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Abstract. Since the first emergence of protein-protein interaction net-
works, more than a decade ago, they have been viewed as static scaffolds
of the signaling-regulatory events taking place in the cell and their analy-
sis has been mainly confined to topological aspects. Recently, functional
models of these networks have been suggested, ranging from Boolean to
constraint-based ones. However, learning such models from large-scale
data remains a formidable task and most modeling approaches rely on
extensive human curation. Here we provide a generic approach to learn-
ing Boolean models automatically from data. We apply our approach to
growth and inflammatory signaling systems in human and show how the
learning phase can improve the fit of the model to experimental data,
remove spurious interactions and lead to better understanding of the sys-
tem at hand.
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1 Introduction

A fundamental question in biology is how a certain network of interacting genes
and proteins gives rise to a specific cellular function. Most studies to date, par-
ticularly in the protein-protein interaction domain, aim to answer this ques-
tion by analyzing a static topological description of the network. The most no-
table exception is the large-scale analysis of metabolic networks which relies on
constraint-based models that quantitatively describe the network’s fluxes under
a steady-state assumption. The advantage of the latter models is that they al-
low simulating the process of interest under different genetic and environmental
perturbations. Recently, it was suggested that similar models could be applied
to signaling networks. While metabolic-like models of signaling are only begin-
ning to emerge [4, 10], a large body of work exists on Boolean network modeling
dating back to the sixties and seventies [3].

Our focus here is on learning Boolean models from experimental data. In con-
trast to the rich literature on Boolean modeling frameworks, the learning and ap-
plication of these frameworks to protein networks is very recent. Saez-Rodriguez



et al. developed the CNO algorithm to optimize a Boolean model against ex-
perimental measurements on the involved proteins [7]. Their algorithm is based
on starting with an initial model and learning using heuristic genetic algorithms
a compact representation of the model that fits the data well. In a follow-up
work, Mitsos et al. presented an integer linear programming (ILP) formulation
of the problem that allows learning a subset of the initial model interactions
that will yield optimal fit to the observed data [5]. Both modeling frameworks
were applied to growth and inflammatory signaling systems in human and were
shown to agree well with available experimental data [7, 5, 6, 8].

Despite their relative success, these previous learning algorithms had sev-
eral shortcomings: (i) they relied on the availability of an annotation of acti-
vation/repression signs to the edges of the signaling network, thus limiting the
search to logical functions that are monotone in an appropriate set of inputs; (ii)
they relied on having an initial model in which each Boolean function is associ-
ated with a superset of the actual terms in its DNF representation – moreover,
in some cases very simple Boolean functions were assumed (e.g., in [5] it is as-
sumed that a function evaluates to TRUE iff all its member activators (at most
two) are active and all its member repressors (at most one) are inactive); and
(iii) in most cases (except in [5]) heuristic rather than exact search algorithms
were used.

Here we suggest a novel algorithm for learning a Boolean model with two
key advantages over previous work: (1) the algorithm allows learning general
Boolean functions, with a particularly efficient learning scheme for symmetric
threshold functions. In particular, it can deal with functions whose DNF terms
are unknown and does not necessarily need an annotation of edge signs. (2) The
algorithm is guaranteed to find an optimum solution. We apply our algorithm to
learn a Boolean model for two well-studied growth and inflammatory systems:
epidermal growth factor receptor (EGFR) signaling and interleukin 1 (IL-1)
signaling. We compare our learned models to state-of-the-art manual models for
these systems. We show that our algorithm produces accurate reconstructions
and can successfully pinpoint possible modifications to a model that will improve
its fit to the experimental data.

2 Preliminaries

We assume we are given a directed acyclic signaling network G = (V,E) for
the process in question. Such a network can either be gathered from the liter-
ature as in the case of the EGFR and IL-1 systems described below or learned
from data using network reconstruction algorithms [12, 11]. The network may be
signed with activation/repression effects on its edges or not. We treat each ver-
tex (molecular species) in G as being in one of two states: active (1) or inactive
(0). We further assume that the state of a vertex v is a Boolean function of the
states of its direct predecessors in the network P (v). We denote this function
by f(v). Adopting the terminology used in [9], we will refer to each term in the
DNF representation of f as a reaction.



