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ABSTRACT

Motivation: Recent studies have uncovered an ‘‘RNA world’’, in which

non coding RNA (ncRNA) sequences play a central role in the regula-

tion of gene expression. Computational studies on ncRNA have been

directed toward developing detection methods for ncRNAs. State-of-

the-art methods for the problem, like covariance models, suffer from

high computational cost, underscoring the need for efficient filtering

approaches that can identify promising sequence segments and

speedup the detection process.

Results: In this paper we make several contributions toward this

goal. First, we formalize the concept of a filter and provide figures of

merit that allow comparison between filters.Second,wedesignefficient

sequence based filters that dominate the current state-of-the-art

HMM filters. Third, we provide a new formulation of the covariance

model that allows speeding up RNA alignment. We demonstrate the

power of our approach on both synthetic data and real bacterial

genomes. We then apply our algorithm to the detection of novel

riboswitch elements from the whole bacterial and archaeal genomes.

Our results point to a number of novel riboswitch candidates, and

include genomes that were not previously known to contain

riboswitches.

Availability: The program is available upon request from the authors.

Contact: shzhang@cs.ucsd.edu

1 INTRODUCTION

A database filter is a computational procedure that takes a database

as input, and outputs a subset of the database. The goal is to ensure

that the object being searched for remains in the database after

filtering, the filtered database is significantly smaller, and the fil-

tering operation is very fast. Filters have played a central role in

bioinformatics. BLAST is the prototypical example, with a keyword

match filter greatly improving the search for remote homologs.

Indeed, improving the filters for sequence similarity search remains

an intensively researched area, with many recent publications.

Filtering is also being applied in other bioinformatics domains,

including structural genomics (Leibowitz et al., 1999), proteomics

(mass-spectrometry) (Frank et al., 2005; Tanner et al., 2005), and
non coding RNA (ncRNA) (Weinberg and Ruzzo, 2004a,b; Zhang

et al., 2005). Here, we revisit the notion of filtering, focusing on

applications to detecting ncRNAs.

ncRNAs are genomic sequences that are transcribed, but

not translated, and function as RNA molecules. Recent discoveries

of many novel families and sub-families of ncRNA have

underscored their importance, and hint at an RNA world, where

coding and non-coding genes play equally important roles (Eddy,

2001; Storz, 2002; Vitreschak et al., 2004). The signal for ncRNA
is considerably weaker than that for protein coding genes and

de novo approaches that look for secondary structure or transcrip-

tional initializing signal do not work well (Rivas and Eddy, 2000).

Therefore, comparative approaches are more popular with two

major directions. One way is to look at compensatory mutations (or

consensus folds) in pre-aligned orthologous regions (Rivas and

Eddy, 2001; Washietl et al., 2005; Pedersen et al., 2006). However,
the success of this method relies on a good ‘‘structural’’ alignment

which is difficult to get (Bafna et al., 2006). The other comparative

approach to discovering novel homologs of a query ncRNA is also

increasing in importance, much like BLAST is often used to identify

novel homologs of coding genes. While viable, this approach poses

a technical challenge since the known algorithms for aligning

ncRNA are at least an order of magnitude slower than sequence

alignment (Klein and Eddy, 2003; Zhang et al., 2005), and even

slower when other secondary structures (such as pseudoknots) are

allowed (Dost et al., 2006). Indeed, using a search based on a

covariance model (CM) (Durbin et al., 1998), it would take 54

hours to query two bacterial genomes: E. coli K12 and Staphylo-
coccus aureus MW2 (7.5 Mb) for a sub-family such as the

FMN riboswitch (145 bp). This makes the filtering problem both

easier and harder. On the one hand, the alignment is so expensive

(cubic time), that even a computationally intensive filter (quadratic

time) could be useful. At the same time, since the alignment is so

expensive, the filtering itself must be very efficient in removing a

large portion of the database while retaining the true hits. For

example, a filter that removes 50% of the database is still not

sufficient to make CM searches tractable for large genomic

sequences.

Algorithms that align ncRNA are expensive because they score

for both sequence and structure conservation, and the latter task is

computationally intensive. Filtering for RNA was systematically

explored by Weinberg and Ruzzo (2004a, b) who used a pigeonhole

argument to show that it is enough to scan for sequence similarity,�To whom correspondence should be adderessed.
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expressed by a hidden Markov model, leaving the more expensive

structural alignment for the filtered sequence. Henceforth, we refer

to their filter as HMM-filter. Subsequently, they, and independently,
some of us also used partial structure conservation for the filtering

(Weinberg and Ruzzo, 2004b; Zhang et al., 2005). Even after apply-
ing these filters, the problem remains computationally expensive,

and it is worthwhile to ask if one can do better.

