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Abstract. Recent technological advances have enabled high-throughput 
measurements of protein-protein interactions in the cell, producing protein 
interaction networks for various species at an ever increasing pace.  However, 
common technologies like yeast two-hybrid can experience high rates of false 
positive detection. To combat these errors, many methods have been developed 
which associate confidence scores with each interaction.  Here we perform the 
first comparative analysis and performance assessment among these different 
methods using the fact that interacting proteins have similar biological 
attributes such as function, expression, and evolutionary conservation. We also 
introduce a new measure, the signal to noise ratio of protein complexes 
embedded in each network, to assess the quality of the different methods.  We 
observe that utilizing any probability scheme is always more beneficial than 
assuming all observed interactions to be real.  Also, schemes that assign 
probabilities to individual interactions generally perform better than those 
assessing the reliability of a set of interactions obtained from an experiment or a 
database. 

1   Introduction 

Systematic elucidation of protein-protein interaction networks will be essential for 
understanding how different behaviors and protein functions are integrated within the 
cell.  Recently, the advent of high-throughput experimental techniques like yeast two-
hybrid [1] assays and mass spectrometry [2] has lead to the discovery of large-scale 
protein interaction networks in different species, including S. cerevisiae [2-5], D. 
melanogaster [6], C. elegans [7] and H. sapiens [8, 9].  Unfortunately, these large-
scale data sets have so far been generally incomplete and associated with a significant 
number of false-positive interactions [10].  However, recent years have also seen an 
increase in the accumulation of other sources of biological data such as whole genome 
sequence, mRNA expression, protein expression and functional annotation.  This is 
particularly advantageous as some of these data sets can be utilized to reinforce true 
(physical) protein interactions while downgrading others.  For instance, true protein 
interactions have been shown to have high mRNA expression correlation for the 
proteins involved [11]. 

As a result, many bioinformatics approaches have been developed to unearth true 
protein interactions which can be mainly divided into two categories: (1) methods that 
assign reliability measurements to previously observed interactions; and (2) methods 
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that predict interactions ab initio.  For category (1), Deane et al. [12] introduced one 
of the first methods to tackle the problem of assigning reliabilities to interactions 
using similarity in mRNA expression profiles.  Subsequently, Bader et al. [13] and 
Deng et al. [14] used additional features of interacting proteins, including functional 
similarity and high network clustering [15], to assign confidence scores to protein 
interactions.  For category (2), Marcotte et al. [16], von Mering et al. [17] and Jansen 
et al. [18] were among the first to predict new protein interactions by incorporating a 
combination of different features like high mRNA expression correlation, functional 
similarity, co-essentiality, and co-evolution.  These schemes calculate a log-likelihood 
score for each interaction. 

Here, we perform the first benchmarking analysis to compare the different 
interaction probability assignment schemes versus one another.  We limit ourselves to 
methods that assign probabilities to interactions as opposed to those that compute a 
log-likelihood ratio.  We also assess each of the methods against a “null hypothesis”, 
a uniform scheme which considers the same probability for all interactions.  To 
compare the quantitative accuracy of the methods, we examine the correlations 
between the probability estimations and different biological attributes such as function 
and expression. As a further comparison criterion, we introduce and apply the signal 
processing concept of ‘Signal to Noise ratio’ (SNR) to evaluate the significance of 
protein complexes identified in the network based on the different schemes  The 
discovery of these complexes depends on the connectivity of the interaction network 
which is determined by the underlying interaction probability scheme [19].   Finally, 
we compare the different weighting schemes based on previous observations 
regarding the preference of interacting proteins to have similar conservation 
characteristics [20, 21]. 

2   Interaction Confidence Assignment Schemes 

Although large-scale protein interaction networks are being generated for a number of 
species, S. cerevisiae (yeast) is perhaps the best studied among them and is associated 
with the largest variety and number of large-scale data.  Hence, most of the interaction 
probability schemes have been developed specifically for the yeast protein interaction 
network.  The yeast network was also the focus of our analysis in which we 
considered interaction probability scores by Bader et al. [13], Deane et al. [12], Deng 
et al. [14], Sharan et al. [19] and Qi et al. [22].  Bader et al., Sharan et al. and Qi et al. 
assigned specific probabilities to every interaction, while Deane et al. and Deng et al. 
grouped the interactions into high/medium/low confidence groups.  All of the above 
schemes estimated the predicted reliabilities of each interaction based on a gold 
standard set of positive and negative interaction data. Specifically, each weighting 
scheme defined gold standard sets based on various biological observations.  

