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Abstract. Molecular interaction databases can be used to study the
evolution of molecular pathways across species. Querying such pathways
is a challenging computational problem, and recent efforts have been lim-
ited to simple queries (paths), or simple networks (forests). In this pa-
per, we significantly extend the class of pathways that can be efficiently
queried to the case of trees, and graphs of bounded treewidth. Our al-
gorithm allows the identification of non-exact (homeomorphic) matches,
exploiting the color coding technique of Alon et al. We implement a tool
for tree queries, called QNet, and test its retrieval properties in simu-
lations and on real network data. We show that QNet searches queries
with up to 9 proteins in seconds on current networks, and outperforms
sequence-based searches. We also use QNet to perform the first large scale
cross-species comparison of protein complexes, by querying known yeast
complexes against a fly protein interaction network. This comparison
points to strong conservation between the two species, and underscores
the importance of our tool in mining protein interaction networks.

1 Introduction

The study of biological networks has gained substantial interest in recent years.
In particular, technological advances, such as the yeast two-hybrid [11] and
co-immunoprecipitation assays [15], have enabled the large-scale mapping of
protein-protein interactions (PPIs) across many model species. The newly avail-
able PPI networks present a host of new challenges in studying protein function
and evolution. Key to addressing these challenges is the development of efficient
tools for network database searches, much the same as sequence searches have
been instrumental in addressing similar problems at the genome level.

Network queries call for searching a “template” subnetwork within a net-
work of interest. Commonly, the query is a known pathway, and the network is
searched for subnetworks that are similar to the query. Similarity is measured
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both in terms of protein sequence similarity and in terms of topological simi-
larity. The hardness of the problem stems from the non-linearity of a network,
making it difficult to apply sequence alignment techniques for its solution.

Several authors have studied the network querying problem, mostly focusing on
queries with restricted topology. Kelley et al. [13] devised an algorithm for query-
ing linear pathways in PPI networks. While the problem remains NP-hard in this
case as well (as, e.g., finding the longest path in a graph is NP-complete [7]), an
efficient algorithm that is polynomial in the size of the network and exponential
in the length of the query was devised for it. Pinter et al. [17] enable fast queries
of more general pathways that take the form of a tree. However, their algorithm
is limited to searching within a collection of trees rather than within a general
network. Sohler and Zimmer [6] developed a general framework for subnetwork
querying, which is based on translating the problem to that of finding a clique in
an appropriately defined graph. Due to its complexity, their method is applicable
only to very small queries. Recently, some of us have provided a comprehensive
framework, called QPath, for linear pathway querying. QPath is based on an ef-
ficient graph theoretic technique, called color coding [1], for identifying subnet-
works of “simple” topology in a network. It improves upon [13] both in speed and
in higher flexibility in non-exact matches.

In this paper, we greatly extend the QPath algorithm to allow queries with
more general structure than simple paths. We provide an algorithmic framework
for handling tree queries under non-exact (homeomorphic) matches (Section 3.1).
In this regard, our work extends [17] to querying within general networks, and
the results in [1] to searching for homeomorphic rather than isomorphic matches.
More generally, we provide an algorithm for querying subnetworks of bounded
treewidth (Section 3.2). We implemented a tool for tree queries which we call
QNet. We demonstrate that QNet performs well both in simulation of syn-
thetic pathway queries, and when applied to mining real biological pathways
(Section 5). In simulations, we show that QNet can handle queries of up to 9
proteins in seconds in a network with about 5,000 vertices and 15,000 interac-
tions, and that it outperforms sequence-based searches. More importantly, we
use QNet to perform the first large scale cross-species comparison of protein
complexes, by querying known yeast complexes in the fly protein interaction
network. This comparison points to strong conservation of protein complexes
structures between the two species. For lack of space some algorithmic details
are omitted in the sequel.

2 The Graph Query Problem

Let G = (V, E, w) be an undirected weighted graph, representing a PPI net-
work, with a vertex set V of size n, representing proteins, an edge set E of size
m, representing interactions, and a weight function w : E → R, representing
interaction reliabilities.