Here, we make several contributions in this regard. First, we

formalize the concept of a filter and provide figures of merit that

allow comparison between filters. Second, we design novel filters

and show that they dominate the HMM filters of Weinberg and

Ruzzo (2004a) (we defer a formal definition of the notion of notion

of dominance to Section 2). In practice, this leads to 1-2 orders of

magnitude decrease in search time. However, our main point is

not that we can build better filters, but that it is relatively easy

to do so. Indeed, the filters we design are very simple conceptually,

indicating perhaps that we have only scratched the surface on this

problem. The main contribution of this paper is a principled

approach to combining filters that have different performance

characteristics to achieve dominance (Section 3).

We also revisit the issue of alignment by aligning an RNA-profile

to a filtered substring. We emphasize that there is a strong

(practically, 1-1) correspondence with CMs in both the alignment

algorithm, and the observed results. Indeed, the advantage of the

CMs is that their parameters can be trained using the same form-

alization. However, our reformulation helps us take advantage of

simple tricks like banding and others which help speed up the

alignment without appreciable loss in accuracy (Section 4). Similar

extensions would require a departure from the formalism of stoch-

astic context free grammars that support CMs. This also has an

impact on filtering. Unlike previous approaches, we do not tie

the accuracy of our filtering procedure to the accuracy of an existing

alignment procedure. Thus, it is relatively easy to use our filtering

procedure in conjunction with other different alignment algorithms.

For example, in recent work, we used the filtering to search genomes

for pseudoknotted RNA (Dost et al., 2006).
Within ncRNA, we focus our attention on Riboswitches.

Riboswitches are ncRNA elements that often occur in the 5’ Untrans-

lated Region (UTR) regions of genes (Mandal et al., 2004; Nahvi
et al., 2003; Rodionov et al., 2003a; Sudarsan et al., 2003; Vitreschak
et al., 2003, 2004). The riboswitches have a mode of action that one

normally associates with proteins: they directly sense the levels of

specific metabolites with a structurally conserved aptamer domain to

regulate expression of downstream genes. Riboswitches respond to a

wide range of metabolites including coenzymes, purines, amino acids

and some others. Most riboswitches are predicted to be within UTRs

of mRNAs that encode biosynthetic enzymes or metabolite and metal

transporters. Novel members are continuously being discovered. The

Rfam database (Griffiths-Jones et al., 2005), version 7.0, has mem-

bers from 12 sub-families of riboswitches. Due to their widespread

and exclusive occurrence in bacteria, they are attractive anti-

microbial targets. Our results point to a number of novel candidates

for each of these sub-families, and include genomes that were not

previously known to contain riboswitches.

2 FORMALIZING NCRNA FILTERS

Covariance Models (CMs) are probabilistic context-free grammar

models that describe both structure and sequence information of an

RNA family (Durbin et al., 1998; Eddy, 2002). The score of an RNA
sequence t against a CM model M is roughly the sum of two

components: its sequence similarity to the modeled family,

measured using a position specific scoring matrix (PSSM) of

nucleotides, and its structural similarity, measured against the

distribution of nucleotide pairs in aligned positions. Formally,

SðM‚ tÞ � SeqScoreðM‚ tÞ + StructScoreðM‚ tÞ

where SEQSCRCORE is the score of the PSSM part of M against t.
For ungapped alignments, this would simply be the sum over all

columns

SeqScoreðM‚ tÞ ¼
X
j

SeqScoreðMj‚ tjÞ:

If gaps are allowed, we must compute an alignment that optimizes

S[M, t]. The SEQSCORE computation is an order of magnitude

faster than an optimum STRUCTSCORE computation. Weinberg

and Ruzzo (2004a) use this as the basis of their sequence based

HMM filter1. For a given threshold T forM, they compute a thresh-

old Tps as

Tps ¼ min fSeqScoreðM‚ tÞ : SðM‚ tÞ � Tg:

This choice of Tps ensures that each ‘true homolog’ (S(M, t) � T)
will pass the filter. Moreover, much of the database will be rejected

by this filter, and will not undergo the more expensive CM

alignment.

In order to improve upon this filter, we start with formalizing

the definitions of a filter and its quality. A filter F takes a sequence as

input and outputs sub-sequences. We assume the operating parame-

ters (such as a threshold) as part of the filter definition. To make the

notion of performance independent of the database, we measure it

on a suitably defined random database sequence D, with a set of true
sequences A embedded in D. The performance of the filter is

measured with the following:

(1) Running Time: The running time TF( jD j , n) is a function

of query length n, and database length jD j .
(2) Efficiency: Let OF(D) be the output of filter F. Define effi-

ciency as eF ¼ jOFðDÞ j
jD j . The lower the better.

(3) Accuracy: Let AF denote the subset of true sequences that are

accepted by the filter. Then accuracy is defined as AF ¼ jAF j
jA j .

The higher the better.