If the given network is signed, we will assume that each of the “hidden”
Boolean functions is monotone non-decreasing in an appropriately modified set of
input variables. Specifically, given a vertex v and one of its predecessors u ∈ P (v),
the function f(v) that determines the value of v is monotone non-decreasing in
u if the sign of (u, v) is +1 and, otherwise, f(v) is monotone non-decreasing in
ū – the negation of u.

The goal is to learn the Boolean logic of the network, i.e., the truth table of
every Boolean function associated with a vertex of G. In order to learn the logic
of the network we are given a set of experiments, in each of which some subset
of vertices is perturbed and the states of another subset of vertices are observed.
Any suggested model gives rise to a state assignment to the nodes of G (under
a steady state assumption). We will aim to derive a model that fits best (under
a least squares criterion) to the observed data.

3 Logic learning via ILP

In this section we present our algorithm for learning a Boolean model with
no assumptions on the functions involved. Denote the number of nodes in the
network by N = |V |. Let δ be the maximum in-degree of a node in G.

A Boolean model is specified by giving, for each non-input node v, a Boolean
function f(v) on n(v) = |P (v)| inputs u(v)1, u(v)2, · · · , u(v)n(v) specifying how
the value of the node depends on its inputs. The function f(v) is specified by
its truth table, a collection of 2n(v) binary variables x(v)1, x(v)2, · · · , x(v)2n(v),
where x(v)i denotes the value of v under the i-th input combination in lexico-
graphic order.

Our goal is to find a Boolean model that minimizes the sum, over all exper-
iments, of the number of experimental observations that differ from the predic-
tions of the model. We formulate this as an integer programming problem. To
do so, we derive integer linear constraints that determine the state a(v) of every
node v, under some experimental condition (where the index of the condition
is omitted for clarity), from the states of its input nodes under that condition,
i.e., from a(u(v)1), · · · , a(u(v)n(v)). When v is one of the perturbed nodes, a(v)
is fixed to its perturbed value. Otherwise, we derive its state using the following
auxiliary constants and variables:

1. b(v, i, j) – a constant which is equal to the value of the j-th input variable
in the input combination corresponding to the i-th row of the truth table
of f(v). In other words, b(v, i, j) is the j-th bit of the number i − 1. The
purpose of the constants b(v, i, j) is to select the correct row of the truth
table.

2. y(v)i – a variable which is 1 iff i is the row of the truth table that is selected
by the inputs to node v and x(v)i = 1.

The variables y(v)i are determined by the following inequalities:

y(v)i ≤ x(v)i (1)



y(v)i ≤ [1− b(v, i, j)] + a(u(v)j)[2b(v, i, j)− 1] ∀j = 1, . . . , n(v) (2)

y(v)i ≥ x(v)i +
∑
j

[2b(v, i, j)a(u(v)j)− a(u(v)j)− b(v, i, j)] (3)

The first constraint ensures that y(v)i will evaluate to TRUE only if the truth
value of the i-th row is TRUE. The second constraint ensures that y(v)i will
evaluate to TRUE only if the activity value of each input matches its designated
value. Finally, the third constraint ensures that y(v)i will evaluate to FALSE
only if one of the previous constraints was not satisfied.

Finally, a(v) is 1 iff any of the y(v)i is 1, as expressed by the following
constraints:

y(v)i ≤ a(v) ≤ 1 ∀i (4)

a(v) ≤
∑
i

y(v)i (5)

In case the input network is signed and the monotonicity assumption holds,
the ILP formulation can be made more efficient by noting that: (i) for any given
row no constraints on the variables that should attain a value of 0 are needed;
and (ii) the monotonicity requirements can be forced by appropriate inequality
constraints on truth table variables: ∀i ∈ C(j) : x(v)i ≥ x(v)j , where C(j) is the
set of at most n(v) indices whose binary representation has exactly one more ’1’
than that of j.