Let GQ = (VQ, EQ) denote a query graph with k vertices. We reserve the term
node for vertices of GQ and use the term vertex for vertices of G.
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Let h(q, v) denote a similarity score between query node q ∈ VQ and vertex
v ∈ V . In our context, vertices correspond to proteins, and their similarity
score is a function of their sequence similarity. A query node q is referred to
as homologous to a graph vertex v, if the corresponding similarity score h(q, v)
exceeds a predefined threshold.

A subdivision of an edge (u, v) in a graph H = (U, F ) replaces it with two
edges (u, w) and (w, v), where w �∈ U , i.e., creating a new graph H ′ = (U ∪
{w}, F ∪ {(u, w), (w, v)} \ {u, v}). H is considered extendable to a graph G, if
G can be obtained from H by a series of subdivisions. In particular, H is then
homeomorphic to G.

An alignment of the query graph GQ to G is defined as a pair of: (i) a subgraph
GA = (VA, EA) of G, referred to as the alignment subgraph; and (ii) a bijection,
σ : V S

Q → V S
A , between a subset of query nodes, V S

Q ⊆ VQ, and homologous
vertices in the alignment subgraph, V S

A ⊆ VA. The vertices in V S
Q ∪ V S

A are
called skeleton vertices. Pairs of associated vertices (q, σ(q)) ∈ V S

Q × V S
A are

called aligned.
An alignment is proper if there exists a pair of skeleton graphs SQ = (V S

Q , ES
Q)

and SA = (V S
A , ES

A) that satisfy the following conditions: (i) there is an isomor-
phism between SQ and SA which respects the alignment (i.e., there is an edge
(u, v) ∈ ES

Q iff there is an edge (σ(u), σ(v)) ∈ ES
A); and (ii) SQ is extendable

to GQ and SA is extendable to GA. In particular, this means that GQ and GA

are required to be homeomorphic. In the rest of the paper we discuss proper
alignments only. An example of such an alignment is given in Figure 1a.

Query nodes that are not aligned with vertices in the alignment subgraph are
considered to be deleted. Conversely, vertices in the alignment subgraph that
are not aligned with query nodes are considered to be inserted. Insertions and
deletions are also referred to as indels. From the above definitions, inserted and
deleted vertices must be of degree 2 in their respective graphs. An alignment
which involves no insertions or deletions is considered simple. The weight of an
alignment is the sum of: (i) similarity scores of aligned vertices, (ii) weights of
edges in the aligned subgraph, (iii) a penalty score, δd, for each node deletion,
and (iv) a penalty score, δi, for each vertex insertion.

The graph query problem is formally defined as follows: Given a query graph
GQ, a graph G, a similarity score h, and penalty scores for insertions and dele-
tions, find a proper alignment of GQ in G with maximal weight. In practice, we
would also like to limit the number of insertions and deletions in the alignment,
to control the evolutionary distance between the two subnetworks. To this end,
we also consider a variant of the problem in which the number of insertions is
limited by Nins, and the number of deletions is limited by Ndel.

3 Graph Query Algorithms

The complexity of the graph query problem depends on the topology of the query
graph GQ, the topology of the graph G, and the similarity function h. In the
general case, the problem of finding simple alignments is in general equivalent to
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subgraph isomorphism [8], which is computationally hard. In this paper, we focus
on efficient query algorithms by exploiting the underlying biological constraints.
Specifically, motivated by known pathways in KEGG [12], we consider restricted
query topologies, i.e., the query graph being a tree, and a graph of bounded
treewidth (see also [17]). For these special structures, we adapt the color coding
method of Alon et al. [1] to make the problem tractable.

Color coding is a randomized technique for finding simple paths and simple
cycles of a specified length k within a given graph of size n. The basic idea is
to randomly assign k colors to the vertices of the graph and then search for
colorful paths in which each color is used exactly once. Thus, rather than having
to maintain a list of vertices visited so far (of size O(nk)), one can maintain a
list of colors at considerably lower complexity (O(2k)).

