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Inferring potential drug indications, for either novel or approved drugs, is a key step in drug
development. Previous computational methods in this domain have focused on either drug
repositioning or matching drug and disease gene expression profiles. Here, we present a novel
method for the large-scale prediction of drug indications (PREDICT) that can handle both approved
drugs and novel molecules. Our method is based on the observation that similar drugs are indicated
for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures
for the prediction task. On cross-validation, it obtains high specificity and sensitivity (AUC¼0.9)
in predicting drug indications, surpassing existing methods. We validate our predictions by
their overlap with drug indications that are currently under clinical trials, and by their agreement
with tissue-specific expression information on the drug targets. We further show that disease-
specific genetic signatures can be used to accurately predict drug indications for new diseases
(AUC¼0.92). This lays the computational foundation for future personalized drug treatments,
where gene expression signatures from individual patients would replace the disease-specific
signatures.
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Introduction

Associating accurate indications with new molecules or
alternative indications for approved drugs is a key step
in drug development. High drug development costs (DiMasi
et al, 2003) call for computational solutions that would
minimize production time and ultimately development costs
(Terstappen and Reggiani, 2001). Current computational
methods for indication prediction mainly focus on small-scale
applications, where drugs that target proteins in disease-
specific molecular networks are sought (Kinnings et al, 2009;
Li et al, 2009; Kotelnikova et al, 2010), while large-scale
attempts are still scarce.

Previous attempts for large-scale identification of novel drug
indications include: (i) matching of gene expression profiles
proposed by the Connectivity Map (CMap) consortium (Lamb
et al, 2006; see also Hu and Agarwal (2009)) and (ii) the ‘Guilt
by Association’ (GBA) approach (Chiang and Butte, 2009).
CMap is a database containing ranked drug response gene
expression profiles. Querying the database with a disease-

specific genetic signature, CMap identifies drug response
profiles that either correlate (i.e., upregulated signature
genes tend to appear at the top of the profile while down-
regulated signature genes tend to appear at the bottom of the
profile) or anti-correlate with it. A similar approach was
proposed by Hu and Agarwal (2009), using gene expression
measurements downloaded from the Gene Expression
Omnibus (GEO; Edgar et al, 2002). While the CMap approach
can be applied to any potential drug, its prediction power has
not been assessed at large scale to date. As discussed in Hu and
Agarwal (2009), the gene expression approach currently
suffers both from low precision due to profiles generated
under different conditions and from incapability to capture
drug–disease associations that are not manifested at the gene
expression level. GBA (Chiang and Butte, 2009) attempts to
predict novel associations between drugs and diseases by
assuming that if two diseases are treated by the same drug,
alternative drugs treating only one of them might treat also the
other. It is thus applicable only in the drug repositioning
setting, where some indication for the drug in question is
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already known. A related work combined drug–drug simila-
rities and drug indications for the inference of drug–gene
associations (Hansen et al, 2009).

Here, we present an approach for predicting novel associa-
tions between drugs and diseases that can operate on both
drugs with approved indications and on novel molecules
with no indication information. Given a query association,
we measure the similarity of the pertaining drug and disease to
drug–disease pairs that are known to be associated, and rank
the accumulative evidence for association using a logistic
regression scheme. The prediction process is aided by a
comprehensive drug–disease association data set that we have
compiled and a collection of novel drug–drug similarity
measures. Importantly, we show the potential utility of our
approach also in a personalized medicine setting, in which a
disease name is replaced by a gene expression signature; and
consequently, disease–disease similarity is measured via the
similarity of the corresponding signatures.

Results and discussion

PREDICT—an algorithm for predicting drug
indications

We designed a novel algorithm for PREdicting Drug IndiCa-
Tions (PREDICT). Given a gold standard set of drug–disease
associations (known associations), the algorithm ranks
additional drug–disease associations based on their similarity
to the known associations. The algorithm works in three
phases (Figure 1): (i) construction of drug–drug and disease–
disease similarity measures; (ii) exploiting these similarity
measures to construct classification features and subsequent
learning of a classification rule that distinguishes true from
false drug–disease associations; and (iii) application of the
classifier to predict new associations. The gold standard of
drug–disease associations used for training was constructed
from multiple sources, matching drugs, drug indications
and disease names using the Unified Medical Language System
(UMLS), as described in Materials and methods. In brief, the
gold standard data set spans 1933 associations between
593 drugs taken from DrugBank (Wishart et al, 2008) and
313 diseases listed in the Online Mendelian Inheritance in
Man (OMIM) database (Hamosh et al, 2002; Supplementary
Table S1). OMIM holds a comprehensive set of phenotypic
descriptions of diseases and disorders, including complex
multiple-gene disorders, allowing for the construction of
phenotypic similarity measures. Hard to treat congenital
anomalies were removed using the International Classification
of Diseases (ICD-10) (see Materials and methods). We provide
an overview of the algorithmic steps below; full details are
given in Materials and methods.