2.1   Bader et al. (BL / BH) 

As a gold standard positive training data set, Bader et al. [13] used interactions 
determined by co-immunoprecipitation (co-IP), in which the proteins were also one or 
two links apart in the yeast two-hybrid (Y2H) network.  The negative training data set 
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was selected from interactions reported either by co-IP or Y2H, but whose distance 
(after excluding the interaction) was larger than the median distance in Y2H or co-IP 
respectively.  Using these training data, they constructed a logistic regression model 
which computes the probability of each interaction based on explanatory variables 
including data source, number of interacting partners, and other topological features like 
network clustering.  We refer to this scheme as Bader et al. (low) or BL in our analysis.   

Initially, the authors used measures based on Gene Ontology (GO) [24] 
annotations, co-expression, and presence of genetic interactions as measures to 
validate their data. However, they also combined these measurements into the 
probability score to bolster their confidence of true interactions.  We consider these 
new confidence scores in our analysis as Bader et al. (high) or BH. 

2.2   Deane et al. (DE) 

Deane et al. [12] estimated the reliability of protein-protein interactions using the 
expression profiles of the interacting partners.  Protein interactions observed in small-
scale experiments and also curated in the Database of Interacting Proteins (DIP) [25] 
were considered as the gold standard positive interactions.  As a gold standard 
negative, they randomly picked protein pairs from the yeast proteome that were not 
reported in DIP.  The authors used this information to compute the reliabilities of 
groups of interactions (obtained from an experiment or a database).  Higher reliabilities 
were assigned to groups whose combined expression profile was closer to the gold 
standard positive than the gold standard negative interactions.  Specifically, reliabilities 
were assigned to the whole DIP database, the set of all protein interactions generated in 
any high-throughput genome screen, and protein interactions generated by Ito et al. [4] 

2.3   Deng et al. (DG) 

Deng et al. [14] estimated the reliabilities of different interaction data sources in a 
manner similar to Deane et al. [12].  They separately considered experiments that 
report pair-wise interactions like Y2H and those that report complex membership like 
mass spectrometry.  Curated pair-wise interactions from the literature and 
membership in protein complexes from MIPS [23] were used as the gold standard 
positive set in each case.  Randomly chosen protein pairs formed the gold standard 
negative data set.  Reliabilities for each data source were computed using a maximum 
likelihood scheme based on the expression profiles of each data set.  The authors 
evaluated reliabilities for Y2H data sources like Uetz et al. [5] and Ito et al. [4], and 
protein complex data sources like Tandem Affinity Purification (TAP) [2] and high-
throughput mass spectrometry (HMS) [3].  In addition to assigning reliabilities to 
each dataset, the authors also provided a conditional probability scheme to compute 
probabilities for each interaction.  We use the probabilities generated by this method 
for our comparative analysis. 

2.4   Sharan et al. (SH) 

Recently, we have also implemented an interaction probability assignment scheme 
[19] similar to the one  proposed by Bader et al.  The scheme assigned probabilities to 
interactions using a logistic regression model based on mRNA expression, interaction 
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clustering and number of times an interaction was observed in independent 
experiments.  Here we use a modification of this scheme, assigning probabilities to 
interactions based only on experimental evidence.  Specifically, interactions with at 
least two literature references or those that had a distance  2 in both the co-IP and 
Y2H networks were defined as the gold standard positives.  Conversely, proteins at a 
distance > 4 in the entire network (after removing the interaction in question) were 
defined as the gold standard negatives.  Binary variables were used to denote whether 
the interaction was reported in a co-IP data set, Y2H data set, a small-scale 
experiment or a large–scale experiment.  Interaction probabilities were then estimated 
using logistic regression on the predictor parameters as in Bader et al.  

2.5   Qi et al. (QI) 

In this study, the authors use the interactions which were observed in small-scale 
experiments and reported by either DIP or Bader et al. as their gold standard positive 
training data [22].  Randomly picked protein pairs were used as the gold standard 
negative training data.  The method incorporates direct evidence such as the type of 
experiment used to generate the data (mass spectrometry, yeast two-hybrid, etc.) and 
indirect evidence like gene expression, existence of synthetic lethal interactions, and 
domain-domain interactions to construct a random forest (a collection of decision trees).  
The resulting forest is then used to calculate the probability that two proteins interact. 

2.6   Average (AVG) 

We computed a new weighting scheme based on the average probability assigned by 
all above schemes. This averaged weighting scheme was also used in our comparison. 

