein interactions dataset from

multiple sources utilizing the psi-mi format [8]. Interaction types

and interaction detection methods were extracted for each PPI.

The psi-mi format provides a hierarchical representation of the

types, where at the highest level there are four categories: (i)

association, (ii) colocalization, (iii) genetic interaction and (iv)

predicted interaction. Querying for interactions of the type

‘association’ and its descendants we obtained 461,742 redundant

interactions corresponding to 180,353 unique PPIs (see Methods).

Each PPI record was associated with up to 20 detection methods

and 5 interaction types with an average of 1.4 and 1.38

associations, respectively. When accounting for ancestors in the

hierarchical structure, the average PPI-detection method and

interaction type associations increased to 6.8 and 3.1 respectively.

Figure 1 summarizes the interaction types extracted from the PPI

records.

We hypothesized that different detection methods are better

suited for different types. To test this hypothesis we examined the

enrichment of interaction types detected by the different methods.

We found that ‘affinity chromatography’, was underrepresented

with enzymatic reaction and several of its descendant categories

(hypergeometric 1-p-value = 1.3e218,

1.2e217,1.1e207,8.1e207,1.5e208 for enzymatic reaction, cleavage

reaction, protein cleavage, dephosphorylation reaction and ADP

ribosylation reaction, respectively). On the other hand, covalent

binding and disulfide bond were both enriched with this method

(hypergeometric p-value = 1.3e218and 2.6e211 respectively), sug-

gesting that this detection method is less suitable for detecting

transient enzymatic reactions, and is better suited for the detection

of protein complexes. Notably, ‘ubiquitination reaction’ was also

found to be enriched with affinity chromatography (p-va-

lue = 2.1e29), reflecting the need for stable interactions to carry

out ubiquitination reactions. Similarly, ‘two hybrid array’ was

found to be underrepresented in phosphorylation and dephos-

phorylation interactions (p-value = 2.3e25 and 2.5e27, respective-

ly), while enriched in ubiquitination reactions (p-value = 2e224),

demonstrating again the subtle differences between these types of

Figure 1. Hierarchical view of psi-mi interaction types extracted from PPIs records. For every interaction type we state the number of PPIs
directly associated to the type. The number of PPIs associated with the type and its descendants in the ontology is given in parenthesis. Interaction
types predicted using logistic regression are highlight in green.
doi:10.1371/journal.pone.0090904.g001
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enzymatic reactions. Finally, ‘Comigration in gel electrophoresis’

showed enrichment in identifying covalent binding interactions (p-

value = 1.1e216) while being underrepresented in enzymatic

reactions (p-value = 1.1e216), in accordance with the technique

prevalent use [9]. A list of top enrichments and underrepresen-

tations is given in Table S1.

Predicting Interaction Types
Next, we attempted to predict the interaction type of a PPI from

its associated detection methods, focusing on two main branches of

the type hierarchy: (i) covalent binding and (ii) enzymatic reaction

(see Figure 1). To this end, we trained a generalized linear

regression model based on 1,558 PPIs annotated to these types (see

Methods).

To evaluate our prediction method, we used a 10-fold cross-

validation setting. Our method obtained an area under the

receiver-operating-characteristic curve (AUC) of 0.84 on average

across the different interaction types (see Table 1). To determine a

set of predicted interactions for each type we used a cutoff point

which maximizes the sum of specificity and sensitivity. Under this

cut-point, we were able to predict at least one interaction type for

108,821 interactions (60%). Figure 2 displays the distribution of

predicted interaction types.

We further validated our predictions against two external data-

sources storing specific interaction types: (i) phospho.ELM [10], a

manually curated database of phosphorylation sites and their

kinases; and (ii) hUbiquitome [11], a database of experimentally

verified human ubiquitination enzymes and substrates.

To assess our predictions, we compared the set of predicted

phosphorylation interactions to a set of 479 gold standard

phosphorylation interactions stored in Phospho.ELM (see Meth-

ods), obtaining an AUC of 0.70. Choosing a cutoff as above, we

were able to retrieve 75% of the gold standard interactions with an

accuracy of 58%, yielding a hyper geometric p-value ,2.3e254. In

a similar manner, comparing the classifier ranks for ubiquitination

interactions to a set of 203 gold standard interactions retrieved

from hUbiquitome yielded an AUC of 0.69. The set of predicted

ubiquitination interactions was highly enriched in gold-standard

PPIs, with hyper geometric p-value = 5.6e228, retrieving 37% of

gold standard proteins with an accuracy of 91%.