For the first algorithmic phase, we assembled five drug–drug
similarity measures between the 593 drugs in our gold
standard and two disease–disease similarity measures
between the 313 associated diseases. The drug–drug similarity
measures include chemical similarity, similarities based on
registered and predicted side effects (Kuhn et al, 2010; Atias
and Sharan, 2011) and similarities between drug targets,
including sequence similarity, distance on a protein–protein
interaction (PPI) network and gene ontology (GO) (Ashburner

et al, 2000) semantic similarity. The disease–disease similarity
measures are based on semantic similarity of disease pheno-
types according to the van Driel et al (2006) text mining
scheme and the human phenotype ontology (HPO; Robinson
and Mundlos, 2010).

The second algorithmic phase integrates the drug–drug
similarities and disease–disease similarities to construct
classification features and subsequently learns a classification
rule that distinguishes between true and false drug–disease
associations. For each query drug–disease association, we
constructed features expressing its similarity to the closest
known drug–disease association, using the scoring scheme
of Perlman et al (2011). Each feature is based on one drug–drug
similarity measure and one disease–disease similarity
measure, resulting in 10 features overall. Once the features
were constructed, we learned a logistic regression classifier
that automatically weighs the different features to yield a
classification score.

Performance evaluation and comparison with
other methods

To evaluate our classification scheme, we applied it in a 10-fold
cross-validation setting. To avoid easy prediction cases, we hid
all the associations involved with 10% of the drugs in each

Figure 1 Algorithmic pipeline: formation of drug–disease associations
(A), creation of drug–drug and disease–disease similarity metrics (B), scoring
possible drug indications according to their similarity to known drug indications
(C) and integration of the similarities to classification features and subsequent
classification (D).
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iteration, rather than hiding 10% of the associations. Our
method obtained an area under the Receiver-Operating
Characteristic Curve (AUC) of 0.9±0.01 (see Materials and
methods). In order to validate that the prediction accuracy is
not biased by redundant drugs, such as chemically similar
drugs or drugs with similar targets, we created three types of
non-redundant drug sets by filtering for (i) chemically similar
drugs (Tanimoto coefficient 40.7); (ii) drugs with sequence
similar drug targets (normalized sequence similarity 40.7);
and (iii) drugs sharing at least one target (see Materials and
methods). The obtained AUCs remained high: 0.89±0.02 for
427±3 chemically dissimilar drugs, 0.88±0.02 for 290±4
drugs with sequence dissimilar targets and 0.85±0.03 for
99±3 drugs sharing no target. The AUC scores obtained by the
algorithm for different Tanimoto coefficient cutoffs are plotted
in Supplementary Figure S1, showing comparable per-
formance even at a cutoff of 0.4.

We compared our classification results with two previous
methods: (i) the GBA method of Chiang and Butte (2009)
and (ii) the CMap approach (Lamb, 2007). Since the GBA
method cannot handle drugs for which no associations are
known, we compared with it using a modified 10-fold cross-
validation setting, in which associations (rather than drugs)
are hidden in each iteration. Under this setting, the GBA
method obtained false positive rate (FPR) and true positive
rate (TPR) scores of 0.13 (±0.006) and 0.77 (±0.005),
respectively, corresponding to a single point in the Receiver-
Operating Characteristic (ROC) space (as GBA does not rank its
predictions, a full curve could not be constructed). Supple-
mentary Figure S2 displays the ROC curve of our method in
this scenario (AUC¼0.913±0.002) and the FPR–TPR point of
the GBA method, which falls below our curve.

