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Abstract

A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have
tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar
diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these
approaches use only local network information in the inference process and are restricted to inferring single gene
associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex
associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate
to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but
also protein complex associations with a disease of interest. We test our method on gene-disease association data,
evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms
extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a
cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes
that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we
apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate
cancer, alzheimer and type 2 diabetes mellitus. PRINCE’s predictions for these diseases highly match the known literature,
suggesting several novel causal genes and protein complexes for further investigation.
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Introduction

Associating genes with diseases is a fundamental challenge in

human health with applications to understanding disease mech-

anisms, diagnosis and therapy. Linkage studies are often used to

infer genomic intervals that are associated with a disease of

interest. Prioritizing genes within these intervals is a formidable

challenge and computational approaches are becoming the

method of choice for such problems.

When one or more genes were already implicated in a given

disease, the prioritization task is often handled by computing the

functional similarity between a given gene and the known disease

genes. Such a similarity can be based on sequence [1], functional

annotation [2], protein-protein interactions [3,4] and more (see [5]

for a comprehensive review of these methods). When no causal

genes are known, the prioritization is done by exploiting the

modular view described above, comparing a candidate gene to

other genes that were implicated in similar diseases.

Approaches in the latter category are often based on a measure of

phenotypic similarity (see, e.g., [6,7]) between the disease of interest

and other diseases for which causal genes are known. This is

motivated by the observation that genes causing the same or similar

diseases often lie close to one another in a protein-protein

interaction network [3,5]. Lage et al. [7] score a candidate protein

with respect to a disease of interest based on the involvement of its

direct network neighbors in a similar disease. The protein and its

high-confidence interactors are also suggested to form a putative

protein complex that is related to the disease. Kohler et al. [8] group

diseases into families. For a given disease, they employ a random

walk from known genes in its family to prioritize candidate genes.

Finally, Wu et al. [9] score a candidate gene g for a certain disease d
based on the correlation between the vector of similarities of d to

diseases with known causal genes, and the vector of closeness in a

protein interaction network of g and those known disease genes. A

recent follow-up work by Wu et al. introduces AlignPI, a method

that exploits known gene-disease associations to align the pheno-

typic similarity network with the human PPI network [10]. The

alignment is used to identify local dense regions of the PPI network

and their associated disease clusters. The authors show the utility of

their framework in causal gene prediction.

Most of these methods focus on prioritizing independent genes;

however, in many cases, mutations at different loci could lead to

the same disease. This genetic heterogeneity may reflect an

underlying molecular mechanism in which the disease-causing

genes form some kind of a functional module (e.g., a multi-protein

complex or a signaling pathway) [7,11]. For example, Fanconi

anemia is a heterogeneous syndrome for which seven of its causing

genes are known to form a protein complex which functions in
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DNA repair [12]. Thus, good prioritizations could potentially lead

to the inference of larger disease-related machineries, revealing

important mechanistic insights on the disease of interest.

While the above methods that integrate protein-protein

interaction (PPI) information with a phenotypic similarity measure

have been shown to outperform previous prioritization approach-

es, they are limited in their application. Specifically, both AlignPI

and the method of Lage et al. consider only small localized regions

of the PPI network and do not capture global network signals. The

methods of Kohler et al. and Wu et al. tackle the prioritization task

only, and do not suggest ways to reveal the protein modules that

are affected in a given disease.

In this work we tackle both challenges. We present a novel

network-based approach for predicting causal genes and protein

complexes that are involved in a disease of interest. The method,

which is called PRINCE (PRIoritizatioN and Complex Elucida-

tion), generalizes the network-based approaches above by both

considering the network signal in a global manner and going

beyond single genes to the modules that are affected in a given

disease. It receives as input a disease-disease similarity measure and

a network of protein-protein interactions. It uses a propagation-

based algorithm, a preliminary version of which appeared in [13], to

infer a strength-of-association scoring function that is smooth over

the network (i.e., adjacent nodes are assigned similar values) and

exploits the prior information on causal genes for the same disease

or similar ones. This process is illustrated in Figure 1. This scoring is

then used in combination with a PPI network to infer protein

complexes that are involved in the given disease.

We apply our method to analyze disease-gene association data

from the Online Mendelian Inheritance in Man (OMIM) [14]

knowledgebase. We test, in a cross-validation setting, the utility of

our approach in prioritizing genes for all diseases with at least one

known gene. We compare the performance of our method to two

state-of-the-art, recently published methods [8,9]. In all of our tests

PRINCE outperforms the other methods by a significant margin.