Next, we tested the functional similarity of the proteins

participating in the different interaction types. We compared the

semantic similarity of proteins mediating each interaction type to

the similarity of a randomly selected group of interacting proteins

of the same size (see Methods). The similarity score distribution

was significantly higher for proteins spanning the same interaction

type (Wilcoxon p-value = 0 for all interaction types using GO

biological process, cell compartment and molecular function).

To analyze the categories enriched with each interaction type,

we focused on the top 100 proteins with the highest network

degree in each of the types (see Methods). All interaction types

were highly enriched in GO categories, with at least 69 enriched

categories per type and a total of 1758 enrichment over all types

Figure 2. distribution of predicted interaction types.
doi:10.1371/journal.pone.0090904.g002
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(FDR ,0.05). Reassuringly, we found that most interaction types

were enriched with terms directly describing their predicted type.

For example, ‘protein cleavage’ were enriched in ‘proteolysis

involved in cellular protein catabolic process’; and ‘proteolysis’

categories. Both ‘disulfide bond’ and ‘covalent binding’ proteins

were enriched in categories involving large complexes such as

‘ribosome’, ‘ribosomal subunit’, ‘ribonucleoprotein complex’ and

more generally in the category ‘macromolecular complex’.

‘Ubiquitination reaction’ was enriched in ‘protein ubiquitination’

and ‘ubiquitin-protein ligase activity’. Proteins involved in

phosphorylation reactions were enriched in eight GO categories

directly engaging phosphorylation including ‘protein amino acid

phosphorylation’, ‘phosphorylation’ and ‘protein kinase activity’.

Interaction Types in Cellular Processes
To assess the relevance of the predicted interaction types to

cellular processes, we download KEGG pathways [12] and

evaluated the distribution of interaction types within pathways

(see Methods, 89 pathways spanning 10 sub-categories). First, we

computed Pearson correlation between the number of interactions

of each type across pathways. We found that the correlations of

pathways within the same subcategories were significantly higher

than the correlations of pathways in different subcategories (0.72

and 0.63 respectively, Wilcoxon p-value = 1.8e218) suggesting that

different cell processes are mediated by different interaction types.

Repeating the analysis using KEGG-type annotations revealed the

same trend with an intra-subcategory correlation of 0.64 vs. inter-

subcategory correlation of 0.32 (Wilcoxon test p-value = 4.7e248).

Next, we compared the predicted interaction types to KEGG’s

annotations. KEGG interaction types consist of 13 annotations,

from which five are molecular events and three were comparable

with predicted types (see Methods). We first tested the enrichment

of predicted types within the corresponding KEGG types. All

three interaction types were enriched with the corresponding

KEGG types (hypergeometric p-value = 1.7e235, 0.02 and 1.7e216

for phosphorylation, dephosphorylation and ubiquitination reac-

tions, respectively). Moreover, we found that the abundance of

predicted interactions of type phosphorylation, dephosphorylation

and ubiquitination across pathways were correlated with their

abundance as annotated in KEGG pathways (Pearson correla-

tion = 0.54, 0.67 and 0.19 respectively). Surprisingly, we observed

a high correlation between interactions annotated in KEGG as

‘activation’ and all enzymatic reactions (e.g. cleavage, dephos-

phorylation and methylation, with Pearson correlation = 0.61,

0.61 and 0.52 respectively). Intrigued by this correlation, we

wondered if our predicted interaction types can explain the

mechanism of action for interactions annotated as ‘activation’/

‘inhibition’ by KEGG, many of which are of unknown nature.

One example for such an interaction is the inhibition of Notch by

Numb in the ‘Notch signaling pathway’. It is known that Numb

can bind to the intercellular domain of Notch, but the specific

mechanism by which it inhibits Notch is still under investigation

[13]. We predict this interaction to be of cleavage type. Indeed, a

recent study has shown that the overexpression of Numb reduces

intracellular pools of biotinylated Notch1 by promoting Notch1

degradation [14]. Additionally, we predicted the activation

interaction of Presenilin- Notch in the same pathway, to be of

cleavage type as well. Indeed, evidence supports that presenilin-1

has a proteolytic effect on Notch, causing its activation [15].