CMap predicts drug–disease associations by looking for
drug response gene expression profiles that anti-correlate with
a disease signature. In order to compare with CMap, we
downloaded 171 disease genetic signatures from ArrayExpress
(Parkinson et al, 2009) and mapped them to 239 OMIM
diseases by matching a selected set of common UMLS concepts
(see Materials and methods). We filtered signature genes
with inconclusive regulation direction (i.e., genes that were
both upregulated and downregulated across various experi-
ments for the same disease, allowing up to 10% errors;
see Materials and methods) and disregarded signatures that
did not comply with the restrictions of CMap, including
signatures having only upregulated or downregulated genes
and signatures with 41000 genes. Overall, 36 signatures
survived this filtering, 19 of which mapped to OMIM diseases
included in our data set. The intersection of CMap drugs with
our set of 593 drugs yielded 69 drugs spanning 149 known
associations. The resulting CMap AUC score was small
(AUC¼0.45; no standard deviation included due to the
deterministic nature of the method). Quite strikingly, using
our method on this set, we obtain an AUC of 0.92±0.02.
In order to compare our performance with CMap over the
entire set of 36 signatures, we replaced the phenotypic disease
similarity with a signature-based similarity (see Materials and
methods). The latter similarity enables comparing CMap
predictions for 37 diseases (corresponding to the 36 signa-
tures, with several signatures mapping to more than one
OMIM entry) and 71 drugs, spanning 266 associations.

The CMap AUC score for this enlarged set, however, remains
small (AUC¼0.42). In contrast, employing our method
replacing the phenotypic disease similarity with the signa-
ture-based similarity, we obtained an AUC score of 0.93±0.02.
These sets of 19 diseases (using the phenotypic similarity
measures) and 37 diseases (using the signature-based
similarity measures) were used solely for comparison purpose
and are not used in the sequel. We note that Hu and Agarwal
(2009) suggested a similar method to CMap, whereby they
compared disease and drug expression profiles downloaded
from GEO in a similar manner. The authors published a set of
predictions, which contains 43 diseases and 45 agents, but the
latter could be mapped to merely five diseases and five drugs
from our collection (see Materials and methods), preventing a
proper comparison.

Analysis of novel predictions

After evaluating our method, we turned to employ it for
predicting new drug–disease associations (see Materials and
methods). Our first set of predictions consists of new
associations for known drugs (i.e., drug repositioning)
(Figure 2). To prune and validate our predictions, we first
used a set of 752 low-confidence associations that were
retrieved from only one source of descriptive drug indication
and thus were not part of the drug indication gold standard
(see Materials and methods). Supplementary Figure S3
displays the hypergeometric enrichment P-value of the low-
confidence set in our ranked list of predictions, obtained at
different score thresholds (the ranked list contains 183 676
possible associations between the 593 drugs and 313 diseases,
excluding known associations). The threshold yielding the
lowest P-value results in a set of 9476 novel drug–disease
associations, representing putative drug repositionings for
580 drugs (out of 593 drugs). These associations cover 39% of
the low-confidence associations in the data (hypergeometric
Po2�10�177).

In order to test whether our predictions are in accordance
with current experimental knowledge, we checked the
extent to which they appear in current clinical trials. We
downloaded drug–disease data from the registry of federally
and privately supported clinical trials conducted around the
world (http://clinicaltrials.gov/). Overall, we acquired 16 506
unique drug–disease associations that are being investigated
in clinical trials (phases I–IV). In all, 2552 of these associations
involve drugs and diseases that are present in our data set,
spanning 1943 associations that are not part of our gold
standard. Using the P-value threshold found independently
above, we cover 27% of the clinical trial associations
(hypergeometric Po2�10�220). The percentage of phase III
clinical trial associations predicted by our method is markedly
high, covering 38% of the tested associations (hypergeometric
Po6�10�128). Table I summarizes the coverage of the
predicted associations with respect to the clinical trial
associations across the different phases.

To further validate our predictions, we used tissue-specific
expression data, motivated by the assumption that if a disease
is manifested in a certain tissue then for a drug treating it to
have an effect, its targets should be expressed in that tissue.
We compared two means of associating a drug with a set of
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tissues: (i) tissues where the drug target is expressed and
(ii) tissues affected by diseases that the drug is treating. Using
tissue-specific gene expression data by Su et al (2004) and
literature-based disease–tissue associations of Lage et al
(2008), we could show that indeed, drug targets are
significantly expressed in the same tissues that the indicated
diseases affect, supporting our assumption (hypergeometric
Po0.003; see Materials and methods). Notably, we observed a
similar result for our set of predicted associations (Po0.006).