Filter F1 dominates F2 if it is faster, more accurate, and more

efficient than F2. Often, filters perform well in one or two but

not all of these aspects. In many cases, they can be combined

for further improvement. The two obvious ways to combine

filters are:

� Union F1+F2: in whichOF1þF2
ðDÞ ¼ OF1

ðDÞ [ OF2
ðDÞ. Union

helps if both F1 and F2 are fast and efficient, but not accurate.

� Composition F1·F2: OF1 ·F2
ðDÞ ¼ OF2

ðOF1
ðDÞÞ. Composition

helps when the two filters are accurate but not very efficient,

1They use HMMs (not PSSMs) to describe the filter, but that technical

difference does not change the argument.
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and F1 is faster than F2. Note that composition is always

better than intersection, as the running time TF1
ðD‚nÞ þ

TF2
ðOF1

ðDÞ‚nÞ is better than TF2
with identical accuracy.

We will use both of these operations in designing better filters.

The following result shows that it is not essential to be able to

compute efficiency directly in order to prove dominance.

THEOREM 1. Filter F can be dominated if there exists a filter F1

with AF � AF1
and TF1

ðD‚nÞ=TFðD‚nÞ � 1 � eF1
.

PROOF. We simply use the composition F1·F as the filter. Clearly, it

hasbetter accuracyand ismoreefficient.For running time,wenote that

TF1
ðD‚nÞ þ TFðOF1

ðDÞ‚nÞ � TF1
ðD‚nÞ þ eF1

TFðD‚nÞ
� ð1 � eF1

ÞTFðD‚nÞ þ eF1
TFðD‚nÞ

� TFðD‚nÞ:

While self-evident, Theorem 1 is useful because instead of trying

to compute efficiency exactly we can look for a constant � such that

TF1
ðD‚nÞ=ðTFðD‚nÞÞ � �, and eF1

� 1 � �. As an application of the
theorem, we can think of the CM itself as a filter F. F is very accurate

(gets all the true hits) and efficient (random sequences do not score

high), but slow (TF(D, n) ¼ W( jD j n2)) (Klein and Eddy, 2003;

Zhang et al., 2005). On the other hand, the HMM filter F1 is accurate

(AF ¼ AF1
),andanorderofmagnitudefaster(TF1

ðD‚nÞ ¼ Oð jD j nÞ),
but not as efficient. Can the composite filter dominate? Note that

TF1
ðD‚nÞ=ðTFðD‚nÞÞ � 1=n. From Theorem 1, the composite filter

F1·F dominates F if eF1
� ðn � 1Þ=n. As this condition is relatively

easy to achieve, Weinberg and Ruzzo show improvements for most

families (Weinberg and Ruzzo, 2004a). In the following, we will

describe sequence based filters that run in time c jD j , where c is a

small constant. By the previous argument, we only need to show

marginal efficiency ðn � cÞ=n to dominate. Thus, the filters we design

will dominate the HMM filters of Weinberg and Ruzzo (2004a).

3 SEQUENCE FILTERS

Let FP denote a sequence based filter, which computes a gapped

SEQSCORE, and uses a threshold T, chosen so that the accuracy of

FP is identical to the CM. We will define a sequence based filter Fs

that matches the accuracy of FP, but is faster. The idea is based on

an application of the pigeonhole principle, and the fact that text

search using a dictionary of words is fast. For a sequence to score T
against a profile of length L, each column must score T/L on the

average. In fact, every sequence that scores T against the profile

contains an l-mer w that scores Tl/L or better against the profile. FS

proceeds by computing all subsequences that match at least one

keyword in T. We use the following procedure:

(1) Generate a set of keywords K, each of length l (for a fixed

parameter l), by selecting all words that score Tl/L in an

ungapped region of the profile. Label each such keyword w
so that LABEL(w) is the profile position where it occurs.

(2) Search D for exact matches to keywords from K.

(3) For each position i that matches a keyword with label p,
identify D[i � p, . . . , i � p + L] as a candidate sequence.

(4) Merge significantly overlapping candidate sequences.

By the pigeonhole principle, the accuracy of FS is high (AFP
� AFS

).

The filtering can be done in O( jD j ) time through the use of

Aho-Corasick tries, or hashing, so the filter time is an order of

magnitude faster. It remains to evaluate the efficiency of this filter.

For any position i to be selected, either of the keywords in K must

match at a specific position (given by their label) relative to i.
Therefore, assuming a uniform distribution of words along the

sequence, the efficiency of this filter is given by ð jK j
4l

Þ. By

Theorem 1 , we only require
jK j
4l

< n � 1
n for dominance, and

can often find single keyword filters that suffice. In the following

we improve upon this simple filter by considering multiple

keywords.