The use of the color coding technique within a query algorithm is intuitively
similar. We construct an optimal alignment by extending optimal sub-alignments
using dynamic programming. Adding a network vertex to the optimal alignment
can be done only if this vertex is not already contained in the sub-optimal align-
ment. Thus, naively, each potential sub-optimal alignment should maintain the
list of at most k vertices already matched. This yields O(nk) potential align-
ments. In color coding, we apriori color each network vertex randomly with
one of k colors, looking for a colorful alignment. Consequently, we only need
to maintain a list of used colors (of size O(2k)), which significantly reduces the
computation time. However, the computation returns a correct answer only if
the optimum alignment is colorful, which happens with probability k!

kk � e−k.
Therefore, if we repeat the experiment ln(1

ε )ek times, we get the optimum align-
ment with probability at least 1 − ε for any desired value of ε.

3.1 Tree Query

We describe an algorithm for solving the graph query problem assuming that the
query graph is a tree. For ease of presentation, we start by presenting a simplified
version of the algorithm that limits the number of insertions only. The proper
treatment of limiting both the number of insertions and deletions is deferred to
the end of the section.

First, we root GQ arbitrarily at a node r with degree 1. For each query node
q, denote its children by q1, . . . , qnq , where nq denotes their number. Let Tq,j

denote the tree that includes q and the subtrees rooted at each of its first j
children, for 1 ≤ j ≤ nq. The algorithm proceeds in a series of trials in which
every vertex v ∈ V is independently assigned a color c(v) drawn uniformly at
random from the set C = {1, 2, . . . , k + Nins}. Given the random vertex colors,
we employ dynamic programming to identify an optimal colorful alignment. Let
WM (q, v, S, j) denote the maximal score of an alignment of Tq,j in G, such
that query node q is aligned with graph vertex v, with the aligned subgraph
receiving distinct colors from S ⊆ C. The recursion is initialized by setting
WM (q, v, S, 0) = h(q, v) for leaf nodes q, and is formulated as follows:
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W M(q, v, S, j) = max
u : (u, v) ∈ E

S′ ⊂ S

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(* Match, child j *)
W M (q, v, S′, j−1)+W M (qj , u, S−S′, nqj )+w(u, v),

(* Insertion, vertex u *)
W M (q, v, S′, j − 1) + W I(qj , u, S − S′) + w(u, v),

(* Deletion, child j *)
W M (q, v, S′, j − 1) + W D(qj , v, S − S′)

Here W I(q, v, S) denotes the optimal score of an alignment of Tq,nq in G, such
that q is aligned with some vertex u that is a descendant of v in the aligned
subgraph. WD(q, v, S) denotes the optimal score of the alignment of Tq,1 in G,
such that q is deleted and v is aligned with an ancestor of q. The recursions for
the insertion and deletions cases are given below. For query nodes q of degree
other than 2, we set WD(q, v, S) = −∞.

W I(q, v, S) = max
u : (u, v) ∈ E

{
W M(q, u, S − {c(v)}, nq) + w(u, v) + δi,
W I(q, u, S − {c(v)}) + w(u, v) + δi

W D(q, v, S) = max
u : (u, v) ∈ E

⎧
⎨

⎩

W M(q1, u, S, nq1) + w(u, v) + δd,

W I(q1, u, S) + w(u, v) + δd,
W D(q1, v, S) + δd

The maximal score of the alignment is maxv,S WM (r, v, S, 1). The optimal
alignment is obtained through standard dynamic programming backtracking.
An application of the dynamic programming recursions to a sample query is
demonstrated in Figure 1.

The running time of each trial is 2O(k+Nins)m. The probability of receiving
distinct colors for the vertices of the optimal matching tree is at least e−k−Nins .
Thus, the running time of the algorithm is 2O(k+Nins)m ln(1

ε ) for any desired
success probability 1 − ε (where ε > 0). We note that it is straightforward to
limit the number of deletions to Ndel by incorporating an additional variable in
the recursions to count the number of deletion in the optimal sub-alignment. The
cost in terms of running time is multiplicative in Ndel. When incorporating such
a variable, it is also easy to limit the number of insertions to Nins by choosing
the optimum solution based on its number of deletions and the cardinality of its
color set.