We then use our method to associate protein complexes with

disease. The complexes that we recover are shown to be highly

coherent in terms of the function, expression and conservation of

their member proteins. According to these measures the collection

of protein complexes we infer significantly outperforms a previous

collection suggested by Lage et al. [7], in which each complex was

limited to a protein and its direct interactors. Our complete set of

predictions of gene- and protein-complex associations is available

in the Supplementary Material (Suppl. Datasets S1, S2, S3).

We demonstrate the power of PRINCE by studying in detail

three multi-factorial diseases for which some causal genes have

been mapped already: Prostate Cancer, Alzheimer Disease and

Non-insulin-dependant Diabetes Mellitus (Type 2). For each

disease we investigate PRINCE’s top-10 predictions when

considering the entire network, and when limiting the search to

genomic intervals that have been associated with the disease. 69%

of these predictions are validated in the literature (using

independent data), leaving 18 suggestions for novel causal genes.

Results/Discussion

We designed a novel gene prioritization function, which

integrates protein-protein interaction (PPI) information with a

Figure 1. Illustration of the PRINCE algorithm. A query disease,
denoted Q, has varying degrees of phenotypic similarity with other
diseases, denoted d1–d5 (marked with maroon lines, where thicker lines
represent higher similarity). Known causal genes for these similar diseases
are connected by dashed blue lines and used as the prior information.
p1–p11 comprise the protein set of a protein-protein interaction network,
where interactions are marked with black lines and thicker lines denote
edges with higher confidence. A scoring function that is smooth over the
network is computed using an iterative network propagation method. At
every iteration of the algorithm, each protein pumps flow to its neighbors
and receives flow from them. Protein colors correspond to the flow they
receive in a specific iteration, the darker the color the higher the flow. (A):
the flow after the first iteration, representing the prior information. Only
proteins p2, p4 & p9, which are directly associated with similar diseases,
have a positive incoming flow. (B): After several iterations, the amount of
flow to each node converges, and the resulting flow, used to score the
proteins, appears to be smooth over the network. p5 emerges as the best
causal gene candidate for disease Q, as it interacts with both p2 and p4.
doi:10.1371/journal.pcbi.1000641.g001

Author Summary

Understanding the genetic background of diseases is
crucial to medical research, with implications in diagnosis,
treatment and drug development. As molecular approach-
es to this challenge are time consuming and costly,
computational approaches offer an efficient alternative.
Such approaches aim at prioritizing genes in a genomic
interval of interest according to their predicted strength-
of-association with a given disease. State-of-the-art prior-
itization problems are based on the observation that
genes causing similar diseases tend to lie close to one
another in a network of protein-protein interactions. Here
we develop a novel prioritization approach that uses the
network data in a global manner and can tie not only
single genes but also whole protein machineries with a
given disease. Our method, PRINCE, is shown to outper-
form previous methods in both the gene prioritization task
and the protein complex task. Applying PRINCE to prostate
cancer, alzheimer’s disease and type 2 diabetes, we are
able to infer new causal genes and related protein
complexes with high confidence.

PRINCE: Associating Genes & Complexes with Disease
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disease similarity metric to score the strength-of-association of

proteins with a disease of interest. The scoring is designed to be

smooth over the PPI network, meaning that adjacent nodes are

assigned with similar values, and to exploit prior information on

the involvement of proteins in the same or similar diseases. As

further detailed in the Methods section, the scoring is done by

simulating an iterative process where proteins for which prior

information exist, pump flow to their network neighbors. In

addition, every protein propagates the flow received in the

previous iteration to its neighbors. The final score of each protein

is determined by the amount of flow it has, which is guaranteed to

converge.

Comparison to other methods
In order to perform a comprehensive comparison of our

approach to extant ones on the same input data, we reimple-

mented two state-of-the-art global approaches for gene prioritiza-

tion introduced earlier: the random-walk based method of [8] and

the Cipher algorithm [9]. We could not reimplement the method

of Lage et al. [7], as it has many parameters that had to be

returned to fit our data, and a code for this method was not readily

available.

To evaluate the performance of the different methods, we used

a leave-one-out cross validation procedure. In each cross-

validation trial, we removed a single disease-protein association

from the data, and each algorithm was evaluated by its success in

reconstructing the hidden association, i.e., by the rank it assigned

to a protein when querying the disease it is associated with (for

further details on the cross-validation process see Methods). To

simulate the case of prioritizing proteins encoded by genes inside a

linkage interval, we followed [8] and artificially constructed for

each protein associated with a disease an interval of size 100

around it. We evaluated the performance of an algorithm in terms

of overall precision versus recall when varying the rank threshold

1ƒkƒ100. Precision is the fraction of true gene-disease associa-

tions that ranked within the top k% in the corresponding trial of

the cross validation procedure. Recall is the fraction of trials in

which the hidden association was recovered as one of the top k%
scoring ones.