Similarly, we predicted that the inhibitory interaction Mdm2 - p53

in the ‘chronic myeloid leukemia’ pathway is a ubiquitination

reaction. Indeed, Mdm2 serves as a p53-specific ubiquitin ligase,

using this mechanism to inhibit p53 [16]. Finally, the activation

interaction between mTOR and RPS6KB1 in the ‘acute myeloid

leukemia’ pathway was predicted to be of phosphorylation type by

our method. Indeed this interaction is a well characterized

phosphorylation interaction [17]. These examples demonstrate

that the specific enzymatic reaction predicted using our method

can add complementary information to the annotation assigned by

KEGG, revealing the specific nature of the interaction.

Interaction Type Motifs
Network motifs are simple patterns of interaction in networks

that occur more frequently than expected. We searched for three-

node patterns by exhaustively enumerating all three proteins

interconnected by three PPIs as suggested by [18]. We compared

the number of patterns found to those formed by 500 randomized

PPI networks (see Methods). Eight enriched motifs were found

(empirical p-value ,0.05). All motifs consisted of at least two

interactions of the same type and three of them were a single-type

motif (see Table 2).

One example of a single-type motif consists of three covalent

bonds between three proteins, representing a protein complex. For

instance the mediator complex, a multiprotein complex composed

of at least 26 subunits [19], was highly represented in this motif,

having 246 covalent-bond triplets of the complex subunits in our

predictions.

Table 1. Areas under the receiver-operating-characteristic curves.

Interaction Type Number of known interaction Size of negative set AUC

cleavage reaction 153 153 0.82

covalent binding 50 100 0.86

deacetylation reaction 34 100 0.89

dephosphorylation reaction 322 322 0.71

methylation reaction 30 100 0.81

phosphorylation reaction 813 813 0.65

ubiquitination reaction 102 102 0.87

disulfide bond 27 100 0.84

adp ribosylation reaction 54 100 0.97

protein cleavage 43 100 0.97

Areas under the curves (AUC) obtained in a 10-fold cross-validation setting. The AUC is averaged across 20 cross validation repeats.
doi:10.1371/journal.pone.0090904.t001
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A second example consists of three cleavage reactions between

three proteins. This motif suits, for example, the pattern of caspase

activation in the apoptotic process. Caspases, cysteine proteases

which play essential roles in apoptosis, are activated by cleavage of

their precursors [20]. We found Caspase - 6, 7 and 8 to form a

cleavage motif. It is known that initiator caspase 8 triggers the

apoptotic pathways by cleaving effector caspases precursors,

including caspases 6 and 7 [21]. Additionally, evidence suggests

that the effector caspases 6 and 7 have a mutual activation and

amplification effect on each other [20]. Moreover, we found

caspase 6 and 7 to form a motif with SP1. Caspases 6 and 7 act as

executioner proteins of apoptosis, sharing many common cellular

targets, whose processing leads to cell degradation. SP1 is a

transcription factor involved in many cellular processes including

cell growth, differentiation and apoptosis, making it a likely

candidate for degradation by apoptotic caspases.

Another class of motifs contains motifs with two interactions of

the same type. An example of such a motif consists of two cleavage

reactions and a covalently-linked pair. This motif may represent

cases in which cleaving is carried out on two members of a

complex, or in which two proteins collaborate in carrying out a

cleavage reaction. We found for example, that the DEAD box

protein 39, a protein involved in RNA processing [22], forms

‘double cleavage-covalent binding’ motifs with ribosomal proteins

(e.g., 60S ribosomal protein L7, L4, L12 and more). Indeed,

DEAD box proteins are known to be involved in ribosome

biogenesis [23].

A second example consists of a kinase which phosphorylates two

proteins interconnected by a cleavage reaction. This motif implies

that phosphorylation and cleavage reactions may operate in a

coordinated manner in signaling pathways as previously suggested

[24–26].

Conclusions

In this work, we presented a new method for predicting protein

interaction type. Our method exploits the experimental techniques

by which interactions were detected to infer their functional type.

