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A Robustness Analysis of Dynamic Boolean Models

of Cellular Circuits

ARIEL BRUNER and RODED SHARAN

ABSTRACT

With ever growing amounts of omics data, the next challenge in biological research is the
interpretation of these data to gain mechanistic insights about cellular function. Dynamic
models of cellular circuits that capture the activity levels of proteins and other molecules over
time offer great expressive power by allowing the simulation of the effects of specific internal or
external perturbations on the workings of the cell. However, the study of such models is at its
infancy and no large-scale analysis of the robustness of real models to changing conditions has
been conducted to date. Here we provide a computational framework to study the robustness of
such models using a combination of stochastic simulations and integer linear programming
techniques. We apply our framework to a large collection of cellular circuits and benchmark
the results against randomized models. We find that the steady states of real circuits tend to be
more robust in multiple aspects compared with their randomized counterparts.

Keywords: attractor computation, Boolean networks, integer linear programming.

1. INTRODUCTION

Protein–protein interaction networks have been mapped for over a decade using techniques such as

yeast two-hybrid and coimmunoprecipitation. Comprehensive maps are available for multiple species,

including yeast and human, with hundreds of thousands of interactions in each [see e.g., the BioGRID

database (Chatr-Aryamontri et al., 2015)]. As we and others have shown, substantial portions (over 40%) of

those maps are spanned by signaling interactions (Silberberg et al., 2014). Thus, protein networks have been

extensively used for interpreting genome-wide screens in the context of a phenotype of interest. Previous

work in this regard can be broadly categorized into topology based and logic based. The first category

includes the vast majority of current studies. It aims to characterize a given phenotype by the following: (i)

the location of its affected proteins in a network, identifying network regions, or modules that are associated

with the phenotype (Ideker et al., 2002; Dittrich et al., 2008; Shachar et al., 2008; Huang and Fraenkel, 2009;

Yeger-Lotem et al., 2009; Yosef et al., 2009; Vandin et al., 2011; Cowen et al., 2017); and (ii) the network-

based attributes of the proteins, such as degree of connectivity and more (Said et al., 2004; Jonsson and Bates,

2006).

The second logic-based category aims to provide mechanistic models for the phenotype of interest

(Novere, 2015). While a variety of models can be used, most prior works focus on logical (Boolean) models
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or variations thereof (Morris et al., 2010), thanks to the rich history of these models in the biological

domain (Kauffman, 1969). These works include Boolean modeling of fundamental systems such as epi-

dermal growth factor receptor (EGFR) signaling (Oda et al., 2005; Samaga et al., 2009) and mitogen-

activated protein kinase (MAPK) signaling (Grieco et al., 2013); algorithms to optimize Boolean models

against experimental data (Mitsos et al., 2009; Saez-Rodriguez et al., 2009; Moignard et al., 2015);

algorithms to traverse the state space of a model (Dubrova and Teslenko, 2011; Chaouiya et al., 2012; Qiu

et al., 2014); and generalizations of these models to multivalued (Morris et al., 2011; Huard et al., 2012),

constraint-based (Dasika et al., 2006; Vardi et al., 2012), and probabilistic (Gat-Viks et al., 2006) ones.

The advantage of the latter logic-based models is that they allow simulating a process of interest under

different genetic and environmental perturbations. In recent years, a concentrated community effort has led

to the curation of dozens of logic models for a diverse array of cellular processes (Ideker et al., 2002),

providing for the first time the opportunity to study the properties of these circuits at large scale.

Since biological processes need to operate consistently in a noisy environment, they must be robust to

perturbations, such as stochastic changes in molecular concentrations and protein activity. Extensive re-

search has been done on empirical stability of biological processes (Alon et al., 1997; Li et al., 2004), as

well as stability of Boolean models (Aldana and Cluzel, 2003; Sevim and Rikvold, 2008; Fretter et al.,

2009; Peixoto, 2010; Schwab et al., 2017) and alternative modeling frameworks (Chen and Aihara, 2002,

2006; Klemm and Bornholdt, 2002, 2005; Lyapunov, 2007; Chaves et al., 2008).