We tested our method on all 1,369 diseases with a known causal

gene in the OMIM database. The results of applying the different

methods are depicted in Figure 2. Our algorithm achieved the best

performance, ranking the correct gene as the top-scoring one in

34% of the cases. Random-walk and Cipher methods achieved

inferior results with 28.8% and 24.7% success rates, respectively.

This trend was maintained when performing 2-fold, 5-fold and

10-fold cross validation (Suppl. Figure S1).

Interestingly, even though our score does not directly indicate

the probability of a successful prediction, we noticed a significant

difference in the score distribution of top-1 correct predictions and

top-1 incorrect prediction in the cross validation setting (see Suppl.

Figure S2). Namely, about 75% of our correct top-1 predictions

received a score higher than 0:021, whereas about 75% of our

incorrect top-1 predictions received a score lower than that value.

In the top-1 case, if all of the predictions with a score lower than

0:021 are discarded, PRINCE’s precision is boosted to 61:8%,

whereas the recall decreases to 26:3%.

To further validate the predicted associations, we collected

recently published gene-disease associations that were not part of

our original data set. We obtained 51 new associations for 47

diseases with previously known causal genes, and 10 new

associations for diseases where the causal gene was unknown at

the time of the original data collection. On the first association set,

PRINCE ranked one of the newly associated genes as the top

scoring one in 20 of the 47 diseases (43%). On this set, PRINCE

significantly outperforms CIPHER and compares favorably to

Random Walk (Suppl. Figure S3), providing higher precision and

recall for k§2. On the second association set, PRINCE ranked

the newly associated gene as the top scoring one in two of the ten

diseases, and ranked the true causal gene higher than or equal to

the other methods in four additional cases, thus providing the best

average ranking (Suppl. Table S1).

Inferring novel causal genes for Prostate Cancer,
Alzheimer and Diabetes

Having validated our method, we proceeded to execute our

algorithm on specific multifactorial diseases that are linked to

multiple genomic regions. We selected Prostate Cancer (MIM:

176807), Alzheimer’s disease (MIM: 104300) and Diabetes

Mellitus, type 2 (MIM: 125853) as our three case studies. We

ranked candidate genes both over the entire PPI network, and

over genomic intervals to which the phenotype has been mapped

but no causal gene was identified, and analyzed our top-10

predictions in each case (Suppl. Table S2).

We checked whether our predicted genes were already found to

be involved with their query disease by searching online databases

[14–16] and scientific publications. In all of the three test cases, the

vast majority of top candidate genes over the entire network were

already known to be involved with the disease. These often

included the ‘usual suspects’ for the relevant disease family. For

example, the top predictions for Prostate Cancer included BRCA1,

TP53 and NBN, which are tumor suppressors involved in several

types of cancer. Over half of the top candidates from the

associated intervals were already implicated in the corresponding

diseases. Our ranking provides further support for their involve-

ment in the investigated diseases. In addition, PRINCE yields

several top scoring candidates that were not previously associated

with these diseases, providing viable candidates for further

research.

Going beyond the above three test cases, we applied our

algorithm to all 916 disorders in OMIM with an associated

interval and for which no causal gene is known. The complete set

of results is provided in the Supplementary Material (Suppl.

Dataset S1).

Figure 2. A comparison of prioritization algorithms. Perfor-
mance comparison for PRINCE, Random Walk and CIPHER in a leave-
one-out cross-validation test over 1,369 diseases with a known causal
gene. The figure shows recall versus precision when considering the top
k% proteins for various values of k.
doi:10.1371/journal.pcbi.1000641.g002

PRINCE: Associating Genes & Complexes with Disease
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Associating protein complexes with disease
Often, as alluded to above, mutations in multiple proteins that

form a protein complex or a pathway may lead to the same

disease. Thus, we sought to exploit the prioritization function we

have developed for the complex inference task. To this end,

starting with the set of proteins whose prioritization score is above

a threshold, we look for densely connected subsets that may form a

protein complex. The search is aided by a likelihood-based scoring

of protein complexes that takes into account the reliability of the

PPI interactions and the degrees of the network proteins

(Methods). As we show in Suppl. Figures S4 and S5, this score

correlates well with the coherency of the identified complexes (see

below). Applying this scheme to the OMIM diseases we predicted

566 complexes for diseases in which a causal gene is known and

137 complexes for diseases for which only an associated genomic

interval is known.