The distribution of our predictions across different classes
of drugs (according to the Anatomical, Therapeutic and
Chemical (ATC) classification system; Skrbo et al, 2004) is
shown in Figure 3. Notably, we predict significantly more
indications for drugs belonging to ATC classes of Dermatolo-
gicals and Genito urinary system and sex hormones, which is
the result of multiple predictions made for glucocorticoids
receptors (e.g., desoximetasone and methylprednisolone) and
for sex hormones (testosterone and progesterone), suggesting
that these drugs should be further studied for broader
indications. The full list of predictions is provided in

Supplementary Table S2; and here, we highlight a few
interesting examples. For instance, Cabergoline, indicated for
Hyperprolactinemia is predicted to treat Migrane. Supporting
this prediction, Verhelst et al (1999) found in a large study of
Cabergoline treatment in Hyperprolactinemia that symptoms
of migraine significantly improved in 72% of the patients ; in
another smaller scale study, treatment by the drug reduced the
number of days of headache per month (Cavestro et al, 2006).

Table I Statistics of overlap between the phenotypic-based predictions and drug
indications that are under clinical trial

Phases # of associations in clinical trials Predicted associations

Total Approved Coverage (%) P-value

All 2552a 609 27 2.0�10�220

I 732 242 32 8.9�10�80

II 1150 324 27 1.1�10�94

III 969 379 38 1.1�10�128

IV 755 311 32 1.9�10�69

Unlisted 719 252 29 1.0�10�62

aUnique associations, excluding redundancy between phases.

Figure 3 Distributions of Anatomic, Therapeutic and Chemical (ATC) top level
classes among drug–disease associations in the gold standard (A) and the
predicted associations (B). The relative ratio between the two distributions for
each ATC class is shown in subfigure (C). ATC classes include: alimentary tract
and metabolism (A), blood and blood forming organs (B), cardiovascular system
(C), dermatologicals (D), genito urinary system and sex hormones (G),
antineoplastic and immunomodulating agents (L), musculo-skeletal system
(M), nervous system (N), respiratory system (R) and sensory organs (S).

Figure 2 Validation scheme for drug repositioning predictions. We identify a score cutoff that yields the best P-value against drug indication originating from single
textual indication source (low confidence) (A). Applying the cutoff, we validate the selected top ranking predictions against indications under test in clinical trials (B) and
the co-occurrence of drug targets and indicated diseases in the same tissues (C).
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As another example, Progesterone is predicted to treat renal
cell cancer, non-papillary (npRCC). Indeed, Medroxypro-
gesterone acetate, a synthetic derivative of progesterone, was
suggested as a possible treatment for treating advanced RCC
(Izumi et al, 2007). Finally, Azathioprine, an immunosuppres-
sive agent, is predicted to treat familial Mediterranean fever,
a hereditary inflammatory disorder. A small study has found it
successful in completely stopping fever attacks in this disorder
(Sayarlioglu et al, 2006).

In addition to repositioning current drugs, we examined the
utility of our method in predicting indications for ‘new’ drugs,
by inferring disease indications for drugs for which we have no
disease indications in our databases. The training was done in
the same manner as in the drug repositioning scheme, and the
same prediction cutoff value was used. Overall, we attained
3108 predictions which we validated using the same tissue
specificity approach described above (Po0.02, see Supple-
mentary Figure S4). The full list of predicted indications for
new drugs is listed in Supplementary Table S3. In the
following, we highlight some of these predictions. The top
five predictions for Paget’s disease of bone are presented in
Supplementary Table S4. We observe that while the two top
ranking drugs are chemically similar to drugs indicated for
Paget’s disease (Risedronate and Alendronate, respectively),
the other three bear only moderate chemical similarity to
known drugs for Paget’s disease (e.g., Salmon Calcitonin)
but share a target with another drug for Paget’s disease
(Tiludronate, targeting tyrosine-protein phosphatase non-
receptor type 1). Another interesting finding is the prediction
of Cycloleucine for the treatment of Alzheimer’s disease (AD).
We found that Cycloleucine inhibits methionine adeno-
syltransferase (MAT) activity, where MAT was abnormally
high in brains from patients with AD (Gomes Trolin et al,
1998). Furthermore, it was found that Cycloleucine is a potent
and selective antagonist of NMDA receptor-mediated
responses (Hershkowitz and Rogawski, 1989), a new promis-
ing class of chemicals for the treatment of AD (Farlow, 2004).
Finally, Hyperforin, St John’s wort extract, is predicted to treat
hyperthermia. Interestingly, St John’s wort extract was found
to have anxiolytic effects on stress-induced hyperthermia in
mice (Grundmann et al, 2006).