2.7   Equal Probabilities (EQ) 

Finally, we also considered the case in which all observed interactions were 
considered to be equally true. We refer to this case as Equal in the analysis. 

A summary of all attributes used as input in the different probability schemes is 
provided in Table 1. 

Table 1. Summary of input attributes for the different probability schemes. GO: Gene 
Ontology; DDI: Domain-domain Interactions; Nbrhd: Neighborhood; SL: Synthetic Lethal. 

Prob. 
Scheme 

Experiment 
Type 

 

Protein-
DNA 

binding 

Gene / 
Protein 

Expression 

Interaction 
Clustering 

SL GO DDI 

Gene 
Fusion / 

Co-occur 
/ Nbrhd. 

BL *   *     
BH *  * * * *   
DE   *      
DG *  *      
SH *        
QI * * * * * * * * 
EQ         
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3   Assessment of Interaction Schemes 

As the probability schemes were previously computed for different subsets of yeast 
PPIs, we first compiled a set of 11,883 interactions common to all schemes. Five 
measures that have been shown to be associated with true protein interactions were 
used to assess the accuracy of each interaction probability scheme. In some cases, one 
of the measures used to assess a schemes’ performance was already used as an input 
in assigning the probabilities. Although this creates some amount of circularity, the 
measure remains useful for gauging the performance of the remaining probability 
schemes. For each of the six measures, we evaluated two ways to estimate the level of 
association: Spearman correlation, and mutual information. The Equal probability 
scheme results in a spearman correlation and mutual information values of 0, by 
default. Consequently, we also evaluate the weighted average for each probability 

scheme. The weighted average is given by  
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*
 , where pi is the 

probability of a given interaction and mi is the value of one of the five measures for 
the interaction.  

3.1   Global Properties of Interaction Probability Schemes 

As a first measure, we compared global statistics such as the average and median 
probability assigned by each scheme and the number of interactions p  0.5 (Table 2).  
We also computed Spearman correlations among the different probability schemes to 
measure their level of inter-dependency (Table 3).  The maximum correlation was 
seen between BL and BH, as might be expected as both schemes were reported in the 
same study and BH was derived from BL.  In addition, we also evaluated the 
spearman correlation between the measures used to assess accuracy of the probability 
schemes (see Appendix). 

Table 2. Comparison of Global properties of different probability assignment schemes 

 Prob. Scheme Average Probability Median Probability 
# Intr with 
prob  0.5 

BL 0.51 0.547 6,886 

BH 0.477 0.496 5,896 

DE 0.717 1 7,531 

DG 0.39 0.25 4,799 

SH 0.38 0.421 1,121 

QI 0.97 0.99 11,658 

AVG 0.574 0.671 7,866 

EQ 0.99 0.99 11,883 
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Table 3. Correlation of different probability schemes. The p-values for all the correlation 
measurements were very significant (p-value  2e-16). 

 BH DE DG SH QI 

BL 0.923 0.655 0.633 0.626 0.371 

 BH 0.672 0.644 0.665 0.416 

  DE 0.718 0.847 0.238 

   DG 0.68 0.466 

    SH 0.274 

3.2   Gene Ontology (GO) Similarity 

As a second measure, we adopted the common notion that two interacting proteins are 
frequently involved in the same process and hence should have similar GO 
assignments [24].  The Gene Ontology terms are represented using a directed acyclic 
graph data structure in which an edge from term ‘a’ to term ‘b’ indicates that term ‘b’ 
is either a more specific functional type than term ‘a’, or is a part of term ‘a’.  As a 
result, terms that come deeper in the graph are more specific.  Moreover, specific 
terms also have less number of proteins assigned to them.  Hence, we evaluated the 
size (number of proteins assigned to the term) of the deepest common GO term 
assignment (deepest common ancestor) shared between a pair of proteins that interact.  
The gene ontology annotations for yeast proteins were obtained from the July 5th, 
2005 download from Saccharomyces Genome Database (SGD) [26] and the 
association between terms were obtained from the Gene Ontology consortium 
(http://www.geneontology.org/).   

Table 4. Association of interaction probabilities with the size of the deepest common ancestor 
in the Gene Ontology assignments and mRNA expression correlation. Shaded cells indicate 
schemes which used similar GO annotation or mRNA expression profiles as an input to 
assigning interaction reliability. p-values for all the correlation measurements were very 
significant (p-value  2e-16).  SC: Spearman Correlation; MI: Mutual Inforamtion; WA: 
Weighted Average. 