3.2 Bounded Treewidth Graph Query

The algorithm for matching trees can be extended to subgraphs that have tree-
like properties. We present an algorithm for the simpler case where no indels
are allowed and defer the description of an algorithm for the general case to the
appendix. Intuitively, the treewidth of a graph indicates how close the graph is
to being a tree, where a tree has treewidth 1. The maximal treewidth value for
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VQ (1 )

(a) Query Graph (b) Alignment subgraph

VQ (2 )

VQ (3 )

VQ (4 )

VQ (5 )

VQ (6 )

V(1)

V(2)

V(3)

V(4)

V(6)

V(5)

VQ (7 ) V(7)

h(1,1)

h(2,2)

h(3,3)

h(4,4)

h(6,6)

h(7,7)

1

1

1

1

2
3

(c ) Dynamic Programming steps

Step 1 W M(2,2{},0)=5

Step 2 W M(6,6,{},0)=5

Step 3 W M(7,7,{},0)=5

Step 4 W D(5,3,{})=5+1-3=3

Step 5 W M(3,3,{},0)=5

Step 6 W M(3,3,{},1)=5+3=8

Step 7 W I(7,5,{})=5+1-3=3

Step 8 W M(4,4{},0)=5

Step 9 W M(4,4,{},1)=5+3+1=9

Step 10 W M(1,1,{},0)=5

Step 11 W M(1,1,{},1)=5+5+1=11

Step 12 W M(1,1,{},2)=11+8+2=21

Step 13 WM(1,1,{},3)=21+9+3=33

Fig. 1. (a) An example of a tree query graph and the corresponding alignment sub-
graph. Numbers on the query graph’s edges represent an arbitrary ordering of children
nodes. Aligned query nodes and graph vertices are connected with dashed lines. Nodes
in the skeleton graphs appear in gray. (b) A simulation of the dynamic programming
recursions. For simplicity, we denote color sets as {}. Matched vertices are awarded by
+5, insertions and deletions are penalized by −3 and edge weights are as shown.

a graph with n vertices is n − 1 and this value is attained by an n-vertex clique.
A formal definition of a treewidth and the associated tree-like structure follows.

A tree decomposition (X, T ) of the query graph GQ = (VQ, EQ) is defined as
follows (see, e.g., [14]): T = (I, F ) is a rooted binary tree, and X = {Xi ⊆ VQ :
i ∈ I} is a collection of subsets of VQ, such that

⋃
i∈I Xi = VQ and the following

conditions are satisfied:

1. For each edge (u, v) ∈ EQ there exists i ∈ I such that u, v ∈ Xi.
2. If i, j, k ∈ I and j is on the path from i to k in T , then Xi

⋂
Xk ⊆ Xj .

The treewidth of the tree decomposition is maxi∈I |Xi| − 1. An example of a
graph and its tree decomposition is given in Figure 2a,b.

Let t denote a bound on the treewidth of GQ. We add a dummy node d
as a parent of the root of T , with Xd = ∅. To avoid confusion, we call the
nodes of T , super-nodes. For a non-leaf tree super-node Xi ∈ X , denote its
two children by Xi1 and Xi2 . Let Ti denote the subtree of T that is rooted at
Xi. The algorithm proceeds in a series of trials in which every vertex v ∈ V
is independently assigned a color c(v) drawn uniformly at random from the set
{1, 2, . . . , k}. Given the random vertex colors, we employ dynamic programming
to identify an optimal colorful alignment.

The properties of the tree decomposition enable us to identify the optimal
alignment by recursing on T and maintaining sub-optimal alignments of query
nodes spanned by subtrees of T , similar to the tree query algorithm described
above. However, there are two main difficulties to tackle: (i) A set of query nodes,
Xi, may have an arbitrary topology (e.g., forming a clique), potentially requiring
an exhaustive O(nt+1)-time search of an alignment subgraph for it. (ii) A query
node v may appear in more than a single super-node.
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VQ(1)

VQ(2) VQ(3)

VQ(4)

VQ(6)VQ(5)

VQ(7)

VQ(8)

VQ(1)

VQ(2) VQ(3)

VQ(4)

VQ(6)VQ(5)

VQ(7)

VQ(8)

VQ(2)

VQ(4)

VQ(3)

VQ(7)

(a) Query graph (b) Tree decomposition

V(1)

V(2) V(3)

V(4)

V(6)V(5)

V(7)

V(8)

sigma(X 3)

sigma(X 5)

(c ) Alignment subgraph

X 1

X 2 X 3

X 4 X 5

Fig. 2. (a) An example of a query graph with a treewidth of 2. (b) A tree decomposition
of the query graph such that each super-node has no more than 3 query nodes associated
with it. Non-active query nodes are grayed. (c) An alignment subgraph. σ(X3) and
σ(X5) are mappings of the query nodes in X3 and X5 to graph vertices, respectively,
that identify on the active query node VQ(6) in X5.

