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ABSTRACT

Summary: PRINCIPLE is a Java application implemented as a
Cytoscape plug-in, based on a previously published algorithm,
PRINCE. Given a query disease, it prioritizes disease-related genes
based on their closeness in a protein–protein interaction network to
genes causing phenotypically similar disorders to the query disease.
Availability: Implemented in Java, PRINCIPLE runs over
Cytoscape 2.7 or newer versions. Binaries, default input files
and documentation are freely available at http://www.cs.tau.ac.il/
~bnet/software/PrincePlugin/.
Contact: roded@tau.ac.il; assafgot@tau.ac.il
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1 INTRODUCTION
Associating diseases with their causal genes is a fundamental
challenge in medical research with applications to diagnosis and
therapy. Recently, we introduced a novel method for prioritizing
candidate disease-causing genes, named PRINCE (PRIoritizatioN
and Complex Elucidation) (Vanunu et al., 2010). PRINCE is
motivated by the observation that genes causing similar diseases
often lie close to one another in a protein–protein interaction (PPI)
network (Oti and Brunner, 2007; Oti et al., 2006). Given a query
disease, PRINCE: (i) identifies a set of phenotypically similar
diseases (van Driel et al., 2006); (ii) retrieves the known causal
genes of these diseases to form a ranked prior vector Y based on
their similarity to the query and (iii) propagates the scores of the
prior set of genes over a human PPI network to provide association
scores for all genes. The final score assigned to each protein in
the network combines the prior information with a network-based
component. The latter ensures that the resulting scores are smooth
over the network. Formally, the score F(v) of a node v with a set of
network neighbors N(v) is:

F (v )=α

⎡
⎣ ∑

u∈N (v )

F (u )w (v,u )

⎤
⎦+(1−α)Y (v )

Where w is a normalized matrix representing the weighted PPI
network and Y (v) is the prior weight of the node. Here α is parameter
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weighting the relative importance of the prior-based versus the
network-based components of the score.

PRINCE leverages on a comprehensive set of weighted PPIs
compiled from multiple sources (Vanunu et al., 2010), the disease–
disease similarity measures computed by van Driel et al. (2006), and
on the disease–gene associations presented in the Online Mendelian
Inheritance in Man (OMIM) knowledgebase (Hamosh et al., 2002).

Here we introduce PRINCIPLE (PRINCe ImPLEmentation)—
a Cytoscape plug-in (Shannon et al., 2003) implementation of the
PRINCE algorithm. Given a query disease, it provides a list of top
ranking genes associated with it and an additional visualization of
the subnetworks formed by these top ranking genes and their direct
interacting neighbors.

2 FUNCTIONALITY AND IMPLEMENTATION
The PRINCIPLE plug-in works in a client–server architecture,
where a prior set of causal genes is propagated over the human
PPI network, compiled from Breitkreutz et al. (2008); Ewing et al.
(2007); Rual et al. (2005); Stelzl et al. (2005); Xenarios et al. (2002),
residing on a designated server.

The PRINCIPLE plug-in includes three sections, represented
in three tabs: (i) specifying the input files; (ii) specifying three
tunable parameters that govern the algorithm scores and output
size (see below); and (iii) specifying an optional output file listing
the resulting network nodes. In the input files section, the query
disease is selected from a sorted list of OMIM diseases (either by
name or MIM code). A textual search for the query disease is also
available. Three additional inputs are required: (i) OMIM phenotypic
disease–disease similarity; (ii) a map file between MIM codes and
disease names; and (iii) associations between diseases (MIM codes)
and genes (Entrez IDs). While any user defined disease–disease
similarities are applicable, the binaries page provides default choices
for all. The default input files are described in the documentation
page and include: (i) the phenotypic disease–disease similarity of
Van-driel et al. (2006), which was also used in Vanunu et al. (2010);
(ii) a disease names file corresponding to the similarity file entries
(supplied by default with the plug-in); and (iii) a default set of
disease–gene associations, extracted from GeneCards (Rebhan et al.,
1998), used also by Vanunu et al. (2010).

The PRINCIPLE plug-in provides three tunable parameters:
(i) the weighting parameter α∈[0,1] (see Formula 1, with a default
value of α=0.9); (ii) k ∈ (0,100], the number of top ranked genes
to return (default 10); and (iii) t ∈ (0,20], the number of iterations
performed by the algorithm. The score F(v) can be analytically
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Fig. 1. An example of the PRINCIPLE output subnetwork for NIDDM,
displaying an extract of the top 10 scoring genes and their immediate
neighbors. Nodes are colored according to their association scores, with
darker colors denoting higher scores.

Table 1. Top 10 associated genes and possible references to Diabetes

Rank Gene Supporting
reference

Rank Gene Supporting
reference

1 PDX1 OMIM 6 PLN Bergha.A
et al.
(2006)

2 MAPK8IP1 OMIM 7 BSCL2 Chen et al.
(2009)

3 PPP1R3A OMIM 8 HNF4A Moller et al.
(1997)

4 HNF1A Winckler
et al.
(2005)

9 NEUROD1 Liu et al.
(2007)

5 MAFA Kaneto et al.
(2008)

10 PCIF1 Claiborn et al.

solved, but for efficiency we compute it using an iterative procedure
(Zhou et al., 2004). Typically, the algorithm shows fast convergence,
achieving optimal results after 10 iterations (Vanunu et al., 2010).

The results are displayed as the k top priority genes and their
direct PPI neighbors, using a color scale signifying relative scores.
An optional output file can be specified, listing the gene scores.

3 USAGE EXAMPLE
Figure 1 shows a typical output for querying Diabetes mellitus,
non-insulin-dependent (NIDDM) (MIM 125853) with the default
parameters (α=0.9, k =10 and t =10). The red circles are the
top scoring proteins and their immediate PPI neighbors. These top
10 genes are listed in Table 1 along with references to articles
studying their connection to Diabetes mellitus. Right clicking on a

node enables retrieving additional information on the protein from
multiple data sources.
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