To test the biological plausibility of the identified complexes we

evaluated their coherency with respect to several attributes of their

member proteins (Methods). These measures quantify the extent to

which proteins in a complex share the same functional annotation,

have similar expression patterns under multiple conditions, and

have similar phylogenetic profiles, respectively. As a baseline, we

compared these measures with those computed for: (i) a set of

manually annotated protein complexes obtained from the Gene

Ontology (GO) annotation [17]; (ii) a set of protein clusters that are

not necessarily disease-related, obtained by applying the MCL

algorithm [18] to the PPI network; and (iii) a set of predicted disease-

related complexes (Lage et al. [7])(Methods).

To allow a fair comparison between our results and those of

Lage et al., we focused on a subset of the identified complexes of

the same size as that provided by Lage et al. (80 for the case of a

known causal gene, and 59 for the case of a known locus;

Methods). The subset was constructed by computing the likelihood

score of each complex and choosing the highest ranking

complexes.

We found that the complexes predicted using our propagation

approach exhibited higher coherencies than the collection of Lage

et al. with respect to most measures (with the exception of

conservation coherency in the known-locus case). Notably, both

our collection and that of Lage et al. outperformed the PPI-based

collection produced by MCL, demonstrating the importance of

the disease association data in the protein complex inference

process. Moreover, our results were comparable to, and in some

cases better than, the manually curated collection, again testifying

to its high quality. These results are summarized in Table 1.

As a further validation of the complexes inferred by PRINCE,

we searched OMIM for evidence for the possible involvement of

the proteins of a complex in the diseases associated with it.

Specifically, for each complex, we scanned the OMIM entries of

the diseases associated with at least one complex member. For

each such disease, we checked whether any complex member that

is not known to be associated with that disease, is mentioned in its

entry. We found such support for 61% of the predicted complexes,

with an average of 3.6 genes per complex whose involvement was

corroborated in this manner. For comparison purpose, we

permuted the gene names and repeated the analysis on the

resulting random complexes. Only 7% of these random sets were

supported by OMIM, with an average of 1.6 evidences per set.

Three example putative protein complexes and their associated

diseases are shown in Figure 3. The first putative protein complex

(Figure 3(a)) was generated for the query disease Ataxia-

Telangiectasia (MIM:208900), which is associated with the gene

ATM. The putative complex contains 11 proteins which are all

known to be involved in response to DNA damage stimulus.

Except for CHEK2, all of them are directly involved in DNA

repair. All 7 diseases associated to those genes (among them are

Breast Cancer, Li-Fraumeni syndrome and Fanconi Anemia) are

known to be tightly coupled with mutations in DNA-repair related

genes. In this specific case it may be that these proteins do not

form a single complex in-vivo, but rather span a dense region of

the PPI network due to their central role as master regulators

(especially ATM and TP53) of reactions to DNA damage.

The second complex (Figure 3(b)) was generated for the query

disease Hereditary Prostate Cancer type 8 (HPC8, MIM:602759),

for which the causal gene is presently unknown. The complex’s

proteins are associated with several Colorectal Cancer variants

and Endometrial cancer. The genes associated with the Colorectal

and Endometrial cancers are from the MLH (MutL analog) and

PMS families which are involved in DNA mismatch repair. MLH1

and PMS2 form a Heterodimer, which interacts via MLH1 with

EXO1 (Exonuclease1), which also participates in DNA mismatch

repair. The gene coding for EXO1 is located at genetic locus 1q43,

which lies within the region associated with HPC8 (1q42.2–q43).

Moreover, EXO1 was ranked first by PRINCE in this interval. In

this case, the inferred protein complex provides support also to the

prediction that EXO1 is a causal gene for prostate cancer (MIM:

176807) discussed in the previous subsection.

The last complex (Figure 3(c)) was generated for the query

disease Microcephalic Osteodysplatic Primordial Dwarfism

(MOPD-I, MIM:210710), which has no known causal genes.

Two of the predicted complex’s genes are associated with two

hereditary diseases characterized by developmental delay and

physical deformations: ERCC5 with Cockayne Syndrome type A,

and ERCC2 with Cerebrooculofacioskeletal Syndrome 1. The

genes in the complex are all involved in DNA damage repair:

ERCC2, ERCC3, GTF2H1 and GTF2H2 are subunits of the core-

TFIIH basal Transcription Factor, and ERCC5 forms a stable

complex with TFIIH enabling recruitment of the Transcription

Factor for repairing UV damage [19]. ERCC3, one of the

predicted complex’s members, lies within the genetic locus

associated with MOPD-I, and is ranked as the best causal gene

candidate for MOPD-I among the genes at that locus by

PRINCE.