 
GO Annotation Expression Correlation Prob. 

Scheme SC MI WA SC MI WA 

BL -0.42 0.16 5.85 0.185 0.0531 0.494 

BH -0.5 0.22 5.68 0.223 0.0626 0.503 

DE -0.385 0.07 5.91 0.016 0 0.481 

DG -0.49 0.17 5.62 0.185 0.041 0.511 

SH -0.47 0.157 5.71 0.05 0.012 0.492 

QI -0.444 0.013 6.34 0.337 0 0.481 

AVG -0.545 0.26 5.93 0.205 0.08 0.585 

EQ — — 6.32 — — 0.482 
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Table 4 shows the relationship between the size of the deepest common GO term 
and interaction probabilities for each scheme.  The probabilities generated by BH 
have relatively high correlation with the GO term assignments.  This result is not 
surprising since gene ontology assignments are taken as input to probability 
calculation in this scheme.  Although QI has a relatively high Spearman correlation 
coefficient, its weighted average and mutual information values are the worst. 

3.3   Presence of Conserved Interaction in Other Species (Interologs) 

Presence of conserved interactions across species is believed to be associated with 
biologically meaningful interactions [27].  However, since most species’ interaction 
networks are still incomplete, it is important not to skew the results of this analysis 
due to false-negatives.  As our benchmark, we used yeast protein interactions that 
were conserved with measured C. elegans (worm) and D. melanogaster (fly) 
interactions obtained from the Database of Interacting Proteins (DIP).  An interaction 
was considered conserved if the orthologs of the interacting proteins were also 
interacting.  Putative orthologs were assigned based on sequence similarity computed 
using BLAST [28].  We evaluated the weighted average between the probability 
assignment for each yeast interaction and the number of conserved interactions across 
worm and fly (0, 1, or 2) and repeated the analysis for different BLAST E-value 
thresholds for homology assignments (Fig. 1). At higher E-value thresholds we 
observe that SH has the highest weighted average but has similar values to BL and 
BH at lower thresholds. QI has similar weighted averages to Equal, and both 
consistently have lower values than the remaining schemes. 

 

Fig. 1. Correlation of number of conserved interactions and probability assignments to 
interactions 
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3.4   Expression Correlation 

Yeast expression data for ~790 conditions were obtained from the Stanford 
Microarray Database (SMD) [29].  For every pair of interacting proteins, we 
computed the Pearson correlation coefficient of expression.  We then calculated the 
Spearman correlation, mutual information and weighted average between the 
expression correlation coefficient of interacting proteins and their corresponding 
probability assignments in the different schemes (see Table 4).  We found significant 
association between expression correlations and probabilities in the case of BH, BL, 
QI and DG. This result is expected as these schemes, with the exception of BL, utilize 
expression similarity for interaction probability calculation. Surprisingly, DE 
probabilities showed very little correlation with expression, even though mRNA 
expression profiles were used as input in the prediction process. On the other hand, 
BL had a higher Spearman correlation and mutual information than SH, though they 
had very similar weighted averages and SH did not utilize expression data in the 
training phase. 

3.5   Signals to Noise Ratio of Protein Complexes 

Most cellular processes involve proteins that act together in pathways or complexes.  
Recently, several methods [19, 30-33] have been developed to ascertain the 
biologically meaningful complexes encoded within protein interaction networks.  
These methods search for complexes modeled as dense protein interaction sub-
networks.  Here, we applied a previously published algorithm [19] to discover 
complexes in the yeast network. We evaluated the resulting complexes  using signal 
to noise ratio [34].  Signal to noise ratio (SNR) is a standard measure used in 
information theory and signal processing to assess data quality.   

To compute SNR, a search for dense interaction complexes is initiated from each 
node (protein) and the highest scoring complex from each is reported.  This yields a 
distribution of complex scores over all nodes in the network.  A score distribution is 
also generated for 100 randomized networks which have identical degree distribution 
to the original network [35].  The randomized versions of interaction networks were 
generated by randomly reassigning the interactions, while maintaining the number of 
interactions per protein.  SNR ratio is computed using these original and random score 
distributions (representing signal and noise, respectively) according to the standard 
formula [36] using the root-mean-square (rms): 

( ) ∑
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)scorescomplex  random(rms

)scorescomplex  original(rms
logSNR  

As the SNR is independent of the number of complexes reported, we can 
directly compare its value across the different probability schemes (Table 5).  
Here, DE and EQ probabilities have low SNR, while SH and DG have the highest 
SNR values. 