For the first issue, we exploit the fact that the treewidth is bounded by t.
Large values of t would make the algorithm impractical. To cope with the second
difficulty, we note that by definition, if v ∈ Xij and v �∈ Xi, then v �∈ Xl for all
super-nodes Xl that are not descendants of Xi in the tree. Thus, when visiting
a certain super-node Xij , it contains active query nodes XA

ij
= Xi ∩ Xij that

are yet to be handled, and non-active nodes XN
ij

that can be removed from
consideration when traversing up the tree (Figure 2b). We define a non-active
edge at a super-node Xi, as a query edge touching a non-active node in Xi. We
let EN

i denote the set of non-active edges in super-node Xi.
We need some more notation before giving the main recurrence of the algo-

rithm. For each Xi ∈ X , let Σi denote the O(nt+1)-size set of all mappings
σ : Xi → V such that: (i) for all distinct q1, q2 ∈ Xi, c (σ(q1)) �= c (σ(q2)); and
(ii) if (q1, q2) ∈ EQ then (σ(q1), σ(q2)) ∈ E. Figure 2b,c shows an example of
mappings between query nodes and graph vertices.

For computing the weight of an alignment, it is convenient to credit each
super-node i (when traversing up the tree) with the similarity scores associ-
ated with its non-active nodes and the edge weights corresponding to its non-
active edges. The node term is WS(i, σ) =

∑
u∈XN

i
h(u, σ(u)). The edge term is

WE(i, σ) =
∑

(u1,u2)∈EN
i

w(σ(u1), σ(u2)).
Let W (i, σ, S) be the maximum weight of an alignment of a subgraph of GQ

that includes all super-nodes in Ti − Xi, identifies on the active query nodes
in super-node i with the assignment σ ∈ Σi, and uses the colors in S ⊆ C.
W (i, σ, S) can be recursively computed as follows. For a leaf i, W (i, σ, S) = 0.
For all other super-nodes:
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W (i, σ, S) = max
S1 � S2 = S

σ1, σ2

2∑

j=1

[
W (ij , σj , Sj) + W S(ij , σj) + W E(ij , σj)

]

where σ is consistent with σ1 ∈ Σi1 and σ2 ∈ Σi2 .
The score of an optimal alignment of GQ is thus maxS W (d, ∅, S). The total

running time is 2O(k)nt+1.

4 Implementation Notes

We implemented a tool, QNet, for querying a given network with a tree subnet-
work, following the algorithm given in Section 3.1. Bounded treewidth queries
will be supported in future versions. To allow higher flexibility in matching a
query, we slightly generalized the tree query algorithm to enable also deletions of
query nodes of degree 1 (leaves of the tree). We also included in QNet a heuristic
that exploits the structure of the homology function to reduce the number of
color coding iterations needed. In the following we describe this heuristic and
the parameter setting employed in QNet.

Restricted Color Coding. We present a heuristic approach to color coding that
tries to take advantage of queries whose protein members tend to have non-
overlapping sets of homologs. First, we assign each query node a distinct match
color, and choose Nins additional insertion colors. Now, we color the network
vertices using the following rule: For each network vertex v, if v is not homologous
to any query protein, then assign it with a random insertion colors. Otherwise,
toss a coin with probability pt = Nins

k+Nins
. If HEADS, choose a random insertion

color for it, else if TAILS, assign it with a random color from the set of query
nodes it is homologous to.