We first demonstrated how experimental techniques are differently

correlated with interaction types. Next, we examined the

distribution of interaction types in known pathways, showing that

different cell processes are mediated via different interaction type

compositions. Finally, we utilized the resulting type-annotated

network to elucidate interaction type motifs. The motifs uncovered

simple patterns of common processes in the cell mediated by

different types of protein interactions and provide a glimpse into

the interactome’s underlying structure. All motifs consist of at least

two interactions of the same type, indicating that interactions of

the same type tend to form functional groups in the cell.

Our approach exploits the delicate preferences of a experimen-

tal approach in detecting different interaction types to systemat-

ically predict interaction types. While some detection methods

may be biased toward specific interaction types, the vast majority

of interactions in the dataset are taken from large scale exploratory

experiments which are not a priori biased toward a given set of

interactions. Specifically, 99% of the interactions in the dataset

were detected in large scale experiments reporting over 1,000 PPIs

(58% of which were also detected in small scale experiments). This

suggests that our method relies on unbiased experiments and its

strength might stem from the integration of multiple detection

methods to tackle the prediction task.

To the best of our knowledge, our method is the first to predict

interaction functional type. We expect that as more interaction

types will become predictable, the interaction profile of a protein

could illuminate protein function as well as the way it mediates its

role within the cell.

We note that additional attributes can be exploited to improve

interaction type prediction. For example, properties such as

protein’s functional annotations can be used in the learning

process, assuming that proteins with similar properties tend to

interact in a similar manner.

Materials and Methods

Data Assembly
Protein-protein interactions (PPIs) were downloaded from

multiple sources using the molecular interactions query language

(MIQL 2.5) of PSICQUIC [27]. PSICQUIC enables program-

matic access to molecular interaction databases supporting the psi-

mi format, which provides a hierarchical structure describing

protein interactions. The resulting PPI compendium spans

461,742 physical PPIs in humans, representing 180,353 unique

interactions for 19,584 proteins. In total, 130 psi-mi interaction

detection methods and 29 interaction types were extracted from

the PPI compendium, from which only 0.8% of the interactions

(1,492 interactions) were classified to specific interaction types (i.e.

‘‘enzymatic reaction’’ and ‘‘covalent binding’’ and their descen-

dants), while the rest were classified to high level interaction type

(e.g. ‘‘physical association’’), see Figure 1. Additionally, we manually

mapped interactions detected using psi-mi 0415 ‘‘enzymatic study’’

descendant terms (e.g. phosphatase assay, cleavage assay, etc.)

which are designed to detect specific interaction types, to the

corresponding interaction type, resulted in 1,656 unique interac-

tions with known interaction type.

Table 2. Significantly recurring network motifs.

interaction A interaction B interaction C

cleavage reaction cleavage reaction cleavage reaction

covalent binding cleavage reaction cleavage reaction

phosphorylation reaction cleavage reaction cleavage reaction

phosphorylation reaction phosphorylation reaction cleavage reaction

covalent binding covalent binding covalent binding

phosphorylation reaction covalent binding covalent binding

methylation reaction methylation reaction covalent binding

phosphorylation reaction phosphorylation reaction phosphorylation reaction

doi:10.1371/journal.pone.0090904.t002
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In order to compile a complete detection method vector we

exploited the hierarchical structure of the psi-mi format, to

associate PPI with ancestors of the detection method to which it

was annotated.

In a similar manner PPIs were associated with interaction types

ancestors, resulting in 27 redundant predictions of ‘disulfide bond’

and ‘covalent bond’ and 43 redundant predictions of ‘protein

cleavage’ and ‘cleavage reaction’ (see Figure 1).

Training Logistic Regression
We trained a generalized linear regression model, using a

MATLAB classifier with binomial distribution. To avoid trivial

prediction cases all descendants of interaction detection method

psi-mi 0415 ‘‘enzymatic study’’ (e.g. phosphatase assay, cleavage

assay, etc.) which are designed to detect specific interaction types,

were dismissed from the detection method vector. Additionally,

rare detection methods associated with less than 200 interactions

and high-level detection methods associated with all interactions

(i.e. ‘experimental interaction detection’ and ‘interaction detection method’)

were dismissed from the analysis, resulting in a vector of 39

detection methods serving as feature vector to the logistic

regression (see Table S2). For the prediction task we focused on

all types representing specific interactions types, i.e., ‘enzymatic

reaction’, ‘covalent binding’ and their descendants dismissing high level

interaction of type ‘direct interaction’ and its ancestors. Addition-

ally, interaction types assigned to less than 20 PPIs were ignored.