Toward personalized medicine—representing
diseases by their gene expression profiles

Having shown that our method succeeds in predicting drug–
disease associations based on phenotypic descriptions of
diseases, we wished to test its application in a personalized
medicine scenario, where a patient may be characterized by
his/her gene expression signature. To this end, we substituted
the disease–disease phenotypic similarity measures with
similarity measures based on disease-specific gene signatures.
This was done to simulate a scenario where we are given a
patient’s expression profile and directly query the database
with this signature to suggest the best fitting drug for this
signature. Using 171 disease signatures from ArrayExpress,
we constructed four disease–disease similarity measures (see
Materials and methods). Using the same five drug–drug
similarities described above and the signature-based

disease–disease similarity measures, we were able to predict
drug–disease associations for 261 drugs and 114 diseases with
an AUC score of 0.92±0.01. The intersection between these
114 diseases and the 313 diseases represented in the
phenotypic similarities includes 47 diseases. Comparing the
AUC scores obtained on these 47 diseases using both types of
similarities, it was encouraging to observe that the signature-
based similarities performed identically to the phenotypic
ones, while combining the two types of similarities only
slightly improved the results (AUC increase of 0.01).

We further used the signatures to provide drug repositioning
predictions. Using the same low-confidence associations
(i.e., drug–disease associations that were retrieved from only
one source of descriptive drug indication) to determine a
cutoff, as described for the phenotypic similarity measure,
we obtained a list of 2103 novel predictions. These predictions
significantly matched low-confidence associations (see
Supplementary Figure S5 for the resulting P-values, best
P-value o1.4�10�101) and associations that are currently in
clinical trials (Po1.4�10�30, see Supplementary Table S5).
They also exhibited significant agreement with the tissue-
specific gene expression information (Po4.1�10�16). Impor-
tantly, the high predictive power of the gene expression
signatures serves as an initial proof-of-concept for the possible
future utility of our method also in this personalized medicine
setting.

Conclusions

We presented PREDICT—a scheme for similarity-based
inference of novel drug indications, capable of handling both
approved and novel drugs. Our method attained high rates of
specificity and sensitivity in cross-validation (AUC¼0.9),
surpassing existing methods. Furthermore, our predictions
attained significant coverage of drug–disease associations
tested in clinical trials and are in good agreement with tissue-
specific expression information on the targets of the corre-
sponding drugs, suggesting that they can be regarded as
valuable leads for further research.

An important property of our method is that it allows easy
integration of additional similarity measures among diseases
and drugs. We exploited this property to broaden the
applicability of our method by incorporating disease-specific
genetic signatures as similarity measures. This will likely to be
of significance in the near future, with the accumulation of
patient-specific genetic information, such as expression
profiles or genotypes, in conjunction with detailed medical
records. Our approach may then serve as a basis for patient
tailored predictions.

Materials and methods

Data sets

Drug targets, drug indications and canonical simplified molecular
input line entry specification (SMILES) (Weininger, 1988) of the drugs
were extracted from DrugBank (Wishart et al, 2008). Additional drug
targets were obtained from the DCDB (Liu et al, 2010), Matador
(Gunther et al, 2008) and KEGG DRUG (Kanehisa and Goto, 2000)
databases. FDA drug labels and additional drug indications were
downloaded from the DailyMed site (http://dailymed.nlm.nih.gov)
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and from http://drugs.com. Drug side effects were obtained from
SIDER (Kuhn et al, 2010). Human PPIs were compiled from
experimental and literature curated data (Xenarios et al, 2002; Rual
et al, 2005; Stelzl et al, 2005; Ewing et al, 2007; Breitkreutz et al, 2008).
Protein sequences and GO annotations (Ashburner et al, 2000) were
downloaded from UniProt (Jain et al, 2009). Clinical trials data were
downloaded from a registry of federally and privately supported
clinical trials (http://clinicaltrials.gov/). Disease signatures were
downloaded from the Gene Expression Atlas of ArrayExpress
(Parkinson et al, 2009).

Assembling drug–disease associations

We assembled associations between diseases listed in the OMIM
(Hamosh et al, 2002) and their indicated drugs, registered in DrugBank
(Wishart et al, 2008). OMIM is a comprehensive disease phenotype
database, encompassing thousands of phenotypic descriptions of
diseases and disorders, including single-gene as well as complex
multiple-gene disorders, allowing for the construction of phenotypic
similarity measures.