3.1 Multiple keyword (chain) filtering

We define an (l, m, d, K)-chain filter as follows: sequence

D[i, . . . , i + L] is accepted by an (l, m, d, K)-chain filter if

m words w1, w2, . . . ,wm 2 K, each of length l match at positions

i+ i1, i + i2, . . . , i + im, s.t. for all j, ij� ij�1 + l (i.e., words are ordered
and non-overlapping) and j ij � LABEL(wj) j � d. For ungapped

alignments, d ¼ 0, but otherwise, d must be chosen carefully to

maximize accuracy. We have the following result:

THEOREM 2. Consider an (l, m, d, sK)-chain filter. If sK is the
maximum number of keywords with an identical label in K then the
efficiency on a uniform random database is given by

eFðl‚m‚d‚sKÞ ¼
L � mðl � 1Þ

m

� ��
2dsK

4l

�m

: ð1Þ

PROOF. Consider a random position i in the database D. By

definition,

eFðl‚m‚d‚sKÞ ¼ Pr½D½i‚ . . . ‚ iþ L� is accepted�:

Define a configuration w.r.t. a position i as an m-tuple C(i) ¼
(i1, i2, . . . , im), such that i � i1 � i2 . . . � im � i + L and ij �
ij �1 + l for all j. Then i is accepted by the filter if there exists a

configuration C(i) such that for all ij 2 C, D[ij, . . . , ij + l � 1] ¼ wj

for some wj 2 K with j LABEL(wj)�ij j � d. Thus, the probability for

ij to match up by chance is 2dsK
4l
. It follows that the efficiency of the

(l, m, d, K)-chain filter is Cm(2dsK/4
l)m, where Cm is the number of

possible configurations. To compute this number, consider a binary

string b with exactly m ones and L � lm zeros. For 1 � j � m, let bj
be the position of the j-th ‘1’ from the left. Define ij ¼ bj + (j � 1)l.
Then each binary string corresponds to a unique m-tuple
(i1, i2, . . . , im), and ij+1 � ij ¼ bj+1 + bj + l � l for all j < m.
The number of configurations is equal to the number of distinct

binary strings, given by Cm ¼
�
L � mðl � 1Þ

m

�
.

Figure 1 shows (as expected) that the efficiency of a chain filter

FC decreases exponentially with increasing m. The slightly faster

than exponential decay is due to the fact that L � ml also decreases

with increasing m. Likewise, higher values of sK decrease the rate

of decay. However, for multiple keywords, selecting the set K of

keywords becomes a challenging problem. The pigeonhole princi-

ple guarantees the existence ofmwords that score at leastmTl/L, but
does not bound the minimum score on any single word. If we were

to choose K to be the set of all keywords, sK could be prohibitively

large. On the other hand, any choice of a lower bound will reduce

Accuracy (AFP
6�AFC

). In practice, there are many reasonable

choices that ensure that the accuracy remains 1 and high efficiency

is maintained. Currently, the features we deploy use empirically

chosen cut-offs for keyword scores. However, there is a principled
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way to get around this obstacle by using an appropriately chosen

union of filters.

3.2 Accuracy of chain filters

To control the accuracy of chain filters we extend their definition

to allow a score threshold S, such that a sequence is accepted by the
filter if in addition to satisfying the above conditions the total score

of the matched keywords exceeds S. Let �¼ Tl/L. We are interested

in computing a chain of words that score m�. We illustrate the

approach using a parameter �0 ¼ u/2 . Any subsequence that is

accepted by the chain-filter must have some k (1 � k � m) words
w1, . . . ,wk that each score at least �0. Let wk+1, . . . , wm denote the

remaining words in the chain filter. We have

m� �
Xk
j¼1

scoreðwjÞ +
Xm
j¼k+1

scoreðwjÞ

�
Xk
j¼1

scoreðwjÞ + ðm � kÞ�0:

Thus
Pk

j¼1 scoreðwjÞ � m� � ðm � kÞ�0 ¼ ðm + kÞ�/2.
For all 1 � k� m, define an extended chain filter Fk of k words in

which each word scores at least �/2 , and the chain must score at

least (m + k)�/2. Observe that F1 + . . . + Fm accepts every chain that

scores above m�, implying that AFC
� AF1þ...þFm

. In the next sec-

tion, we show that chain filters can be computed efficiently, in time

that is often o( jD j n). The search time of the union filter grows

linearly with m, and so an efficiency/speed trade-off must be con-

sidered in selecting an appropriatem. Once again, Theorem 1 can be

used to ensure dominance, but we must do it in an empirical setting

as the running time depends upon the score distribution of keywords

in K, which in turn, depends upon the alignment. Our results in

Section 5 show that dominating filters are easy to find.

3.3 Implementing chain filters

We wish to filter substrings that match an extended (l, m, d, K, S)-
chain filter (where S is the score threshold). Our goal is to improve

upon the profile search time of O(L jD j ). As chain filters are based

on matches with l-mers, we can improve the speed by using string

matching techniques. The algorithm is as follows:

(1) Build an Aho-Corasick Trie TK with K (alternatively, if l is
small, construct a hash table for occurrences of l-mers in D).