Conclusions
PRINCE is a powerful method for prioritizing genes and

protein complexes for a disease of interest. We have demonstrated

its power both in a cross validation setting and by closely

examining its predictions over complex, polygenic hereditary

Table 1. Coherency comparison of different protein complex
collections.

Functional
coherency (%)

Expression
coherency (%)

Conservation
coherency (%)

Known complexes 88.7 47.4 1.6

PPI-based complexes 48.1 12.4 0.2

Lage et al., gene known 77.5 18.9 3.75

Lage et al., locus known 74.6 18.2 6.8

PRINCE, gene known 95 43.8 17.5

PRINCE, locus known 89 35.6 1.7

Percentages represent the fraction of complexes whose coherency score passes
a certain significance threshold (pv0:05 after correcting for multiple hypothesis
testing). The best result in each column appears in bold.
doi:10.1371/journal.pcbi.1000641.t001

PRINCE: Associating Genes & Complexes with Disease
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Figure 3. Case studies of inferred complexes. Examples of inferred protein complexes and their associated diseases. Circular nodes represent
proteins and their connecting edges represent protein-protein interactions. Diseases are denoted by square nodes, connected by phenotypic
similarity edges. Green dashed edges represent known gene-disease associations; red edges connect a disease to a gene that lies within its associated
genomic interval. The complexes were generated for the query diseases (A) Ataxia-Telangiectasia, (B) Hereditary Prostate Cancer type 8 and (C)
MOPD-I.
doi:10.1371/journal.pcbi.1000641.g003

PRINCE: Associating Genes & Complexes with Disease
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diseases. Key to its successful application is its global network

approach, combined with a novel normalization of protein-protein

interaction weights and disease-disease similarities.

While the results of PRINCE are promising, several of its

limitations should be acknowledged. First, PRINCE relies on prior

phenotypic information, which limits its application to diseases

that are phenotypically similar to diseases with known causal

genes. Second, PRINCE uses known gene-disease associations in

its computation, but other relevant data, such as genes that are

differentially expressed in the disease state, are not taken into

account. Combining such data into the prioritization process, e.g.,

using the method of [20], could increase the prediction power.

Last, PRINCE depends on accurate and comprehensive protein-

protein interaction data. As such data accumulate, the applicabil-

ity and accuracy of PRINCE are expected to grow.

Methods

Computing the prioritization function
The input to a gene prioritization problem consists of a set A of

gene-disease associations; a query disease q; and a protein-protein

interaction network G~(V ,E,w), where V is the set of proteins, E
is the set of interactions and w is a weight function denoting the

reliability of each interaction. The goal is to prioritize all the

proteins in V (that are not known to be associated with q) with

respect to q.

For a node v[V , denote its direct neighborhood in G by N(v).
Let F : V?< represent a prioritization function, i.e., F (v) reflects

the relevance of v to q. Let Y : V?½0,1� represent a prior

knowledge function, which assigns positive values to proteins that

are known to be related to q, and zero otherwise.

Intuitively, we wish to compute a function F that is both smooth

over the network, i.e., adjacent nodes are assigned with similar

values, and also respects the prior knowledge, i.e., nodes for which

prior information exists should have similar values of F and Y .

Formally, we express the requirements on F as a combination of

these two conditions:

F vð Þ~a
X

u[N(v)

F uð Þw’ v,uð Þ
" #

z 1{að ÞY vð Þ ð1Þ

where w’ is a normalized form of w (described below). The

parameter a[(0,1) weighs the relative importance of these

constraints with respect to one another.

The requirements on F can be expressed in linear form as

follows:

F~aW ’Fz(1{a)YuF~(I{aW ’){1(1{a)Y ð2Þ

where W ’ is a jV j|jV j matrix whose values are given by w’, and

F and Y are viewed here as vectors of size jV j. We require the

eigenvalues of W ’ to be in ½{1,1�. Since a[(0,1), the eigenvalues

of (I{aW ’) are positive and, hence, (I{aW ’){1 exists.

While the above linear system can be solved exactly, for large

networks an iterative propagation-based algorithm works faster and

is guaranteed to converge to the system’s solution. Specifically, we

use the algorithm of Zhou et al. [21] which at iteration t computes

Ft : ~aW ’Ft{1z(1{a)Y

where F1 : ~Y . This iterative algorithm can be best understood as

simulating a process where nodes for which prior information exists

pump information to their neighbors. In addition, every node

propagates the information received in the previous iteration to its

neighbors.