In order to handle variations in disease names between OMIM and
drug indication sources, we mapped disease names to UMLS concepts
(Bodenreider, 2004), serving as a standardized terminology. We began
by mapping OMIM disease names to UMLS concepts, exploiting
the integrated curated mapping between OMIM and UMLS concepts
and augmented the mapping by using the MetaMap tool (Aronson,
2001). The MetaMap tool uses symbolic, natural language processing
and computational linguistic techniques to map biomedical text to the
UMLS metathesaurus, and was previously reported to exceed human
mapping (to UMLS concepts) capabilities (Pratt and Yetisgen-Yildiz,
2003). We permitted only disease-related UMLS concept types
(e.g., ‘Disease or Syndrome’, ‘Anatomical Abnormality’ or ‘Neoplastic
Process’) and filtered ambiguous or generic UMLS concepts
(e.g.,‘Infections’ or ‘Syndrome’). We further augmented the MetaMap
mapped UMLS concepts with the rich synonymy relationships
embedded in the UMLS. Supplementary Table S6 lists the mapping
between OMIM disease names and UMLS concepts.

The associations between drugs and UMLS disease concepts were
integrated from four different sources using three different methods:
(i) direct mapping to drugs, exploiting embedded UMLS links between
concepts and drugs; (ii) drug–condition associations downloaded from
http://drugs.com, where conditions were mapped to UMLS concepts
using MetaMap; and (iii) indication-based mapping. For the latter, we
extracted UMLS concepts using the MetaMap tool from textual drug
indications downloaded from FDA package inserts (available in the
DailyMed website, http://dailymed.nlm.nih.gov) and DrugBank. In
addition, we manually added 44 associations occurring in phase IV
(post-marketing) clinical trials.

In order to deal with variations in drug names, we used generic and
synonymous drug names; if no match was found, we used also brand
names retrieved from DrugBank. We removed UMLS concepts
matching hard to treat congenital anomalies such as congenital
malformations, chromosomal abnormalities and inborn errors of
metabolism using the ICD-10. We filtered disease names classified
under the ICD-10 chapter XVII (Congenital malformations, deforma-
tions and chromosomal abnormalities (Q00–Q99)) and metabolic
disorders (E70–E90) by mapping them to UMLS concepts using
MetaMap followed by manual curation of the list, resulting in the
removal of 263 OMIM diseases. Finally, performing a manual curation
of the extracted UMLS concepts from textual description of drug
indications, we observed that they are more prone to false positives.
We thus required that associations extracted from drug indications
appear also in at least one more source.

Similarity measures

We defined and computed five drug–drug similarity measures and
two disease–disease similarity measures. Three of the drug–drug
similarities (3–5) are gene related, based on the drug targets down-
loaded from DrugBank. For drugs associated with more than one
gene, maximal similarities between the associated genes were
averaged (averaging over the contribution of each member in a drug

pair for symmetry). All similarity measures were normalized to be in
the range (0, 1).

We used the following drug–drug similarity measures:
(1) Chemical based: Canonical SMILES (Weininger, 1988) of the

drug molecules were downloaded from DrugBank (Wishart et al,
2008). Hashed fingerprints were computed using the Chemical
Development Kit with default parameters (Steinbeck et al, 2006).
The similarity score between two drugs is computed based on their
fingerprints according to the two-dimensional Tanimoto score
(Tanimoto, 1957), which is equivalent to the Jaccard score (Jaccard,
1908) of their fingerprints, that is, the size of the intersection over the
union when viewing each fingerprint as specifying a set of elements.

(2) Side effect based: Drug side effects were obtained from SIDER
(Kuhn et al, 2010), an online database containing drug side effects
associations extracted from package inserts using text mining
methods. We augmented this list by side effect predictions for drugs
that are not included in SIDER based on their chemical properties
(Atias and Sharan, 2011). Following this latter work, we defined
the similarity between drugs according to the Jaccard score between
either their known side effects or top 10 predicted side effects in case
they are unknown.

(3) Sequence based: Based on a Smith–Waterman sequence
alignment score (Smith et al, 1985) between the corresponding drug-
related genes. Following the normalization suggested in Bleakley and
Yamanishi (2009), we divide the Smith–Waterman score by the
geometric mean of the scores obtained from aligning each sequence
against itself.

(4) Closeness in a PPI network: The distances between each pair of
drug-related genes were calculated on their corresponding proteins
using an all-pairs shortest paths algorithm on the Human PPI network.
Distances were transformed to similarity values using the formula
described in Perlman et al (2011):

Sðp; p0Þ ¼ Ae�bDðp; p 0 Þ ð1Þ

where S(p,p0) is the computed similarity value between two proteins,
D(p,p0) is the shortest path between these proteins in the PPI network
and A, b were chosen according to Perlman et al (2011) to be 0.9� e
and 1, respectively. Self similarity was assigned a value of 1.