However, there are few studies that compare the robustness of real networks to those of random networks

with similar structural properties. Indeed, random networks can be artificially selected for robustness,

affecting their structural properties (Sevim and Rikvold, 2008; Fretter et al., 2009). We are aware of only a

single work that directly compares real networks to topologically similar random ones. Specifically,

Daniels et al. (2018) compared 67 biological models with topologically and functionally similar random

models, identifying a node-based sensitivity measure that differs between the two types of models.

Here, for the first time, we compare real and similar random models in terms of their dynamical

properties. Since the space of model states is exponentially large, mapping its attractors and basins of

attraction is very costly. To tackle this computational problem, we design novel integer linear programming

(ILP) formulations for model learning and attractor computations. We apply our methodology to a set of 30

curated models covering fundamental biological processes in multiple species with up to 62 nodes. We

analyze their steady-state (attractor) properties and their robustness to small perturbations. As a benchmark,

we use randomized models that maintain the topology and logical complexity of the real models. We find

that real models tend to be more robust than random models in several aspects that concern the steady-state

changes in response to intrinsic noise in the system or due to small perturbations to its logic.

2. PRELIMINARIES

For a cell circuit of interest, a Boolean model is a pair (G‚ F), where G = (V‚ E) is a directed graph

representing the circuit topology with n = jVj nodes and F is a collection of Boolean functions over V. To

define F, let us denote, for each vi 2 V , the ordered set p(vi) = (vj : (vj‚ vi) 2 E), with an arbitrary order over

V. Let fi: f0‚ 1gjp(vi)j ! f0‚ 1g be a Boolean function representing the activity of vi in terms of its prede-

cessors p(vi).

An assignment of binary activity levels to each node defines a state of the model. We assume a

synchronous model, where for each discrete time point t and vertex vi, vi‚ t 2 f0‚ 1g defines the vertex

activity at time t, for an arbitrary starting value vi‚ 0. Denote pt(vi) = (vj‚ t : vj 2 p(vi)), then the model is

updated as follows (for all vi 2 V and t � 0):

vi‚ (t + 1) = f (vi‚ t) : = vi‚ t jp(vi)j = 0

fi(pt(vi)) otherwise

�
(1)

An attractor for G is a simple cycle of network states. Formally, a state path A of length T is a tuple

(Vt : 0 � t � T) where each Vt = (vi‚ t : vi 2 V) represents a state and Equation (1) holds for each 0 � t < T .

We say that A is an attractor if VT = V0 and for all other t, Vt 6¼ V0. By definition, every state in a

synchronous model is followed by exactly one state, and hence, every state leads to a single attractor. For a

given attractor, we call the set of states that lead to this attractor its basin of attraction, and use the notation

s! A to mean that s is in the basin of attraction of A.
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3. METHODS

To test the robustness of a given model, we examine the impact of small perturbations on its dynamics.

Specifically, we consider two types of perturbations: (i) changing k bits in the truth tables of one or more of its

functions, where k is a small constant; (ii) switching from any state to another state whose Hamming distance

to the original is at most k. We study the impact of such changes on the set of model attractors by quantifying

for each change the percent of model states, leading to a different attractor in the perturbed model/state.

Since the space of model states is exponentially large, mapping its attractors and basins of attraction is very

costly. To tackle this computational problem, we combine novel ILP formulations for model learning and

attractor computations with stochastic simulations for estimating the size of each basin of attraction. To describe

our formulation for attractor representation, we first describe a set of subprograms that form its building blocks.

3.1. State comparisons

The representation of attractor states requires efficient means to compare them to one another to make

sure that they represent a cyclic path of distinct states and that no two attractors share the same state. One

way to tackle this problem as well as remove degrees of freedom from solutions is to assign a unique

numeric key to each possible network state. The resulting order can then be used to implement equality and

inequality constraints.

