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Network propagation is a central tool in biological research. While a number of variants
and normalizations have been proposed for this method, each has its own shortcomings
and no large scale assessment of those variants is available. Here we propose a
novel normalization method for network propagation that is based on evaluating the
propagation results against those obtained on randomized networks that preserve node
degrees. In this way, our method overcomes potential biases of previous methods. We
evaluate its performance on multiple large scale datasets and find that it compares
favorably to previous approaches in diverse gene prioritization tasks. We further
demonstrate its utility on a focused dataset of telomere length maintenance in yeast.
The normalization method is available at http://anat.cs.tau.ac.il/WebPropagate.

Keywords: network diffusion, protein–protein interaction network, gene prioritization, p-value computation,
degree-preserving randomization, telomere length maintenance

INTRODUCTION

Network propagation is a method of choice for diverse analyses such as protein function prediction,
gene prioritization and identification of disease modules (Cowen et al., 2017). There are at least 17
available software tools that employ different variants of network propagation for these purposes
(Cowen et al., 2017; Biran et al., 2018).

However, the basic propagation technique has some known limitations: First, raw propagation
scores do not carry any statistical significance information and can only be used to rank proteins.
Second, they are greatly affected by the degrees of initial proteins implicated in the process under
study (termed seed set below) and the degree of any candidate protein being scored. This biases the
results toward high degree, well studied proteins.

To deal with the second challenge, Erten et al. (2011) suggested the DADA normalization
approach. This method normalizes the raw propagation scores with the eigenvector centrality
measure for each protein, and then produces ranks based on either these normalizations or the
raw propagation scores, depending on the seed set average weighted degree.
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Mazza et al. (2016) tackled the first challenge by evaluating
propagation scores against those obtained from propagating
random seed sets. Nevertheless, none of the methods solves both
problems, calling for a more complete solution.

In this work we present a novel normalization technique that
tackles both challenges. We developed a new technique, in which
the raw propagation scores are normalized through propagation
scores obtained in random degree-preserving networks (RDPN).
In cross validation tests, our method outperforms previous
normalizations in gene prioritization tasks on diverse disease-
related and function-related data sets in both human and
yeast. Furthermore, it eliminates the degree biases of previous
approaches and allows the assessment of statistical significance of
the results by providing p-values that are corrected for multiple
testing of candidate proteins.

RESULTS

Network Propagation
Network propagation is a process in which a preselected set of
seed proteins that underlie some phenotype of interest are viewed
as “heat sources” in a PPI network. The heat is diffused to the
rest of the proteins in the network in an iterative process until
a steady-state is attained. Proteins that are relatively close to the
seed set get higher propagation scores than distant proteins and
are therefore considered to be associated with the phenotype
in question. Network propagation is widely used for protein
prioritization and related tasks (Cowen et al., 2017).

Formally, given a binary vector P0 denoting seed proteins,
a normalized network adjacency matrix W (see below) and a
smoothing parameter α controlling the relative importance of
the network vs. the seed information, it can be shown that the
propagation process converges to a score vector.

P = (1− a) (I − αW)−1 P0

Henceforth, we follow (Vanunu et al., 2010) and set α = 0.8 (unless
stated otherwise), to allow a fairly high network influence over the
prior (seed) knowledge.

There are two main ways by which the adjacency matrix
A (which could be weighted or unweighted) is normalized to
ensure the convergence of the process: (i) a symmetric variant
in, which W = D−1/2AD−1/2 and (ii) a degree-based variant, in
which W = AD−1. Here D denotes the diagonal weighted degree
matrix.

Previously Suggested Normalization
Solutions
The raw scores from the propagation process do not carry a
statistical meaning, and highly depend on the size of the seed
set and the degrees of the proteins involved. It is thus desirable
to normalize them. In the following we describe three previous
normalization methods and a new hybrid of two of the methods;
full details can be found in the Methods.