We chose to normalize the weight of an edge by the degrees of

its end-points, since the latter relate to the probability of observing

an edge between the same end-points in a random network with

the same node degrees. Formally, define a diagonal matrix D such

that D(i,i) is the sum of row i of W . We set W ’~D{1=2WD{1=2

which yields a symmetric matrix where W ’ij~Wij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D(i,i)D(j,j)

p
.

Note that W ’ is similar to the stochastic matrix D{1W . Since

similar matrices have the same eigenvalues, and since a stochastic

matrix’s eigenvalues are in ½{1,1� (according to the Perron-

Frobenius theorem), the eigenvalues of W ’ are indeed in ½{1,1�.

Incorporating disease similarity information
To determine the prior information vector Y , we used the

similarity metric computed by van Driel et al. [6]. This metric

spans 5,080 diseases in the OMIM [14] knowledgebase and is

based on their medical subject headings description.

van Driel et al. tested the predictive power of different ranges of

similarity values by calculating the correlation between the

similarity of two diseases and the functional relatedness of their

causal genes. According to their analysis, similarity values in the

range ½0,0:3� are not informative, while for similarities in the range

½0:6,1� the associated genes show significant functional similarity.

These empirical findings motivated us to represent our

confidence that two diseases are related using a logistic function

L(x)~
1

1ze(cxzd)
, such that for x[½0,0:3�, L(x)&0, and for

x[½0:6,1�, L(x)&1. This implies that L(0) needs to be close to 0.

We set L(0)~0:0001, which determines d as log (9999), and

tuned the parameter c using cross validation (see Parameter

Tuning Section below).

We used L to compute the prior knowledge Y in the following

way: for a query disease q and a protein v associated with a disease

p, we set Y (v)~L(S(q,p)), where S(q,p) is the similarity between

q and p. If v is associated with several diseases, we choose the

disease p which is the most similar to q.

Experimental setup
We extracted 1599 known disease-protein associations from

GeneCards [15] spanning 1369 diseases and 1043 proteins. We

considered only disease-protein relations that included proteins

from the network and such that the relations are known to be

causative to avoid associations made by circumstantial evidence.

We constructed a human PPI network with 9998 proteins and

41072 interactions that were assembled from three large scale

experiments [22–24] and the Human Protein Reference Database

(HPRD) [25]. The interactions were assigned confidence scores

based on the experimental evidence available for each interaction

using a logistic regression model adapted from [26]. We used the

obtained scores to construct the adjacency matrix W .

To simulate the case of prioritizing proteins encoded by genes

inside a linkage interval, we followed [8] and artificially constructed

for each protein associated with a disease an interval of size 100

around it. We used the protein scores obtained from the output of

the algorithm to prioritize proteins residing in that interval.

To evaluate the performance of the different methods in

predicting gene-disease association, we used a leave-one-out cross

validation procedure. In each cross-validation trial, we removed a

single disease-protein association Sd, pT from the data, and in

addition all other disease-protein associations involving protein p.

An algorithm was evaluated by its success in reconstructing the

hidden association, i.e. by the rank it assigned to protein p when
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querying disease d . The reason we hid all associations of p was to

avoid ‘‘easy’’ cases in which p is also associated with other diseases

that are very similar to d .

Parameter tuning for gene prioritization
Our algorithm has three parameters that should be tuned: (i) c –

the parameter controlling the logistic regression transformation; (ii)

a – controlling the relative importance of prior information in the

association assignment; and (iii) the number of propagation

iterations employed. We tested the effect of these parameters on

the performance of the algorithm in a cross validation setting. The

precision-recall plots for the general disease case are depicted in

Suppl. Figure S6. By this figure, the optimal regression coefficient

is c~{15, implying that similarity values below 0.3 are assigned

with very low probability (v0:002), in accordance with the

analysis of [6]. The algorithm is not sensitive to the actual choice

of a as long as it is above 0.5 (panel b). Finally, the algorithm shows

fast convergence, achieving optimal results after ten iterations only

(panel c).