 



 Comparison of Protein-Protein Interaction Confidence Assignment Schemes 47 

Table 5. Associations of conservation rate coherency scores and SNR with interaction 
probabilities.  SC: Spearman Correlation.  Note that conservation scores based on weighted 
averages and mutual information were omited as they were similar across the different 
weighting schemes. 

Prob. Scheme 
Conservation Coherency

 (SC) 
SNR 

BL -0.09 0.734 

BH -0.104 0.735 

DE -0.113 0.537 

DG -0.141 0.95 

SH -0.126 0.742 

QI -0.12 0.72 

AVG -0.132 0.73 

EQ — 0.657 

Table 6. Ranking of the probability schemes in the five measures used for assessing their 
quality. Schemes with rank 1 perform the best.  SC: Spearman Correlation; WA: Weighted 
Average; SNR: Signal to Noise Ratio.  The shaded boxes indicate the measures used as input 
for the corresponsing probability scheme. 

Probability 
Scheme 

Gene Ontology 
(SC/WA) 

Interaction 
Conservation 

(WA) 

Gene 
Expression
(SC/WA) 

SNR
Conservation 

Coherency 
(SC) 

Average 
Rank 

Bader et al. 
(low) 

6 / 4 3 4 / 4 4 7 4.14 

Bader et al. 
(high) 

2 / 2 2 2 / 3 3 6 3.66 

Deane et al. 7 / 5 4 6 / 6 8 5 5.8 

Deng et al. 3 / 1 4 4 / 2 1 1 2 

Sharan et al. 4 / 3 1 5 / 5 2 3 3.28 

Qi et al. 5 / 8 6 1 / 6 6 4 5.33 

Average 1 / 6 5 3 / 1 5 2 3.28 

Equal - / 7 6 - / 6 7 - 6.5 

3.6   Evolutionary Conservation 

Interacting proteins show a clear preference to be conserved as a pair, indicating a 
selection pressure on the interaction links between proteins [20]. For every pair of 
interacting proteins, we computed the conservation rate coherency score as the absolute 
value of the difference between the evolutionary rates of the two corresponding genes. 
Low scores indicate highly coherent conservation rates. Evolutionary rates were 
obtained from Fraser et al. [21], estimated using nucleotide substitution rates. We then 
calculated the Spearman correlation between the conservation rate coherency scores of 
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interacting proteins and their corresponding probability assignments in the different 
schemes (see Table 6). For all probability assignment schemes we obtained a 
statistically significant negative correlation (p-value < 0.05) between the conservation 
rate discrepancy scores and the corresponding probabilities, indicating that proteins with 
high probability interactions tend to have similar conservation rates. The highest 
correlation (in absolute value) was obtained for DG. 

4   Discussion  

In summary, we have compared six of the available schemes that assign confidence 
scores to yeast interactions with each other and also with a uniform scheme.   Table 6 
gives the relative ranking of these schemes over the five measures used to assess their 
reliability.   

Firstly, we find that EQ almost always ranks the lowest, suggesting that utilizing a 
probability scheme is always more beneficial than considering all observed 
interactions to be true. Secondly, QI has comparable ranks to other schemes when 
considering Spearman correlation coefficient, but generally has very low ranks when 
considering weighted average. 

We conjecture that this trend is influenced by the relatively small standard 
deviation in the estimated probabilities in that scheme which assigns high 
probabilities to all interactions with (with 11447 interactions above 0.9) Thirdly, 
Deane et al. is the only scheme which assigns reliabilities to a set of interactions 
rather than individual interactions and generally performs poorly compared to other 
interactions schemes (Table 6).  This suggests that probability schemes assessing the 
quality of each interaction by itself are more reliable.   

We calculated the average ranks for each probability assignment schemes. To avoid 
circularity, the average ranks were computed by considering only those measures 
which were not used as input for the scheme in question. Overall, Deng et al. performs 
the best and Sharan et al. and the average scheme follow it as a close second. 
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Appendix 

Table A1. Spearman correlation of different measurement schemes.  The p-values for the 
correlation measurements were very significant (p-value  2e-16). 

 Interaction 
Conservation 

Conservation 
Coherency 

Expression 
Correlation 

Gene 
Ontology 

-0.14 0.14 -0.287 

 Interaction 
Conservation 

-0.08 0.058 

  Conservation 
Coherency 

-0.11 
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