Erten et al. (2011) suggested the DADA method that builds on
normalizing each propagation score by the eigenvector centrality

measure of the same protein, which can be calculated by
propagating with α = 1 from the same seed set (Brin and Page,
1998; Bryan and Leise, 2006; Erten et al., 2011). Here we analyze
both this simple EC method and the full DADA method which
uses ranks (rather than the scores themselves) of the regular
propagation scores in case the average weighted degree of the seed
set exceeds the network average weighted degree, or the logarithm
of the EC score otherwise.

Mazza et al. (2016) suggested normalizing propagation scores
by comparing them to propagations from random seed sets (RSS).
This method produces p-values and is implemented as a web tool
at http://anat.cs.tau.ac.il/WebPropagate/ (Biran et al., 2018).

We also examine here a hybrid of RSS and DADA, which we
call RSS_SD. This variant produces p-values in the same manner
RSS does, but the random seed sets are chosen to be degree-
distributed like the original seed set using the method of Erten
et al. (2011).

Normalization With Random
Degree-Preserving Networks (RDPN)
The only previous normalization method we are aware of that
assigns statistical significance to the propagation scores is based
on propagating random seed sets. Such computations do not
take into account the degrees of the seed nodes. To overcome
this shortcoming, we propose a novel method that is based on
randomizations of the input network rather than the seed sets.
Specifically, the propagation score of a protein is compared to the
scores the protein attains on random degree-preserving networks
under the same seed set. Our normalization method with random
degree-preserving networks, RDPN, is schematically depicted in
Figure 1.

In order to execute this method, one first has to compute
n random degree-preserving networks (we use n = 100 unless
otherwise stated). We implemented the “switching” method, in
which in each iteration two edges (u, v) and (s, t) are picked
randomly, and if u 6=v 6=s6=t and the edges (u, t), (s, v) do not
already exist, then they are “switched,” namely the edges (u, v) and
(s, t) are removed and the edges (u, t) and (s, v) are added. For the
construction of one random network, we executed 100∗|E| such
iterations, where |E| denotes the number of edges in the network,
per the recommendation in Milo et al. (2003).

One issue that immediately emerges is the question of
connectivity. Network propagation relies on the fact that all
relevant proteins are part of one connected component, otherwise
the information will not diffuse in a desired way. For example,
suppose that during the randomization process two proteins got
disconnected from the main component, creating a very small
connected component of their own. If one of them is a seed
protein, then the propagation score of the other one will be
unreasonably high. However, if none of them is a seed protein,
then their propagation scores will be 0. We addressed this issue
by considering for each protein only the instances in which it was
part of the main connected component in the network.

In detail, p-values are computed as follows: Each protein v
gets a “real” propagation score Xv

real by propagating from the
seed set on the original network; it also gets n random scores Xv

i
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FIGURE 1 | Schematic pipeline of the RDPN method.

(0 ≤ i ≤ n−1) by propagating from the same seed set on the n
random networks. Then its p-value is computed as the fraction of
random instances in which its score exceeded its real propagation
score, i.e.:

pv =

|{i|(Xv
i ≥ Xv

real and v is part of the main connected
component in the i’th network)}| + 1

|{i|(v is part of the main connected component in
the i’th network)}| + 1

To overcome the infrequent case in which a protein has a
high tendency to get disconnected and, therefore, its p-value is
determined based on an insufficient number of instances, we
determined that a protein with less than n/2 relevant instances
(instances in which it was part of the main connected component)
will be assigned a p-value of one. Empirically, in our pre-
computed random networks there was no such protein and
therefore this condition was never used.

Performance Evaluation
We compared the basic propagation computation with the
three previously suggested normalization techniques (EC,
DADA, and RSS), RSS_SD and our own Random Degree-
Preserving Networks (RDPN) normalization with respect to their

performance in multiple disease-related and function-related
prioritization tasks as described below.