The probability Ps to obtain a colorful alignment subgraph is at least the
probability that: (i) each aligned vertex is given a match color, and each inserted
vertex is given an insertion color; and (ii) all colors are distinct. Let pm be the
probability that aligned vertices are colorful, and pi be the probability that
insertion vertices are colorful. Then

Ps = (1 − pt)kpni
t pipm =

(
k

Nins + k

)k (
Nins

k + Nins

)Nins

pipm

where pi ≥ Nins!
Nins

Nins
. It remains for us to compute a lower bound for pm. To

this end, we form a graph on the set of query nodes, in which for every pair
q, q′ of query nodes, we add the edge (q, q′) if there exists a network vertex v
that is homologous to both. We then partition the query vertices into connected
components Q1, Q2, . . . , Qk′ , and use the following bound: pm ≥

∏k′

u=1
|Qu|!

|Qu||Qu| .
We expect pm to be high since often query nodes are homologous to a single
vertex. When the probability of success with restricted coloring is greater than
the probability of success with the standard color coding (i.e., (k+Nins)!

(k+Nins)k+Nins
),

we use this procedure, and otherwise we use the standard color coding.
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Parameter Setting. QNet involves several parameters controlling sequence sim-
ilarity, insertion/deletion penalties, and the relative weights of edge- and node-
terms. The current settings are as follows:we used blastp with an E-value threshold
of 10−7 to compute sequence similarity, and set h(q, v) = −log(E-value). Inter-
action reliabilities p(u, v) are assigned using a logistic regression scheme based
on the experimental evidences for the interactions, as described in [18]. We use
w(u, v) = c · r(u, v), where c is chosen to ensure the same scale for the reliability
and homology values. We allow at most two insertions and two deletions per query,
i.e., Nins = Ndel = 2. Indel penalties are set to δd = δi = −100. We empirically
tested a range of penalties by querying perturbations of subtrees in the yeast net-
work (see Section 5.1). A small set of queries were examined and the results did not
change over the range as long as the net influence of a deletion or insertion were
kept negative. In all runs reported below, the number of color coding iterations
was set to ensure success probability ≥ 0.99.

5 Experimental Results

To evaluate the performance of QNet we measure its running time and accu-
racy under various configurations. We start by applying QNet to query a set
of synthetic trees in the PPI network of yeast, measuring its running time and
accuracy. Next, we show examples of querying known yeast and human signal
transduction pathways in the PPI network of fly. Finally, we apply QNet to
query known yeast complexes in fly.

Protein-protein interaction data for yeast S. cerevisiae and fly D. melanogaster
were obtained from the Database of Interacting Proteins (DIP) [20] (April 2005
download). The fly data was complemented by PPI interactions from [19] and by
genetic interactions from FlyGRID (see also [18]). Altogether, the yeast network
consists of 4,738 proteins and 15,147 interactions, and the fly network consists
of 7,481 proteins and 26,201 interactions.

5.1 Synthetic Query Trees

To measure the running time and estimate the accuracy of QNet, we applied it
to query the PPI network of yeast with a set of synthetic query trees. This set
consists of 20 randomly chosen subtrees of sizes ranging from k = 5 to k = 9
from the yeast PPI network. Each query tree was perturbed with up to 2 node
insertions and deletions, and by a pre-specified amount of point mutations in
its proteins’ sequences of average length ∼ 500. QNet was applied to identify a
match for each query tree.

The running time measurements were performed on a standard PC (2GHz,
1Gb). We find that the running time of QNet is a few seconds in all cases, reach-
ing an average of 11 seconds for the largest tree queries with 9 nodes (Table 1).
To measure the improvement in running time introduced by the restricted color
coding heuristic, we applied QNet also without this heuristic. We find that re-
stricted color coding significantly reduces the number of iterations required to
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Table 1. Number of color coding iterations and timing statistics for QNet. The last
two columns show the average time per query. The algorithm’s parameters are set as
follows: Nins = 2, Ndel = 2, and the probability of success is set to 0.99.

#Iterations Avg. time (sec.)
Query Standard Restricted Standard Restricted
size (k) color coding color coding color coding color coding
5 752 603 1.71 1.58
6 1916 917 6.36 4.73
7 4916 1282 20.46 6.24
8 12690 1669 61.17 9.08
9 32916 2061 173.88 11.03
10 85720 2509 1463 21.74
11 223990 2987 5501 41.39
12 1891868 4623 50455 97.93

identify the optimal match, while the running time of each iteration remains
similar. Overall, restricted color coding reduces the running time by an order of
magnitude on average (Table 1). The running time of the algorithm is signifi-
cantly affected by the number of insertions allowed. If no insertions are allowed,
the average number of iterations required for queries of size 9 is less than 100.
When increasing the number of allowed insertions to above 2, the restricted color
coding heuristic becomes less effective (data not shown).