(2) Initialize a set of active intervals I ¼ f.

(3) Scan D with TK. For each hit of word w 2 K at position i, add
the intervalp¼ [i� LABEL(w)� d, i� LABEL(w) + d] to I . The
score of the interval SC[p] is set to the score of w against the

profile. Also, set the position as POS[p] ¼ i.

(4) For each position j 2 D, let I j ¼ {p j j 2 p} be the subset of

intervals that overlap with j. For most choices of parameters,

j I j j << L. Select position j if there exist m intervals that are

disjoint and have net score better than m. This is done as

follows:

(1) Sort the intervals in I j according to POS[p]. For each p 2
I j, let p1(p) be the largest interval with POS[p] �
POS[p1(p)]> l, and p2(p) be the predecessor of p.

(2) for all intervals p 2 I j SCORE [j, p] ¼ max{SC[p] +
SCORE[j, p1(p)], SCORE[j, p2(p)]}. Output j, if SCORE[j,
p] exceeds the threshold.

The entire computation takes time
P

j j I j j ¼ o(L jD j ). Also, the
computation is done only if the depth of coverage at position j
exceeds a threshold. The depth of coverage can be computed in

linear time. This discussion hides an important problem. Insertions

and deletions make the profile length significantly longer than

any sequence. For example, the average length of cobalamin

riboswitches is 200 , while the profile length is closer to 600 . A

simple way around this is to discard columns with many gap char-

acters, but that entails deciding which columns are dominated by

gaps. Instead, we revise the definition of the LABEL of a position.

Recall that LABEL of a keyword is its position in the profile, and

should match its position in the query sequence. Instead, define the

LABEL as the expected position in the query sequence. Let pi denote
the probability that the i-th position of the profile is not a gap (in

other words, pi ¼ P[i, A] + P[i, C] + P[i, G] + P[i, T]). Then define

labeli ¼
pi if i ¼ 1‚

labeli�1 þ pi otherwise:

(

Each keyword that appears at position i in the profile is assigned

labeli as its label.

4 RNA-PROFILE SCORING AND ALIGNMENT

In this section we describe our algorithm for scoring a sequence

against a structural alignment of an RNA family, where we score for

conservation of both sequence and structure. The algorithm is very

similar to Covariance Model (Durbin et al., 1998; Eddy, 2002).
However, we provide our own implementation to allow for faster

banded scoring. Also, our filter design can be more effectively tied

to the scoring. Formally, we treat the RNA-profile alignment as a

filter, and compose it with the chain filter. Finally, our algorithm

can be extended to include more complex RNA models, such as

pseudoknots, which will be explored in future work.

The structural alignment of an RNA family is a (gapped) multiple

alignment R of its sequences with structure described by a set M of

pairs of positions (i, j), such that for a majority of sequences in the

family, the nucleotides aligning to these positions form base-pairs.
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The alignment of the RNA family against a target sequence t is
described by a 2 · m matrix A, in which row 1 contains column
positions of the profile interspersed with spaces (insertion of aligned
sequence), and row 2 contains the sequence, also interspersed with

spaces (deletion of profile columns). For all columns j, A[1, j] 6¼0 �0

or A[2, j] 6¼0 �0. For r 2 {1, 2}, define rr[j]¼ j� j {l < i s.t. A[r, l]¼0

�0} j . In other words, if A[1, j] 6¼0 �0, it contains the position r1[i] of
R. The score of alignment A is given byX

j

gðA½1‚ j�‚A½2‚ j�Þ þ
X

ðr1 ½i�‚r1½j�Þ2M
dðr1½i�‚r1½j�‚r2½i�‚r2½j�Þ:

The function g scores for sequence similarity, and d scores for

structure conservation. Our goal is to find an alignment that maxi-

mizes this score. While this formulation encodes a linear gap pen-

alty, we note here that alignments of RNA molecules may contain

large gaps, particularly in the loop regions, and we implement affine

penalties for gaps (details omitted).

4.1 Choosing the scoring functions

Consider an alignment of n RNA sequences from a family. Let ni(a)
be the number of sequences with a 2{A, C, G, U,0 �0} in the i-th
column of the multiple alignment. The probability of observing a in
the i-th position can be estimated by

PiðaÞ ¼
Ca + niðaÞP

a0 Ca0 + n

where Ca are pseudo-counts, chosen so that pa ¼ Ca=ðSa0Ca0Þ,
where pa is the probability of occurrence of a in the family.