The above constraints can be used to derive the state of all nodes given the
input perturbed states. It remains to specify the objective of the ILP which
measures the agreement between the model-derived states and the experimental
data at hand. We use a least squares criterion which becomes linear on binary
variables – see, e.g., [5]. Formally, let O be the set of nodes whose output is
experimentally observed. For a given condition, let e(v) denote the experimen-
tally measured state of node v ∈ O. Then the non-constant contribution of this
condition to the objective function is

∑
v∈O a(v)− 2 · a(v) · e(v).

The overall number of variables in the above ILP is O(N2δ) and the same
bound applies to the number of constraints. The overall size of the ILP is
O(N22δ).

4 Symmetric threshold functions

In practice, for known signed models, most or all of the pertaining Boolean
functions are of simple structure: single AND or OR gates or, more generally,
symmetric threshold functions, where the function evaluates to TRUE iff suffi-
ciently many of its activators (resp. repressors) are present (resp. absent). For
example, in the EGFR system that we study below 98 of its 112 species (87.5%)
are associated with a single AND or OR gate. Similarly, in the IL-1 system all
species whose gates are known (110 of 121) are associated with a single AND or
OR gate.



Here we provide a more efficient formulation for symmetric threshold func-
tions. The main improvement is obtained by representing each function using
a single integer variable that ranges from 0 to the fan-in of the function plus
one. Given a node v with incoming nodes u(v)1, . . . , u(v)n(v), we let x(v) be
the threshold variable representing its underlying Boolean function f(v). The
activity status of v can be derived from the following set of constraints:

a(v) ≥
∑
j a(u(v)j)− x(v) + 1

n(v) + 1
(6)

a(v) ≤
∑
j a(u(v)j)− x(v)

n(v) + 1
+ 1 (7)

Notably, a symmetric threshold function contains AND and OR as special
cases, with x(v) equal to the fan-in in the case of an AND gate and x(v) = 1 in
the case of an OR gate. Furthermore, a value of n(v) + 1 allows us to remove
this function from consideration, as it will always evaluate to FALSE. This is
advantageous when some of the given reactions may be redundant (see Section 6).
In addition, this setting allows the discovery of redundant components of an OR
gate. Last, a value of 0 allows setting the output of the function to 1 regardless
of the inputs. This can be used to search for redundant components of an AND
gate (see Section 6).

The overall number of variables in this special ILP is at most twice the
number of species, and this is also the bound on the number of constraints.
Thus, the overall size of the ILP is quadratic in the number of species and linear
when the maximum fan-in is bounded.

5 Experimental design

5.1 Learning Read-Once Functions

There are interesting connections to be made between the reconstruction of
Boolean models of signaling circuits and the branch of computational learning
theory involving the identification of Boolean functions using queries [1]. In this
theoretical framework one is given black-box access to a Boolean function of n
variables known to be drawn from a specified class of functions. The input to
a query is one of the 2n input combinations to the unknown function and the
output is the corresponding function value. The theory studies the worst-case
number of queries required to identify a function in the given class.

The setting of the current paper differs in several ways from the standard
model of learning via queries. Most importantly, instead of black-box access
to the unknown Boolean function we assume knowledge of the wiring diagram
of the network being analyzed and of the possible Boolean functions that can
be associated with the gates within it. Also, our networks may have multiple
outputs rather than a single output, and there may be technological limitations
on the input combinations that can be applied (i.e, on the feasible combinations



of perturbations of the state of the network). Finally, it may be out of reach to
determine the network exactly; instead, we seek a network model that has high
agreement with the observed experimental outcomes.