Overall Performance
We evaluated the performance of the six methods and two matrix
normalization variants on four large-scale data sets in a fivefold
cross validation setting. Each data set contained multiple groups
of function-related or disease-related genes with respect to which
the prioritization of each normalization method was evaluated.
Each method’s performance was summarized by the area under
the ROC curve (AUROC) measure, when using similar-degree
negative samples (Methods).

The evaluation results are given in Table 1. Regarding the
two variants of adjacency matrix normalization, we found that
in 12 out of 24 method-data set pairs (and also on average) the
symmetric variant performs better (in 10 of them the degree-
based variant performed better, and 2 were ties). Therefore, we
focused on this variant in all subsequent evaluations. On average,
the three top performing normalization methods were RDPN,
RSS_SD, and EC, attaining similar AUROCs across the four data
sets.

However, when examining the performance on the individual
groups within the data sets, we found that the RDPN method
greatly outperformed all others with the highest number of
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TABLE 1 | Average AUROC of the six methods across four data sets, using two variants of adjacency matrix normalization.

Dataset Symmetric adjacency matrix normalization Degree-based adjacency matrix normalization

Propagation EC DADA RSS RSS_SD RDPN Propagation EC DADA RSS RSS_SD RDPN

Menche-OMIM 0.695 0.74 0.707 0.729 0.745 0.746 0.663 0.742 0.685 0.738 0.742 0.742

GO_MF 0.76 0.83 0.783 0.805 0.827 0.832 0.715 0.83 0.749 0.826 0.832 0.831

GO_CC 0.763 0.833 0.782 0.812 0.829 0.833 0.721 0.833 0.75 0.83 0.833 0.831

GO_BP 0.74 0.798 0.757 0.774 0.797 0.801 0.707 0.802 0.734 0.798 0.8 0.803

For each dataset, the best performing method in each variant is shown in bold.

groups for which it gave the best results across all data sets
(Figure 2).

Degree Bias of the Different Methods
A good normalization method should account for the degrees of
the candidate proteins, as these influence propagation scores. To
test this, we focused on the Menche-OMIM set. Expectedly, the
raw propagation scores are highly correlated with the weighted
degree of the candidate protein (0.901 Spearman correlation).
A similar anti-correlation level (−0.749) was observed for
DADA’s ranks. In contrast, EC scores were only weakly correlated
with the candidate protein weighted degree (average Spearman
coefficient of 0.238), and the p-values computed by RSS,
RSS_SD, and RDPN were relatively unbiased (average Spearman
coefficients of 0.019, 0.035, and 0.078, respectively). These results
are depicted in Figure 3.

P-Value Biases
While the regular propagation, EC and DADA produce scores
or ranks, which are only expected to be meaningful for ranking
proteins within the same run, RSS, RSS_SD, and RDPN produce
p-values, which can be thresholded within and across runs
to yield statistically significant hits. In order to evaluate the
robustness of the assigned p-values, we tested their dependence

on the average weighted degree of the seed set, focusing on the
Menche-OMIM set. We found that both RDPN’s and RSS_SD’s
percents of significant hits (p-value < 0.05) are only mildly
affected by the seed set average weighted degree (Spearman
correlation coefficients of−0.511 and 0.427, respectively) and are
robust across runs (stds of 1.23 and 1.34%, respectively), while
RSS’s percent of significant hits is both strongly correlated with
the seed set average weighted degree (Spearman 0.945) and much
more sensitive to the input seed set (std 12.46%) (Figure 4).