These probabilities are used to construct a position specific scoring

matrix. Then for all positions i, and al symbols a 2{A, C, G, U,0 �0}

gði‚aÞ ¼
X

a02fA‚C‚G‚T‚�g
Sða0‚aÞ · Pjða0Þ ð2Þ

where S(a0, a) is the score of substituting a0 with a. We use

a nucleotide substitution scoring matrix (Klein and Eddy,

2003). We model insertions and deletions with the gap penalties

g(0�0, a), and g(i,0�0), respectively.
Likewise, to score for structure conservation we look at the

probabilities of specific base-pairs that occur in each pair of posi-

tions. For each (i, j) 2 M, let ni,j(a, b) describe the number of

sequences in the alignment that contain a in position i, and b in

position j. As before,

Pi‚ jða‚bÞ ¼
Ca‚b þ ni‚ jða‚bÞP

a0‚b02fA‚C‚G‚U‚ 0�0g Ca0‚b0 + n

and the score for conserved structure is given by

dði‚ j‚a‚bÞ ¼
X

a0‚b02fA‚C‚G‚Ug
Pi‚ jða0‚b0Þ · Spða0‚b0‚a‚bÞ

8ði‚ jÞ 2 M‚a‚b 2 fA‚C‚G‚Ug
ð3Þ

where Sp is scoring matrix for substituting (a0, b0) with (a, b), and
rewards both sequence and structure conservation. Note that d is

only defined when (i, j) 2M, and a, b 2 {A, C,G,U}. In other cases,
the structure is obviously not conserved, and the appropriate score is

given by g.

4.2 The alignment procedure

We make the assumption that the base-pairs are non-crossing.

For each base-pair (i, j) 2 M, there is a unique (parent) base-

pair (i0, j0) such that i0 < i < j < j0, and there is no base-pair

(i00, j00) such that i < i00 < i0, or j < j00 < j0. Thus the alignment

can be done by recursing on the nodes of the tree. However, the

tree can have high degree and not all columns of the profile

participate in it. To this end we binarize the tree using the procedure

given in Zhang et al. (2005). Specifically, we add spurious nodes

(base-pairs) to the tree so that every column participates as a tree

node, the degree of any node is at most 3 , and the number of

nodes is O(m), where m is the number of columns in the profile.

Further, a node corresponding to a true base-pair (i, j)2M has at most

one child.

Fig. 2. An algorithm for aligning an RNAprofileRwithm columns against a database string t of length n. The query consensus structureM has beenBinarized to

get M0. Each node v in the tree corresponds to a base-pair (lv, rv) 2 M0.
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Figure 2 describes a dynamic programming algorithm for aligning

a sequence to an RNA profile. The RNA profile is described by a

tree. Each node v in the tree either corresponds to a base-pair (lv, rv)
2M0 of the profile, whereM0 is the augmented list of base-pairs. The

alignment of the sequence to the RNA profile is done by recursing on

the tree like structure of RNA. Each node in the binarized tree either

represents a base-pair/unpaired base (and has its own PSSM), or

represents a branching point in a pair of parallel loops. The algo-

rithm maintains the sequence interval being aligned and the current

node in the structure tree.

5 EXPERIMENTAL RESULTS

We implemented the chain filtering and the profile alignment

algorithms as described above. All tests reported herein were per-

formed on a 2.8 GHz Intel PC (genomic searches were done on

1.6GHz AMD Opteron grid). For chain filtering, we chose the

parameters l, m, d and score threshold (affects sK) so as to optimize

efficiency while maintaining optimal accuracy. The chain filtering

was also composed with HMM filtering (from RAVENNA package

(Weinberg and Ruzzo, 2004a)) to further improve the filtering

efficiency. For the alignment of the filtered sequences to an

RNA model we used both our profile alignment tool and the

CMsearch tool from the INFERNAL suite (http://infernal.wustl.

edu) Eddy (2002); Griffiths-Jones et al. (2003). Both the HMM

filters (using expended HMM filters) and CMsearch were applied

in the following with their default parameters or recommended

parameters from the Rfam database website.

We applied these algorithms to search for riboswitch

elements. We chose to focus on riboswitches both due to their

importance and due to their unique properties that make them an

ideal test case: many ncRNA families show strong sequence simi-

larity, which makes sequence based filtering very efficient, and

relatively trivial. In contrast, the riboswitches, with 12 distinct

sub-families (and new sub-families being continuously discovered)

are quite diverse, and relatively difficult to filter. Table 1 summa-

rizes known riboswitches from the Rfam database, version 7.0

(Griffiths-Jones et al., 2003, 2005).