(5) GO based: Semantic similarity scores between drug-related
genes were calculated according to Resnik (1999), using the csbl.go R
package (Ovaska et al, 2008) selecting the option to use all three
ontologies.

For diseases, we employed two sets of measures, depending on
whether we wished to exploit phenotypic (1–2) or gene signature
information (3–6). As in drugs similarities, maximal values between
the two lists of associated genes were averaged (taking into account
both sides for symmetry). The disease–disease similarity measures we
used include:

(1) Phenotype based: We used the phenotypic similarity constructed
by van Driel et al (2006). The phenotypic similarity was constructed by
identifying similarity between MeSH terms (Lipscomb, 2000) appear-
ing in the medical description of diseases from the OMIM database
(Hamosh et al, 2002).

(2) Semantic phenotypic similarity: We used the hierarchical
structure of the HPO (Robinson and Mundlos, 2010) together with
the mapping provided by HPO between ontology nodes and OMIM
diseases to construct a semantic similarity score based on Resnik
(1999). Applying this semantic similarity on the HPO data was
previously shown to provide consistent clustering of diseases
(Robinson et al, 2008).

(3) Genetic based: Given genetic signatures of diseases obtained
from gene expression experiments, we used a Jaccard score between
every pair of signatures, taking into account the direction of the
response of each gene. That is, the total number of mutual upregulated
genes and mutual downregulated genes over the unified list of all
genes. Signature genes with inconsistent regulation directionality for
the same disease across various experiments (i.e., registered as both
upregulated and downregulated across various experiments for the
same disease) were filtered, allowing for up to 10% expression
measurement errors.

(4–6) Signature sequence based, signature PPI based and signature
GO based: Similar to the drug–drug sequence-, PPI- and GO-based
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similarity, respectively, we used these similarities between genes
participating in the two signatures.

Combining measures to classification features

The classification features that we used were constructed from
association scores calculated on pairs of drug–drug and disease–dis-
ease similarity measures, resulting in 10 features when using the
phenotypic disease similarities and 20 features when using the
signature-based similarities. For a given similarity measure pair (i.e.,
feature), the score of a given drug–disease association (dr, di) is
calculated by considering the similarity, according to the given pair, of
all known drug–disease associations to this association. The computa-
tion is done as follows: First, for each known associations (dr

0, di
0) we

compute the drug–drug similarity S(dr, dr
0) and the disease–disease

similarity S(di, di
0). Next, we follow the method of Perlman et al (2011)

to combine the two similarities to a single score by computing their
weighted geometric mean. Here, we chose to use a simple (un-
weighted) geometric mean as the resulting AUC score was robust to the
weighting parameter under a wide range (AUC differenceo0.01, data
not shown). Thus:

Scoreðdr ; diÞ ¼ max
dr
0 ; di

0 6¼dr ; di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðdr ; dr

0Þ�Sðdi; di
0Þ

p
ð2Þ

Prediction assessment

We used a 10-fold cross-validation scheme to evaluate the accuracy of
our prediction algorithm. To concentrate on ‘hard’ cases, we hid 10%
of the drugs in each iteration rather than 10% of the associations.
The training set used for the cross-validation included 1933 true drug–
disease associations and a randomly generated set of drug–disease
pairs (not part of the positive set), twice as large as the positive set.
To obtain robust AUC score estimates, we performed 100 independent
cross-validation runs, in each of which a different random partition of
the training set to 10 parts was used; we then averaged the resulting
AUC scores. We note that taking a negative set of the same size as the
positive set, three-fold larger or even 50 times as large had a negilible
effect on the resulting AUC score (o0.01). In order to test the effect of
redundant drugs on prediction accuracy, we created non-redundant
sets of drugs filtered by three different methods: (i) chemical similarity
above a Tanimoto coefficient ranging from 0.85 to 0.4; (ii) normalized
sequence similarity between their targets ranging from 1 to 0.7; and
(iii) target sharing. To this end, we iteratively selected the most similar
pair and randomly removed one of the pair’s drugs. We repeated this
procedure 50 times for each similarity threshold to construct different
non-redundant sets and averaged over the resulting AUC score
(reporting also the AUC standard deviation).

To evaluate the benefit of using a feature selection scheme, we
employed both forward feature selection and backward feature
elimination in a cross-validation setting to select the best-performing
features. We found that the difference between the best feature set
according to each feature selection method and using all the features
was negligible (AUC difference o0.005). We thus retained the entire
set of features.