Motivated by these differences, we concentrate on algorithms for learning an
n-variable Boolean function realized by a network with a known wiring diagram
but unknown gates. We allow arbitrary queries. We show that in the case of
monotone read-once functions knowing the wiring diagram gives a great advan-
tage over black-box learning. A Boolean function is called monotone read-once
if it is realized by a Boolean formula in which each connective is AND or OR
and each input occurs exactly once. Such a formula can be represented as a tree
of AND and OR gates, with the edges directed toward the root, such that each
input variable occurs at exactly one leaf. We assume that the structure of the
tree is given but the identities of the gates are unknown. We show how to iden-
tify the Boolean function with at most n queries (one query per gate), whereas
Ω(n2) queries seem to be required in the black-box model [2].

Our result follows from three observations:

1. We can set the Boolean value on any edge e of the tree to a Boolean value
a by setting to a each input variable from which edge e is reachable.

2. Given any set of edges, no two of which are reachable from the same input
variable, we can simultaneously set the values on those edges to any de-
sired combination of values. This is done by applying the above construction
simultaneously to each edge in the set.

3. Let g be a gate such that the types (AND or OR) of all gates on the path
from g to the output are known. To find the type of g we can set to 0 one
of the inputs to g, set to 1 all the other inputs to g, and cause the output of
g to “propagate” to the final output by: (i) placing 1 on every edge that is
not on the path from g to the output but is directed into an AND gate on
the path; and (ii) placing 0 on every edge that is not on the path from g to
the output but is directed into an OR gate on the path. Then g is an AND
gate if the final output is 0, and an OR gate if the final output is 1.

Using these observations we can work backward from the root to the leaves,
determining the type of each gate with one query.

By an extension of this construction we can show the following. Let K be a
class of non-constant monotone non-decreasing Boolean functions learnable in
the black-box query model with f(n) queries, where n is the number of inputs.
Consider the class of Boolean functions representable by read-once tree networks
with gates drawn from the class K. Given the wiring diagram of such a network
one can identify the gates, and hence learn the Boolean function, with

∑
i f(di)

queries, where i ranges over the gates in the network and di is the fan-in to
the i-th gate. For example, given the wiring diagram of a read-once network of
bounded fan-in symmetric threshold functions, the Boolean function represented
by the network can be learned with O(n) queries.



5.2 An information-theoretic experimental design algorithm

Thus far we have assumed that the set of experiments to be applied to the
network is externally specified. In this subsection we present an algorithm for
adaptively choosing experiments in order to efficiently acquire information about
the Boolean circuit in question. Our algorithm draws inspiration from the field of
genetic algorithms, and is information-theoretic in nature. At a general step we
execute a feasible experiment whose outcome is least predictable according to an
entropy measure, thus maximizing the information gain at each step. In selecting
the next experiment we assume as given a specification of the inputs and outputs
of each experiment performed thus far, a population P of p high-scoring models
relative to these experiments (where p is a parameter of the experimental design
algorithm) and a set F of feasible experiments from which the next experiment
will be drawn. We define a mutation of a model as any single change in the
truth table of a gate that would alter the output of that gate under some past
experiment.

The initial collection of N networks can be learned using the integer pro-
gramming formulation of Section 3, while instructing the ILP solver to produce
multiple optimal (or near-optimal) solutions. A step of the algorithm consists of
the following substeps:

1. Enlarge the population P by applying all possible mutations to its members.
2. Restrict the enlarged population P to the p models within it having the

highest scores relative to the set of experiments performed so far; this entails
simulating each circuit in the enlarged set under every past input.

3. Simulate each experiment in F on each of the p circuits to compute the
output it would produce, and compute the entropy of the distribution of
these outputs, assuming the uniform distribution over the p models in P .

4. Perform the candidate experiment of maximum entropy (i.e., the most in-
formative candidate experiment).

6 Results

To test the ability of our ILP-based approach to provide an accurate logical
model of a signaling system, we applied it to the well-studied EGFR and IL-1
signaling systems. These systems served as ideal test cases as their topologies
and underlying logics have been extensively researched and large scale models
have been manually constructed for them [9, 6]. In the following we describe our
implementation, evaluation criteria and the results we attained with respect to
each of these systems.