5.1 Filter efficiency and accuracy

To systematically test our filters, we downloaded data on

12 riboswitch sub-families from the Rfam database, version 7.0

(Griffiths-Jones et al., 2003, 2005). These data contain for each

family a ‘seed’ alignment, which is a hand-curated alignment of

known members, and a ‘full’ collection of family sequences, which

contains known and predicted (by CMsearch) members. In the fol-

lowing we refer to a member of the seed alignment as seed
sequence, and to a member of the full collection as family sequence.
Synthetic databases:As a first test of our method we synthesized

several test sequences. For each sub-family, we created a random

genomic sequence of size 1 Mb with G+C content of 0.5, and

randomly planted all the family sequences therein. We tested the

filter’s performance on the composite sequence. Table 2 summa-

rizes the results of the chain filter (CF) in comparison to the HMM

filters and to a combined filter. In addition to the efficiency measure

we also report a second measure efficiency2, which is computed

exclusively on the random sequence. While the actual genomic

sequence will have some true hits as well, it is unlikely to

have more than a few members per Mb, so efficiency2 is a better

approximation to the true efficiency.

Recall from Theorem 1 that high gains in filter speed at the cost

of efficiency is desirable because filter composition can be used

to achieve dominance. Thus, the key statistic in Table 2 is search

time. The sequence based chain filter is much faster (on average,

9 sec/Mb) than the HMM filter (71 sec/Mb). Interestingly, even the

efficiency of CF filter remains very high on the average (0.036)

while maintaining optimal accuracy. The faster speed and the opti-

mal accuracy of the CF filter makes the composite filter (CF·HMM),

which applies CF filter first and HMM filter later on the database,

dominate the HMM filter. In Table 2, CF·HMM further improves

the efficiency significantly (0.029), and it is still much faster (on

average, 14 sec/Mb) than the HMM filter. The filtering is followed

by alignment with RNA-Profile. We also include a direct compari-

son between profile alignment and the CM approach. As can be seen

from Table 3, profile alignment attains very similar accuracies but is

much faster.

Genomic sequences: Next, we tested the performance of our

filter on two genomes with biased G+C content, previously used

by Weinberg and Ruzzo (2004)a: E. coli K12 and Staphylococcus
aureus MW2. We searched for the 12 riboswitch families on

these genomes whose total length is 7.5 Mb. Table 4 presents a

comparison to the HMM filter. As expected, the chain filter is much

faster. On the average, its efficiency is also very high (0.017),

outperforming that of the HMM filter (0.34). Note that all true

hits in these two genomes were recovered by every filtering method

with the corresponding alignment algorithm. Obviously, the com-

posite filter, CF·HMM, still provides the fastest filtering solution.

5.2 Discovering novel riboswitches

We applied our sequence based filters, coupled with profile

alignment, to search all bacterial and archaeal genomes for the

twelve riboswitch families. A total of 254 genomes spanning

818 Mb were searched. Of these, 179 have some ncRNA annota-

tions. Table 5 summarizes the search results. In total we identified

463 novel (putative) riboswitches based on a P-value cutoff

0.04. Interestingly, 413 of these predictions were within 500 bp

upstream of an annotated gene. These predictions include hits to

Table 1. Riboswitch sub-families in the Rfam database (version 7.0)

Rfam Id Name Average length %id #seed #total

RF00050 FMN 145 66 48 136

RF00059 TPP 110 52 237 382

RF00080 yybP-ykoY 128 45 74 127

RF00162 SAM 110 67 71 219

RF00167 Purine 100 56 37 100

RF00168 Lysine 182 49 60 98

RF00174 Cobalamin 204 46 171 249

RF00234 glmS 184 58 14 37

RF00379 ydaO-yuaA 158 54 35 74

RF00380 ykoK 168 60 39 53

RF00442 ykkC-yxkD 106 62 16 21

RF00504 gcvT 101 51 117 163

Average length and ‘‘%identity’’ are based on the information in the Rfam database.

‘#seed’ is the number of sequences in the seed alignment. ‘#total’ is the number of full

family sequences.
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genomes that had previously been annotated for ncRNA in

Rfam. For cobalamin riboswitch (as an example), most of the

predictions are, indeed, in 5’ UTRs of cobalamin-related or

cobalamin-associated genes (Rodionov et al., 2003b; Vitreschak
et al., 2003) (B12 synthesis, cobalt transporters and alternative

cobalamin-independent enzymes). One of the predicted cobalamin

riboswitches has been experimentally tested and confirmed (data not

shown). In the gcvT (glycine-dependent riboswitch) family, we

found 28 novel hits, of which 12 occur as proximal pairs, which

is known a preferred mechanism of action for this family (Mandal

et al., 2004). Detailed information on these discoveries is presented

in supplementary data (http://www.cse.ucsd.edu/~shzhang/paper/

ISMB2006).

6 CONCLUSIONS

We reiterate that the main contribution of this paper is not simply to

provide improved filtering, but to formalize the filtering problem,

and demonstrate that a simple approach based on combining filters

is useful. While our results improve the state-of-the-art and are

likely to be useful in discovering novel ncRNAs, many questions

remain unanswered. Some of the open problems are directly related

to our analysis. First, can we give theoretical bounds on the effi-

ciency vs. speed trade-off for the union filters? This will probably

entail some assumptions on the distribution of keyword scores.