To evaluate the accuracy of the matched trees, we computed the symmetric
difference between the protein set of a query and its match, termed their distance
herein. The results show that when perturbing protein sequences in up to 60%
of the residues, the average distance between the matched tree and the original
tree is lower than 1 (Figure 3b). Moreover, we compared the accuracy of matches
obtained by QNet to matches that are based only on best BLAST hits. We
found that matches obtained by QNet are markedly more accurate than purely
sequence-based matches, showing that the topology of the query tree carries
important signal (Figure 3a). Evidently, the advantage of QNet over a sequence-
based approach becomes more pronounced when the mutation rate increases.

5.2 Cross-Species Comparison of MAPK Pathways

The mitogen-activated protein kinase (MAPK) pathways are a collection of re-
lated signal transduction pathways, which play a critical role in mediating the
cellular response to various toxic stresses [5]. The pathways are known to be
conserved across species and, hence, serve as controlled tests to QNet.

We queried MAPK pathways from the KEGG database [12] in the PPI network
of fly. The first pathway is a classical human MAPK pathway involved in cell pro-
liferation and differentiation. Querying this pathway in fly resulted in detecting a
known MAPK pathway involved in dorsal pattern formation (Figure 4a). Specif-
ically, 6 out of the 8 matched proteins in the target are members of the known
MAPK pathway in fly. Similar results were obtained by querying the yeast MAPK
pathways from KEGG against the fly network. As an example, the top output for
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Fig. 3. The average distance of the matched tree from the original tree is plotted against
the total number of insertions and deletions introduced to the query for 4 different
mutation levels. (a) Performance of a sequence-based approach. (b) Performance of
QNet.

the starvation response pathway query (Figure 4b) is a fly MAPK pathway with
a putative MAPK cascade (fray,Dsor1,rl), which includes the GTPases Cdc42,
Ras64b that are homologous to the two GTPases in the query. These results sup-
port the fidelity of QNet.

5.3 Cross-Species Comparison of Protein Complexes

As a large-scale validation of QNet we systematically queried known yeast pro-
tein complexes, obtained from the MIPS database [16,9], in the fly network, and
tested the biological plausibility of the identified matches. We included all hand
curated complexes in MIPS, which are considered a reliable data source, ex-
cluding complexes that were identified via high throughput measurements (cat-
egory 550 in MIPS). Overall, we considered 94 complexes consisting of at least
4 proteins each. As MIPS does not contain information on the topology of the
complexes, we mapped each complex to the yeast network and used the in-
duced subnetworks as queries. More accurately, for each complex, we extracted
an average of 40 random query trees of size in the range 3 − 8 from its induced
subnetwork. We applied QNet to systematically query all of the induced query
trees in fly. The resulting query matches were used to construct a consensus
match, consisting of all proteins that appeared in at least half of the matches.

The biological plausibility of an obtained consensus matches was tested based
on functional enrichment of their member proteins w.r.t. the fly gene ontology
(GO) process annotation [2]. Specifically, let n(t) denote the number of genes in
the consensus match that are annotated with term t. We compute the probability
p(t) of obtaining a random set of genes, of the same size as the original path-
way, with at least n(t) genes annotated with term t, assuming a hypergeometric
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Fig. 4. Querying the fly network using (a) a human MAPK pathway, and (b) a yeast
MAPK pathway induced by starvation, taken from the KEGG database [12]. Matched
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Fig. 5. (a) The MIPS Cdc28p complex. (b) The consensus match in fly. Matched nodes
appear on the same horizontal line. Inserted proteins appear in white.

distribution. Having found a term t0 with minimal probability p(t0), we compute
a p-value for the enrichment under term t0 by comparing p(t0) with similar
values computed for 10, 000 random sets of genes. The latter p-values are further
corrected for multiple match testing via the false discovery rate procedure [3].