6.1 Implementation and Evaluation

We implemented the algorithm for learning symmetric threshold functions de-
scribed in Section 4. To deal with the problem of multiple equally-good solutions,
we also implemented a variant of the algorithm in which a secondary objective



is used to choose among the best performing solutions. In detail, the application
of this variant is done as follows: (i) first, we run our algorithm to attain some
optimal solution and record its value; (ii) then, we add a constraint to the ILP
which restricts its solutions to those attaining the optimal value identified in
the previous step; (iii) last, we optimize the ILP w.r.t. the second objective. In
the experiments reported below we used as a secondary objective the similar-
ity (number of identical gates) of the output model to the original (manually
curated) model. In case a curated model is not available, we may use as a sec-
ondary objective some measure of the complexity of the resulting circuit, like
the number of non-constant gates.

The implementation was written in C using the CPLEX callable library ver-
sion 12.1. All runs reported below were conducted on a single core of a Xeon
3.06 GHz server with 8GB memory and were completed in a few seconds.

To evaluate our modeling framework we applied it for the modeling of two
signaling systems in human: (i) EGFR, which regulates cellular growth, prolifer-
ation, differentiation and motility; and (ii) IL-1, which is involved in coordinating
the immune response upon bacterial infection and tissue injury. Both systems
are well studied and detailed manual models exist for them. In particular, Sam-
aga et al. have constructed a comprehensive Boolean model of the EGFR system
which contains 112 molecular species and their associated Boolean functions [9];
Ryll et al. have created a Boolean model of the IL-1 system with 121 molecu-
lar species [6]. We retrieved both models from the CellNetAnalyzer repository
(http://www.mpi-magdeburg.mpg.de/projects/cna/repository.html).

In order to learn logical models for these systems we used data published
by the above authors on the activity (phosphorylation) levels of certain proteins
under different cellular conditions. Specifically, Samaga et al. measured within
the EGFR system the activity levels of 11 proteins under 34 distinct condi-
tions in Hep2G cells (Figure 8 in [9]). Similarly, Ryll et al. measured within the
IL-1 system the activity levels of 9 proteins under 14 distinct conditions in pri-
mary hepatocytes (Figure 6 in [6]). In both cases the cells were stimulated with
different ligands and treated with different inhibitors, thus simulating different
conditions. Following [9, 6], we focused our analysis on the measurements at the
30min time point, representing the early response of the system. Reconstructed
models were scored by their fit, according to a least squares criterion, to the
observed data.

6.2 The EGFR system

Our first and main test case is the well-studied EGFR system, whose model
contains 112 species, 157 reactions (excluding input/output ones) and the maxi-
mum fan-in is 5. Experimental data for this system includes the activity levels of
11 proteins under 34 different perturbations. When testing the fit of the curated
model of [9] to the observed experimental data, 278 out of 366 predictions (76%)
matched the observed activities. In an effort to understand the erroneous cases,
the authors have identified 12 gates for which the underlying logic was not clear
(along with one more reaction that does not have an effect on the measured



proteins and another reaction that happens at a later time; hence, both could
be removed). In addition, they have suggested 4 modifications to existing gates
that improve the fit of the model (along with three more modifications that
involve the introduction of new reactions into the model and, hence, could not
be captured by our ILP framework). Overall, there were 233 possible models to
choose from when constraining the 16 gates in question to symmetric threshold
functions. Full enumeration of these models was prohibitively expensive as each
model had to be simulated in order to compare its fit to the experimental data.

We applied our algorithm to reconstruct these unknown logical functions,
while aiming to maximize the fit to the experimental data. The program finished
in less than a second producing a solution that matched 330 of the data points
(90%). We then searched for a model with the same score (fit to data) that
is closest to the original model. The reconstructed functions and their curated
counterparts appear in Table 1. The proposed changes to the model and the
respective reconstructions are summarized in Table 2. An in-depth analysis of
the reconstructed functions revealed that: (i) 11 of the 12 reconstructed functions
matched the curated description, where an additional one was reconstructed as
a majority function on three variables while its curated description was not a
symmetric threshold function but was deemed “closest” to a majority one (line
9 in Table 1); and (ii) in 3 of the 4 proposed changes, the algorithm correctly
predicted the suggested modification; the fourth modification was rejected by
the algorithm.