Second, can we design optimal chain filters, which provably domi-

nate all other sequence based filters? Indeed the bulk of the results

presented here are presented on filters that are fast, but not perhaps

as efficient as could be. On the other hand, HMMs are efficient, but

not always fast, which indicates that there is room for more filters in

between. Examples of such filters include subsets of profiles (choose

a subset of contiguous conserved columns, and filter based on

those), or a hierarchy of compositions instead of a single one.

Finally, for the most diverse families, it is likely that sequence

based filters will not be efficient. Fast filters based on structure

considerations have been shown to be effective (Weinberg and

Table 2. Filtering performance of chain filters (CF), HMM filters (HMM), and composite filters (CF·HMM) on synthetic sequences

CF HMM CF·HMM

Family eff. eff2. acc time(m:s) eff. eff2. acc. time(m:s) eff. eff2. time(m:s)

FMN 1.3e-2 0 1 0:10 2.8e-2 0 1 1:10 1.3e-2 0 0:11

TPP 6.3e-2 3.4e-2 1 0:07 1 1 1 0:59 5.8e-2 3.1e-2 0:14

yybP-ykoY 1.5e-1 1.4e-1 1 0:08 1 1 1 1:07 1.4e-1 1.3e-1 0:28

SAM 1.8e-2 2.1e-3 1 0:07 5.9e-2 4.0e-4 1 0:55 1.7e-2 0 0:09

Purine 3.8e-2 3.1e-2 0.99� 0:7 1.1e-2 1.5e-4 1 0:52 7.4e-3 5.9e-5 0:10

Lysine 1.5e-2 3.9e-3 0.99� 0:10 1 1 1 1:34 1.5e-2 3.8e-3 0:13

Cobalamin 6.3e-2 3.4e-2 1 0:13 1 1 1 1:42 6.2e-2 3.3e-2 0:26

glmS 1.3e-2 9.1e-3 1 0:14 7.7e-3 3.0e-4 0.97 1:25 2.4e-3 0 0:17

ydaO-yuaA 1.2e-2 4.9e-3 1 0:08 1.9e-2 1.0e-3 1 1:11 6.9e-3 7.5e-5 0:10

ykoK 1.2e-2 6.0e-3 1 0:10 1.2e-2 1.2e-4 1 1:32 5.9e-3 0 0:12

ykkC-yxkD 1.7e-3 0 1 0:07 2.4e-3 0 1 0:53 1.7e-3 0 0:07

gcvT 3.7e-2 2.5e-2 1 0:07 1.9e-1 1.6e-1 1 0:51 1.6e-2 4.3e-3 0:10

Average 0.036 0.024 1 0:09 0.361 0.347 1 1:11 0.029 0.017 0:14

‘eff.’ is the efficiency on synthetic sequences, ‘eff2.’ is the efficiency on exclusively random sequences, ‘acc.’ is the accuracy on synthetic sequences, and ‘time’ is the running time on

synthetic sequences. (�) Note that these filters only miss one hit.

Table 3. Comparison of RNA profile alignment (PAln) and CMsearch (CM) on synthetic sequences

Family PAln #TP PAln #true PAln retrieval rate CF· PAln time (m:s) CM #TP CM #true CM retrieval rate HMM· CM time (h:m:s)

FMN 136 136 1 1:29 136 136 1 13:24

TPP 373 382 0.98 6:06 382 382 1 7:06:47

yybP-ykoY 119 127 0.94 14:43 127 127 1 4:11:31

SAM 218 219 1 2:23 219 219 1 12:03

Purine 99 99 1 2:17 100 100 1 2:05

Lysine 97 98 0.99 3:16 98 98 1 13:57:59

Cobalamin 242 249 0.97 14:58 248 249 1 27:39:27

glmS 36 37 0.97 2:36 35 37 0.95 6:53

ydaO-yuaA 73 74 0.99 3:15 73 74 0.99 13:16

ykoK 52 53 0.98 1:22 53 53 1 8:39

ykkC-yxkD 21 21 1 0:30 21 21 1 1:56

gcvT 138 163 0.85 3:15 163 163 1 37:48

RNAprofile alignment uses p-value cut-off 0:05 toget the top rankinghits (onehit in cobalamin family ismarginal), andCMsearch use the samecutoff bits score fromRfamdatawebsite.

‘retrieval rate’ is defined as the percentage of true positive (#TP) hits over the possible true hits (#true) after filtering (either chain filtering (CF) or HMM filtering (HMM)).
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Ruzzo, 2004b; Zhang et al., 2005), but have been completely

ignored in the present study. It is an important open problem to

formalize their efficiency and speed, and to study their combination

with sequence based filters. We hope that these and related chal-

lenges will spur the development of filters, and ultimately lead to

better tools for mining biomolecular databases.
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