Implementation of random-walk and Cipher
The random-walk based approach requires disease grouping

information. To allow it to run on the more comprehensive disease

similarity data we had, we generalized the approach to use these

similarities (transformed by the logistic function L) as initial

probabilities for the random walk. The parameter r of the method,

which controls the probability for a restart, as well as our

transformation parameter c, were optimized using cross-validation

(as in the Parameter Tuning Section above). Note that Kohler et

al. suggested a second, diffusion-kernel based approach, which was

shown to be inferior to the random walk one, hence we did not

include it in our comparison. Also note that our propagation-based

method reduces to a random walk under appropriate transforma-

tions of the edge weights and prior information.

The Cipher method [9] is based on computing protein

closeness in a PPI network. Two variants of the algorithm were

suggested: Cipher-DN, which considers only direct neighbors in

the closeness computation, and Cipher-SP, which is based on a

shortest path computation. The former was shown to outperform

the latter, and hence we implemented this variant (Cipher-DN)

only.

Identifying protein complexes
Given a disease and a prioritization score for all the network

proteins, we aim at inferring densely connected protein complexes

that contain high scoring proteins. To this end, we start with the

top 100 scoring proteins within the entire network as complex

seeds (The method is not sensitive to the number of initial top

scoring proteins, and produces similar results for numbers in the

range 50–150; data not shown). We filter all seeds whose score is

below a prespecified threshold t or that were already associated

with the disease in a previously detected complex. To each seed we

iteratively add a neighboring protein with the highest score, as

long as this score is greater than t, and up to 20 proteins per seed

(about twice the average size of known protein complexes; a

similar bound was used in previous works [26,27]). At this stage, in

the case that the query disease has no known gene, but has an

interval associated to it, the computed complex is discarded if it

contains no member from that interval.

After an initial list of putative complexes is formed, a

refinement phase takes place where proteins are removed from

a putative complex to ensure that not only is the suggested

complex disease-related but also its member proteins are densely

interacting and, thus, constitute a good candidate for a complex.

To this end, we use the following likelihood-based scoring scheme

taken from [28]:

L(C)~
X

(u,v)[E(C)

log
b

p(u,v)
z

X
(u,v) =[E(C)

log
1{b

1{p(u,v)

where C is a putative complex and E(C) are its edges. Briefly, the

score is the log likelihood ratio between a protein complex model

(assuming that every two proteins in a complex should interact with

a high probability b, independently of all other pairs) and a random

set model (where connections in the sub-network arise at random,

with a probability proportional to the proteins’ degrees). This score

was further enhanced, as in [28] to accommodate for information

on the reliability of interactions. In brief, the interaction status of

every protein pair was treated as a noisy observation, and its

reliability was combined into the likelihood score. The b parameter

of the scoring scheme was set to 0.9, although results were not

sensitive to the actual parameter used as shown in Suppl. Table S3.

At each refinement step, we search for a protein whose removal

increases the score the most while maintaining the connectivity of

the candidate complex. The refinement is done until no score

increase is possible (while maintaining connectivity). We filter

candidate complexes with less than four proteins (to ensure

statistical significance) or with w50% overlap with higher-scoring

candidates.

For identifying complexes we use the same a and c values we

used for prioritization, which were tuned using cross-validation.

An additional parameter, t, is used as a threshold that defines the

minimal score (computed using propagation) needed for a protein

to be included in any identified complex. This parameter was

tuned separately for the case in which a causal gene for the query

disease is known and for the case that no causal gene is unknown.

The tuning aimed to obtain a collection of complexes whose

average size is similar to that of the manually curated GO

complexes (8.85 after filtering complexes with sizev4 or

sizew20). The resulting value of t is 0.1 (average size of 8.3) for

the case where a causal gene is known, and 0.015 (average size of

8.5) for the case where no causal gene is known.

Evaluation of protein complex predictions
We compared the protein complexes inferred by PRINCE to

three other collections:

(a) A gold standard set of 70 manually annotated protein

complexes retrieved from GO [17], by considering the gene

product associations of all terms that descended from the

‘Protein Complex’ term (GO:0043234).

(b) A collection of 160 clusters of proteins, obtained by applying

Markov Clustering [18] to the PPI network and sampling

160 of its clusters while maintaining the same size

distribution as the 80 protein complexes inferred by

PRINCE for the known causal gene case.

(c) The collection of complexes published by Lage et al [7]. We

filtered this collection by removing complexes of sizev4 or

sizew20. We further filtered overlapping complexes as

described above. The filtering resulted in 80 complexes for

the known causal gene case, and 59 for diseases for which no

causal gene is known.