A Telomere-Length Maintenance Case
Study
In order to study the biological implications of the different
normalization methods, we used a telomere length maintenance
(TLM) data set from yeast. Specifically, we used a seed set of
known TLM genes from Askree et al. (2004) (see Methods and
Supplementary Table S1). We compiled lists of top-ranking
proteins by looking at the top 30 proteins for each of the
methods (for RSS, RSS_SD, and RDPN we used n = 5000
to increase the resolution of p-values produced). We then
manually evaluated the relevance of these predicted proteins to
telomere length maintenance based on the literature (Table 2).
We found that the basic propagation produced 4 TLM-related
proteins (out of 30), EC produced 5, DADA produced 11,

FIGURE 2 | “Best method” counts, based on the AUROC measure, of the six methods across four data sets: Menche-OMIM (173 diseases), GO-MF (358 terms),
GO-CC (306 terms), and GO-BP (1237 terms).
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FIGURE 3 | Average rank vs. weighted degree of candidate proteins. Depicted here are ranks based on seed sets from five arbitrary diseases in the Menche-OMIM
set (Menche et al., 2015); bins contain approximately equal numbers of proteins. Ranks are derived from the methods’ scores the better the score the lower the rank.

FIGURE 4 | Percent of proteins with p-values below 0.05 vs. seed set average weighted degree, using 173 seed sets from the Menche-OMIM data set (Menche
et al., 2015).

RSS produced 10, RSS_SD produced 12 and RDPN produced
25. This high specificity (25/30) highlights again the advantage
of the newly suggested normalization over previous ones.
The newly identified proteins participate in telomere length
maintenance as part of large complexes or pathways, such as
the VPS pathway, the THO, Mediator and RPD3 complex.
The RDPN procedure correctly identified known proteins of
these complex previously not characterized. Moreover, out of

the 5 proteins not known to be involved in telomere length
maintenance, two of them (RNH202 and RNH203) encode
subunits of the Rnase H, a nuclease with important roles in
genome maintenance, mutated in the human Aicardi-Goutieres
syndrome (Crow et al., 2006). Its roles in R-loop repair have
suggested possible involvement in telomere biology, although
no clear telomere length defect has been detected (Lafuente-
Barquero et al., 2017).
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TABLE 2 | Top 30 proteins obtained by the different methods in the telomere-length maintenance case study.