Last, we dismissed ‘Enzymatic reaction’ from the prediction analysis

as 1,606 (97%) of the known interaction type were annotated to

this type making its prediction redundant and causing the lack of

an appropriate negative set.

The filtering process resulted in a set of 1,558 unique protein

interactions with predictable type. The positive-training set for

each interaction type included all interactions associated with that

interaction type, while the negative set included interactions

associated with different specific interaction types. Additionally, as

interactions annotated to a specific type represent less than 1% of

the interaction dataset, we accounted for random interactions not

associated with any specific type (i.e., interaction annotated only to

‘physical association’ or ‘direct interaction’) as a part of the negative set.

To gain a wider variety of interaction types and detection methods

we chose the random interactions from the set of interaction

associated with at least four detection methods. These 139,961

interactions (78% of the complete dataset) forms a representative

group of reliable and well annotated interactions. The size of the

negative set was set to the size of the positive set or at least 100

interactions, see Table 1.

Evaluating Predictions
We preformed 20 independent 10-fold cross-validation schemes,

choosing in each of them different random negative sets and

partitioning the data into different random groups.

To evaluate the predicted phosphorylation interactions we

downloaded human kinase-substrate interaction from Phos-

pho.ELM. We were able to uniquely map 546 interactions stored

in Phospho.ELM to interaction in our data set, from which 67

interactions were psi-mi annotated to ‘phosphorylation reaction’ and

were therefore removed from the analysis.

In a similar manner we downloaded 413 interactions from

hUbiquitome, 208 of which were uniquely mapped to interactions

stored in our data set, from which 5 where annotated as

‘ubiquitination reaction’ and where therefore removed from the gold

standard set.

Validation using GO
For each interaction type, we calculated Resnik’s similarity

among proteins spanning the interaction type subnetwork. The

random set was composed of protein interactions randomly chosen

from the complete PPI network. The random PPIs set was of the

same size of the predicted PPIs set for that type. We repeated the

procedure with ten random groups for each interaction type,

reporting the average similarity of the ten reported groups with

maximal Wilcoxon p-value obtained over all iterations.

Enrichment analysis was done using DAVID [28]. In each

interaction type, the top hundred proteins having the largest

number of interactions were chosen, and compared to a set of

19,584 proteins spanning the complete PPI network. The

enrichment was performed on all GO ontology categories.

Comparison with KEGG
KEGG pathways in humans were retrieved using KEGG API

[29]. There are 13 protein interaction relations annotated in

KEGG xml, from which five enzymatic reactions, including:

‘compound’, ‘activation’, ‘inhibition’, ‘indirect effect’, ‘state

change’, ‘binding/association’, ‘dissociation’, ‘missing interaction’

and enzymatic reactions: ‘phosphorylation’, ‘dephosphorylation’,

‘glycosylation’, ‘ubiquitination’ and ‘methylation’. The last five are

potentially comparible with psi-mi enzymatic reactions. Altogether

40,008 redundant protein interactions were extracted from KEGG

xmls, from which 3044 phosphorylation, 627 dephosphorylation,

658 ubiquitination, 2 methylation and no glycosylation reactions

were extracted. The first three categories were thus compared with

our predictions using a hypergeometric p-value.

For computing Pearson correlation of protein abundance in

pathways we choose KEGG’s subcategories consisting of at least

five pathways, each of the pathways consists of at least ten protein

interactions with a predicted interaction type.

Network Motifs
In order to find network motifs, we exhaustively enumerated all

patterns of three proteins interconnected with three PPIs, defined

by a single interaction type per PPI. We compared the number of

patterns found to those formed by 500 randomized PPI networks.

Each random PPI network was created by permuting PPI edges of

each interaction type separately, while maintaining the degree the

proteins in the interaction-type network. The interaction type

networks were then recombined into a random PPI as previously

suggested by [18].

Supporting Information

Table S1 A list of detection methods over/under
represented in different interaction types.
(XLSX)

logistic regression.
(XLSX)
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