36 of the yeast complexes resulted in a consensus match with more than one
protein in fly. We find that 72% of these consensus matches are significantly
functionally enriched (p < 0.05). For comparison, we computed the functional
enrichment of randomly chosen trees from the fly PPI network that have the
same distribution of sizes and interactions scores as the consensus matches. We
find that only 17% of the random trees are functionally enriched, and that the
mean enrichment p-values is significantly lower for the true consensus matches
(Wilcoxon rank test p-value< 6.5e − 9).
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Figure 5 illustrates the result of querying the Cdc28p complex. This complex
is composed of cyclin-dependent kinases involved in regulating the cell cycle in
yeast. The consensus match obtained in fly consists solely of cyclin-dependent ki-
nases and significantly overlaps the cyclin-dependent protein kinase holoenzyme
complex (GO:0000307).

6 Conclusion

Data sets of protein-protein interactions are increasingly common, and will con-
tinue to increase in number and complexity. In this paper, we address the problem
of searching such data for specific pathways of interest. We provide efficient algo-
rithms for querying trees and graphs of bounded treewidth within PPI networks.
We implement the tree query algorithm, QNet, and demonstrate its efficiency and
accuracy. QNet can handle queries of up to 9 proteins in seconds on current net-
works, and is shown to outperform sequence-based homology searches. More im-
portantly, we use QNet to perform a large scale cross-species comparison of protein
complexes, by querying known yeast complexes in the fly network. This compar-
ison points to strong conservation between the two species.

While our work has helped in clarifying some algorithmic questions regarding
efficient querying of biological networks, and has shown promising results in
practice, it leaves many aspects open for future research. One important direction
is the development of appropriate score functions to better identify conserved
pathways. Research in this direction could gain from probabilistic models of
network evolution [4,10]. A second important direction is the application of the
methods developed here to queries of more general structure. This entails both
the implementation and testing of a tool for querying bounded treewidth graphs,
and the use of such a tool for querying arbitrary structures, perhaps in a way
similar to that presented in Section 5.2.
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Appendix: A General Alignment Algorithm for Bounded
Treewidth Queries

In Section 3.2 we described an algorithm for identifying optimal simple align-
ments of a bounded treewidth query graph. To generalize the algorithm to sup-
port deletions, we modify the mapping σ to allow mapping to ‘0’. To support
insertions, we allow σ to map connected query nodes to non-connected graph
vertices, and use additional Nins color (as in Section 3.1).

Given the new definition of σ, the node term is modified as follows:

WS(i, σ) = δd|{u ∈ XN
i : σ(u) = 0}| +

∑

u∈XN
i ,σ(u) �=0

h(u, σ(u))

The edge term is more problematic as it depends on the subset of colors used
for insertions, and requires some preprocessing. For a pair of vertices u, v ∈ V
and a set of colors S ⊆ C −{c(u), c(v)}, we denote by WP (u, v, S) the maximum
weight of a path between u and v that visits the colors in S. Given a set of vertex
pairs R = R(l) = {(r1

1 , r
2
2), . . . , (r1

l , r2
l )}, we define WP (R, S) as the maximum

weight of |R| simple paths between all vertex pairs that visit distinct colors
from S:

WP (R, S) = max
S1, S2, . . . Sq

⊎
Sl = S

q∑

l=1

WP (r1
l , r2

l , Sl)

In order to compute WP (R, S) efficiently, we use the following recurrence:

WP (R(l), S) = max
S′⊂S

[WP ((r1
i , r2

i ), S′) + WP (R(l − 1), S − S′) ]

Define Ei(σ) as the set of graph vertex pairs that are mapped from non-active
edges in super-node i:

Ei(σ) = {(u, v) ∈ E : (u′, v′) ∈ EN
i , σ(u′) = u, σ(v′) = v}

The edge term for super-node i under the mapping σ and colors S, is:

WE(i, σ, S) = WP (Ei(σ), S)

Finally, we modify the main recursion as follows:

W (i, σ, S)= max
S1 � S2 = S,

S′
1 ⊂ S1, S

′
2 ⊂ S2,

σ1, σ2

2∑

j=1

[
W (ij , σj , Sj −S′

j) + W S(ij , σj) + W E(ij , σj , S
′
j)

]

To compute the running time of the preprocessing stage, note that WP ((u, v),
S)) can be pre-computed for all S in O(n22k) time. Therefore, WP (Ei(σ), S)
can be pre-computed in 2O(k)nt+1 time, and hence the total running time is
2O(k)nt+1.
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