Propagation EC DADA RSS RSS_SD RDPN

1 VPS2015 LIP2 VPS2015 TFG2 SAE28,13 VPS241,10

2 SSB1 RNH203 SRN21,10 SCW10 GBP27,14 SDS35

3 SSA1 RPI1 SSA1 RPB3 TEX16 SRN21,10

4 RPN11 RNH202 SSB1 SUB2 HRB14 MGM1

5 HHT1 PMT5 RNH203 DOA412 THO26 THO26

6 SRN21,10 SRN21,10 RPN11 CPR7 VPS2015 RSC816

7 CRM1 RFU1 RNH202 RPO21 CPR7 VPS2115

8 HHT2 FLO11 HHT1 GBP27,14 PAF1 VPS2015

9 HHF1 SPL2 CRM1 RSC816 SUB2 GAL1112

10 HSP82 MVB12 MGM1 DLT1 RAP13 RPO21

11 CDC28 VPS2015 HHT2 UBP16 SRN21,10 VPS411,10

12 RNH203 MGM1 HHF1 SUP35 BUD17 MED22

13 RSP5 FMS1 HSP82 VPS241,10 OLA1 GBP27,14

14 RNH202 NTG2 RSP5 RAP13 RIM8 VPS331,10

15 SSB2 SAY1 VPS241,10 HRB14 MTG2 SRB62

16 RPO21 SCW10 RPO21 TEX16 RSC816 MED72

17 HHF2 YKR051W PEP5 HTB1 RPI1 PEP5

18 DSN1 BSC1 VPS161,10 GAL1112 SUP35 VPS81,10

19 MGM1 YBR063C CDC28 HTA2 RSC3 RXT25

20 CMR1 VPS241,10 SSB2 SCP160 VPS81,10 RNH203

21 VPS241,10 PUT3 THO26 YPK9 DOA412 MED82

22 RVB1 MLH3 HHF2 HHT2 MVB12 VPS41,10

23 RVB2 IBA57 DSN1 NTG2 PEP5 RGR116

24 TOM1 CIA2 VPS331,10 STH1 ALG3 VPS161,10

25 RPC82 MHF1 VPS411,10 HHF1 REB1 DOA412

26 SSC1 ERD2 CMR1 MRX1 SIR29,11 RNH202

27 PEP5 BUD17 SRB42 RGR116 RSC9 CTI65

28 SRB42 CTF812 GAL1112 YPR202W TFG2 HRB14

29 HTA2 RIM8 RGR116 SIR412 YJL070C RAP13

30 MMS22 VPS381,10 MED82 SRB4 SCW10 TEX16

Proteins in green are related to the TLM mechanism by the following explanations or references: 1TLM, belongs to the VPS pathway; 2part of the mediator complex (with
SRB2, SRB3, SRB8, SSN2, SSN3, SSN8, GAL11, MED1, NUT1, PGD1, RGR1, and all TLMs); 3this is the main telomere-length determining protein; 4paralog of GBP2,
the telomere-binding protein; 5part of RPD3 complex, as DEP1, SAP30, and SIN3 (TLMs); 6part of the THO/TREX complex (with THP2, HPR1, MFT1 and SOH1, and
all TLMs); 7telomere binding protein; 8regulator of the MRX complex that processes telomeres; 9affects telomere chromatin, although not telomere length; 10Dieckmann
et al. (2016); 11Ellahi et al. (2015); 12Gatbonton et al. (2006); 13Hardy et al. (2014); 14Konkel et al. (1995); 15Shachar et al. (2008); 16Ungar et al. (2009).

CONCLUSION

In summary, we have devised a new method (RDPN)
for normalizing propagation results that accounts for the
degrees of the involved proteins and produces robust p-value
estimations. The method was shown to outperform previous
ones across diverse disease-related and function-related data sets.
Importantly, we have shown that the p-values it assigns do not
depend on the degree of the protein being scored, hence this
method is less prone to literature biases and more likely to
discover new associations. Moreover, we have shown that its
assigned p-values are robust to the average degree of the seed
set, allowing significance assessment across different data sets.
Finally, in testing the biological implications of the method’s
predictions, we found that it greatly outperforms previous
normalizations and leads to new biological insights.

Considering all evaluated parameters, it seems that three of
the tested methods outshine the others: RDPN, which generates

robust p-values and displays the best performance, RSS_SD
which also generates robust p-values but doesn’t perform as well,
and EC which is easy to implement and has good performance
although its nominal scores are harder to interpret.

We note that there are many variants in the literature of
the basic network propagation methodology, such as random
walk with restart and diffusion kernel (Cowen et al., 2017). Our
normalization method is readily applicable to all these variants
and can be used to eliminate potential degree biases and assign
statistical significance values.

METHODS

Normalization Methods
Normalization With Random Seed Sets (RSS)
This method uses propagation scores from n random seed sets
(we use n = 100 unless stated otherwise) to normalize the real
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propagation scores, as suggested by Mazza et al. (2016). In detail,
each protein v has a “real” propagation score Xv

real the score it got
by propagating from the real seed set; and n random scores Xv

i
(0 ≤ i ≤ n−1) derived by propagating from n random seed sets
(each with the same number of proteins as the real seed set). For
every protein v only the instances in which it was not part of the
random seed set are considered, and its p-value is the fraction of
random instances in which its score exceeded its real propagation
score, i.e.:

pv =

|{i|(Xv
i ≥ Xv

real and v was not part of the
i’th random seed set)}| + 1

|{i|(v was not part of the i’th random seed set)}| + 1

Normalization With Eigenvector Centrality (EC)
The EC scores are computed as follows:

pv =
Xv

α=0.8
Xv

α=1

where Xv
α=0.8 is the propagation score of protein v when

propagating from the seed set with α = 0.8, and Xv
α=1 is its

propagation score when propagating from the same seed set with
α = 1 (i.e., disregarding the seed set in the computation).