Following [29], we evaluated the different collections using

three coherency measures:

Functional coherency. The percent of functionally coherent

complexes based on the GO process annotation. For a given

(i)

(ii)

(iii)
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complex C and a given term t, let n(t) be the number of proteins

in C that are annotated with t (or with a more specific term). Let

p(t) be the hypergeometric probability for observing n(t) or more

proteins annotated with term t in a protein subset of size jCj.
Having found a term t0 with minimal probability p(t0), the score

was set to the empirical p-value of the enrichment under term t0,

computed by comparing p(t0) with the analogous probabilities for

10,000 random protein sets of size jCj. These latter p-values were

corrected for multiple complex testing using the False Discovery

Rate (FDR) procedure [30].
Expression coherency. The percent of expression coherent

complexes. Each protein complexes was scored by the mean

pairwise Pearson correlation of gene expression profiles [31]

among all its members. The statistical significance of the

expression coherency score was computed by comparing it to

similar scores obtained for randomly drawn protein sets of the

same size. These p-values were further FDR-corrected for multiple

complex testing.
Conservation coherency. The percent of conservation

coherent complexes. Phylogenetic profiles (i.e., presence/absence

patterns) of human genes in a set of 18 eukaryotic genomes were

obtained from NCBI’s HomoloGene database [32]. The

conservation coherency of a cluster was defined as the mean

pairwise Jaccard similarity among the phylogenetic profiles of the

cluster’s members. These scores were compared to those obtained

for randomly drawn protein sets of the same size and FDR-

corrected for multiple complex testing.

In all three cases, a complex was considered to be significantly

coherent if its corrected p-value was below a threshold of 0.05.

Hardware, performance and availability
The computational experiments were executed on a single core

of an AMD Opteron(tm) 2382 processor 2.6 Ghz. The average

runtime for completing the cross validation iterations or inferring

protein complexes was 1–2 minutes. The code and data sets

described herein are available upon request.

Supporting Information

Figure S1 K-fold cross validation comparison of PRINCE,

Random Walk and CIPHER. (a) 2-fold (b) 5-fold (c) 10-fold.

Found at: doi:10.1371/journal.pcbi.1000641.s001 (0.14 MB JPG)

Figure S2 Log-score distribution for genes (a) correctly and (b)

in-correctly ranked 1st by PRINCE during Leave-One-Out cross

validation trials.

Found at: doi:10.1371/journal.pcbi.1000641.s002 (0.01 MB PNG)

Figure S3 Performance comparison on 47 diseases with a known

causal gene, for which another causal gene was recently

discovered.

Found at: doi:10.1371/journal.pcbi.1000641.s003 (0.02 MB PNG)

Figure S4 Biological plausability scores for complexes inferred

from diseases with a known causal gene.

Found at: doi:10.1371/journal.pcbi.1000641.s004 (0.06 MB JPG)

Figure S5 Biological plausability scores for complexes inferred

from diseases with an associated genomic region and an unknown

causal gene.

Found at: doi:10.1371/journal.pcbi.1000641.s005 (0.06 MB JPG)

Figure S6 PRINCE algorithm parameters fine-tuning summary:

(a) Performance comparison for various logistic regression

parameters; (b) Performance comparison with varying iterations

count; (c) Performance comparison for various values of alpha.

Found at: doi:10.1371/journal.pcbi.1000641.s006 (0.16 MB JPG)

Table S1 Comparison of the ranking given by PRINCE,

Random Walk and CIPHER to recently discovered causal genes

for ten diseases for which no causal gene was known at the

inception of this research.

Found at: doi:10.1371/journal.pcbi.1000641.s007 (0.02 MB PDF)

Table S2 PRINCE’s causal gene predictions for Prostate

Cancer, Alzheimer’s Disease and type 2 Diabetes.

Found at: doi:10.1371/journal.pcbi.1000641.s008 (0.04 MB XLS)

Table S3 Comparing the effect of different values of beta on the

inferred complexes, in terms of functional enrichment, expression

coherency and conservation coherency.

Found at: doi:10.1371/journal.pcbi.1000641.s009 (0.02 MB PDF)

Dataset S1 Known loci disorders. PRINCE’s causal gene

predictions for 916 OMIM disorders with an associated interval

and without a known causal gene.

Found at: doi:10.1371/journal.pcbi.1000641.s010 (0.94 MB

TXT)

Dataset S2 Known gene complexes. 80 Protein Complexes

inferred for disorders with a known causal gene.

Found at: doi:10.1371/journal.pcbi.1000641.s011 (3 KB TXT)

Dataset S3 Known loci complexes. 59 Protein Complexes

inferred for disorders with an unknown causal gene and an

associated genomic interval.

Found at: doi:10.1371/journal.pcbi.1000641.s012 (2 KB TXT)
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