We used the MATLAB implementation of the logistic regression
classifier (glmfit function with binomial distribution and logit linkage)
for the prediction task.

Comparison with other methods

We implemented the GBA method of Chiang and Butte (2009) and
applied it to the set of drugs and diseases appearing in our data. Since it
cannot be tested using a cross-validation scheme that involves the
removal of entire drugs, we tested it by removing associations instead.

In order to compare our results with the CMap, we obtained disease
gene signatures from the Gene Expression Atlas of ArrayExpress
(Parkinson et al, 2009). We mapped the ArrayExpress disease titles to
UMLS concepts using the same filtering procedures described above.
These concepts were then matched to OMIM disease mapped UMLS

concepts. We queried the online web tool of CMap with the signatures
and followed CMap suggestion to select drugs obtaining negative
enrichment (the signature has opposite effect to the drug expression
profile) and non-null P-value. An ROC curve was obtained by choosing
different P-values as cutoffs.

Hu and Agarwal (2009) suggested a similar method to CMap,
whereby they predicted drug–disease associations based on disease
and drug profiles downloaded from GEO. The authors’ published set of
predictions contain 43 profiles tagged as diseases or infections and 45
profiles tagged as agents. We mapped disease names to OMIM
identifiers using the same procedure used for constructing the gold
standard, resulting in 17 mapped OMIM diseases. Mapping drug
names, we matched generic, synonymous and brand names from
DrugBank followed by additional manual mapping of unmapped
names, obtaining 13 drugs successfully mapped to DrugBank entries.
However, only five diseases and five drugs, connected by 10 predicted
associations (out of the 17 diseases and 13 drugs) intersected our
collection, preventing a proper comparison with this method.

Novel predictions

To predict novel indications for drugs, we used a training set that
included all the known associations and a two-fold larger randomly
generated set of drug–disease pairs that are not known to be associated
(i.e., associations that do not appear in our drug indication gold
standard). We applied the trained classifier to all remaining drug–
disease pairs to form our prediction set. We repeated the analysis
with another randomly picked negative set, distinct from the first one,
to assign prediction scores also to the random negative set that we
initially used for training. Overall, we obtained classification scores for
all 183 676 unknown drug–disease pairs.

We validated the predictions in two ways: (i) by comparing
predicted drug–disease associations with drug–disease associations
being investigated in clinical trials (phases I–IV) and (ii) by testing
their agreement with tissue-specific gene expression information—
that is, by comparing the tissues where the drug targets are expressed
with tissues associated with the diseases predicted to be treated by the
drug. All P-values were computed using a hypergeometric test.

For the clinical trial validation, we downloaded phases I–IV clinical
trials from http://clinicaltrials.gov/ and mapped the disease names
to UMLS concepts using the MetaMap tool and drug names to
DrugBank using the same procedures described above. For the tissue-
related validation, we assembled two drug–tissue association
matrices. The first matrix was constructed based on the tissue-specific
gene expression of Su et al (2004). A drug was declared to affect a
tissue if at least one of its targets is expressed in that tissue over a
certain tunable threshold (see below). The second drug–tissue matrix
was assembled by exploiting the disease–tissue associations
computed by Lage et al (2008). Lage et al scored disease–tissue
associations according to co-mentioning of diseases and tissues
across PubMed (Korbel et al, 2005).Thus, a drug was associated with
a tissue if at least one of its indicated diseases was associated with
that tissue. We manually matched the tissue names specified by
Su et al, to tissue names specified by Lage et al, resulting in 67 common
tissues.

Both the gene expression–tissue associations and the disease–tissue
associations require thresholds to define true associations. In order to
decouple the prediction task from tuning these thresholds, we
randomly split the gold standard set of drugs into two disjoint groups
(two thirds and a third), where we provide predictions only based on
the larger group and use the smaller group for tuning the thresholds.
We used the Wilcoxon rank sum test to test whether the drug targets
are significantly expressed in tissues related to the diseases these drugs
are predicted to treat. By the learned thresholds, genes with an
expression value o380 were declared unassociated with a certain
tissue, interestingly corresponding to the average expression in the
entire data, and diseases with co-occurrence score o18 in a certain
tissue were declared unrelated to that tissue. During learning, the
Wilcoxon rank sum test yielded a P-value of 0.003 on the smaller group
of known drug indications. Using the same tuned thresholds on the
predictions made using the second group, we obtained a significant
P-value of 0.006.
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Supplementary information is available at the Molecular Systems
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