DADA
The DADA ranks, as described in Erten et al. (2011), are
computed as follows: first EC scores are computed as:

ECv
= log

(
Xv

α=0.7
Xv

α=1

)
for all the proteins in the network whereXv

α=0.7 is the propagation
score of protein v when propagating from the seed set with
α = 0.7, and Xv

α=1 is its propagation score when propagating from
the same seed set with α = 1. Then each protein gets a rank RiEC
which is its position in a descending order of EC scores, and also
a rank Rvprop which is its position in a descending order of the
regular propagation scoresXv

α=0.7. Finally, if the average weighted
degree of the seed set exceeds the network average weighted
degree, all proteins final ranks are set to Rvprop. Otherwise, they
are set to RvEC.

Normalization With Random Similar Degree
Distributed Seed Sets (RSS_SD)
Following Erten et al. (2011), we first construct seed sets S(i)
(0≤ i≤ n−1, we use n = 100) that have a degree distribution that
is similar to the original seed set S by applying this procedure:
We assign each v∈V to a bucket B(u) such that u∈S and
|W(v)−W(u)| is minimized (ties are broken randomly).

In case there are two or more seed proteins with an equal
weighted degree, there is a possibility that one of their buckets will
remain empty. If that happens, we reassign all network proteins
(we repeat this step if necessary).

We generate S(i) by choosing a protein from each bucket
uniformly at random.

We then propagate from these seed sets, as well as from the
original seed set, and proceed to compute p-values as in the RSS
method.

Data Sets
Menche-OMIM Data Set
Menche et al. (2015) compiled a list of 299 diseases defined by the
Medical Subject Headings (MeSH) that have at least 20 associated
genes from either the Online Mendelian Inheritance in Man
(OMIM) data set or the genome-wide association study (GWAS)
data set (or both). We empirically found that all methods perform
better when using only the genes from OMIM, so only the 173
diseases out of that list that have at least 20 and up to 1000
associated genes from OMIM in the HIPPIE network were used
for evaluation.

GO Data Set
We used geneSCF (Subhash and Kanduri, 2016) to get a list
of all GO terms (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017) (in all three sub-ontologies) with their
corresponding genes. We focused the evaluation on terms that
included between 20 and 1000 genes (1237 GO Biological Process
(BP) terms, 306 GO Cellular Component (CC) terms and 358 GO
Molecular Function (MF) terms).

TLM Data Set
A genome wide-screen study by Askree et al. (2004) found 173
S. cerevisiae genes that affect telomere length. We used 163 of
them that are found in the ANAT S. cerevisiae network as the seed
set (Supplementary Table S1).

PPI Networks
For the performance evaluation section we used the HIPPIE
network which has 17335 proteins and 330028 (non self-loops)
interactions in its main connected component (Alanis-Lobato
et al., 2017) (version 18-Jul-2017).

For the TLM case study we used the ANAT Saccharomyces
cerevisiae network which has 5527 proteins and 75678 (non self-
loops) interactions in its main connected component (Almozlino
et al., 2017).

Area Under ROC Curve (AUROC)
Measure
For each group of disease-related or function-related genes,
we randomly split it to five equally sized parts. In each
cross-validation iteration we hid one of the parts, used
the other four as a seed set, and tested the success of
the method in predicting the hidden proteins (serving as
positive samples) using the AUROC measure. We then
averaged the performance across the five iterations. To
compute the AUROC scores, we picked negative samples
with similar weighted degrees as the positive samples. This
was implemented as follows: for each positive protein with a
weighted degree w, we chose the smallest integer r such that
there are at least 100 proteins in the network (excluding the
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seed set, the positive samples and the already chosen negative
samples) with weighted degree in the range [w−r, w+r]. We
then randomly picked a protein from this group to be used as
a negative sample.
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