Quite strikingly, when testing the performance of the curated model with the
suggested modifications, the same fit (330 of 366) was observed.

Curated function Reconstructed function

sos1 eps8 e3b1 OR vav2 → rac cdc42 OR
mekk1 OR raf1 → mek12 OR

mkk3 OR mkk6 OR mkk4 → p38 OR
mekk1 OR mekk4 OR mlk3 → mkk4 OR

pak1 OR csrc → pak1crscd OR
p90rsk OR mk2 → creb OR
!akt AND !pak1 → bad AND

!akt AND !p90rsk → gsk3 AND
jnk OR (erk12 AND p90rsk) → jnkerkp90rskd MAJ

erk12 OR jnk → p70s6 1 OR
erbb11 AND eps8r → rntre AND

dag AND ca → dagcad AND

Table 1. Performance evaluation of the reconstruction algorithm. Reconstructions that
match the curated functions appear in bold.



Original function Proposed modification Reconstructed function

erb11 AND (pip3 OR pi34p2) → vav2 erb11 → vav2 erb11 → vav2
sos1eps8e3b1 → raccdc42 REMOVE sos1eps8e3b1 → raccdc42
erb11 AND csrc → stat3 REMOVE REMOVE

mk2 → hsp27 REMOVE REMOVE

Table 2. Performance evaluation of the reconstruction algorithm with respect to pro-
posed modifications. Reconstructions that match the suggested modification appear in
bold.

6.3 IL-1 signaling

As a second test case we applied our method to automatically learn the logic of
the IL-1 circuit [6]. This circuit contains 121 species and 112 reactions (excluding
input/output ones) with a maximum fan-in of 6. The logic of 11 of the reactions
is not known, but this has no effect on the measured proteins under the available
conditions (and assuming monotonicity). Overall, the model successfully explains
104 of the 118 experimental points (88%). In an attempt to improve this fit,
Ryll et al. manually inspected the model and data and suggested the addition
of seven reactions and the removal of one, albeit achieving only a slight increase
in performance (89%).

Ryll et al. have classified the reactions in their model according to the litera-
ture support for them. The least reliable categories included those reactions that
had evidence under different stimulations than IL-1/6. Hence, we thought to im-
prove the fit of the model by learning the logic of these reactions (focusing on a
subset of those that have at least two inputs) in addition to the 11 unknown ones.
Overall, we applied our framework to learn the logic of 26 reactions, amounting
to a search space of 260 models. Among the solutions obtained, we chose the one
that is closest (in terms of the number of identical gates) to the original model.
By modifying two reactions (removing one and changing another from AND to
OR), the algorithm managed to find a solution with a slightly better fit to the
data: 106 of the points agreed with the experimental measurements (90%).

7 Conclusions

Transforming topological networks into working functional models of signaling
is a fundamental problem with vast applications. Here we make a step toward
achieving this goal by providing an algorithm to learn a Boolean model of a
given signaling system automatically from data. We provide a general variant
that is applicable to all Boolean functions and does not require knowledge on the
activation/repression properties of the network’s edges. In addition, we provide
a specialized variant for learning symmetric threshold functions that are very
common in known models. Our algorithms are based on reducing the learning
problem to an integer linear program which is solved to optimality in seconds on
current systems. We demonstrate the power of our approach by applying it to two



well-annotated signaling systems involved in growth and inflammatory response.
The produced models allow completing information gaps, improving the fit to
the experimental data and pinpointing redundant reactions and components of
reactions.

While our approach is generic, we focused our evaluation and experimenta-
tion on learning constrained models in which the initial network is signed and the
pertaining Boolean functions are assumed to be symmetric threshold functions.
Further experimentation is needed to test the effectiveness of the full model and
the accuracy of its predictions when relaxing these assumptions. In addition,
it would be interesting to test the utility of our experimental design scheme in
prioritizing current experiments and suggesting new ones.
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