A natural key for a state is the binary number it represents, but the representation size may exceed the

number of bits in a computer word. Instead, we implement this representation by assuming an arbitrary

upper bound of M bits per word and splitting the number into ‘ + 1 pieces, where ‘ : = ØjV j
M

ø - 1. For any two

states a‚ b 2 f0‚ 1gjV j represented by x0‚ . . . x‘ and y0‚ . . . ‚ y‘, respectively, to implement an indicator for

an inequality such as a > b, we use auxiliary binary variables (z0‚ . . . ‚ z‘) and, for convenience, denote

z - 1 = 0. We introduce the following constraints for all 0 � j � ‘:

(2M + 1)zj � xj - yj + zj - 1

(2M + 1)zj � xj - yj + zj - 1 + 2M:
(2)

It holds that z0 = 1 iff (if and only if) x0 > y0 and for j � 1:

zj = 15xj > yj _ (xj = yj ^ zj - 1 = 1):

This implies that z‘ = 1 iff a > b, and we can denote Ia> b = z‘. Using z - 1 = 1 captures a weak ordering

and allows us to implement the indicators Ia = b and Ia 6¼b as well.

We can use these indicators to implement a set membership indicator Ia2A representing whether a state a

belongs to a set of states A, with the formulation:

8a0 2 A : Ia2A � Ia = a0

Ia2A �
X
a02A

Ia = a0
:

3.2. Path constraints

Let a0‚ . . . ‚ aT be ordered sets of binary vector variables, representing graph states, such that

8t‚ at = (v1‚ t‚ . . . ‚ vn‚ t). Let F(at) = (f (v1‚ t)‚ . . . ‚ f (vn‚ t)), then we can enforce the ordered set of states to

represent a path by requiring at + 1 = F(at) for all t < T . We follow the technique used in Sharan and Karp

(2006) as detailed below.

For an input node vi such that jp(vi)j = 0, we only require vi‚ t + 1 = vi‚ t. Otherwise, denote by ij the index of

the jth node in p(vi). For each binary vector r 2 f0‚ 1gjp(vi)j, representing a possible input, we create an

auxiliary non-negative variable sr whose value is 0 iff r is the input vector to vi at time t + 1, that is, r = pt(vi):

sr = jp(vi)j -
X

j

(1 - rj + vij‚ t(2rj - 1))

vi‚ t + 1 � fi(r) - sr

vi‚ t + 1 � fi(r) + sr: (3)
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We call this subprogram PATH(a0‚ . . . ‚ aT ). For the case of a length -1 path, we use the simpler

expression a1 = F(a0) to refer to this subprogram. We can also derive a formulation for requiring the states

not to form a path, which we denote by PATH(a0‚ . . . ‚ aT ).

3.3. Attractor learning

We are now ready to present our formulations for attractor learning under various constraints. Using

fixed values for the outputs of F, we can use such formulations to compute the attractors of a given model.

By substituting the outputs of F with binary variables, we get a formulation whose solution represents a

possible model on G and its attractors. For brevity, in the following formulations whenever we write an

indicator as a constraint, we require its value to be 1. All formulations depend on specifying in advance the

upper bounds on the number and length of the model’s attractors. For clarity, we assume at first that there

are exactly K attractors of length T each. We apply the conditional constraint mechanism below to

generalize the formulations to the case that K and T are upper bounds.

Let fak‚ tg1�k�K‚ 0�t�T denote ordered sets of binary vector variables representing the K attractors. That

is, each ak‚ t is a vector of n binary variables denoting the state of attractor k at time t. These variables can be

populated using the following formulation (with empty objective):

Max � s:t:

8k � K : PATH(ak‚ 0‚ . . . ‚ ak‚ T )

8k � K : Iak‚ 0 = ak‚ T

8k � K‚ t > 0 : Iak‚ T>ak‚ t

8k < K : Iak + 1‚ T>ak‚ T
‚ (4)

where degrees of freedom in attractor representation are eliminated by forcing the final state of each

attractor to be the largest in terms of its associated numeric value, and the final states of different attractors

to be ordered as well.

To generalize the program from T‚ K being exact numbers to upper bounds, we introduce activity

variables wk‚ t for each state ak‚ t, with wk‚ - 1 = 0 for all k. These activity variables affect which constraints

are in effect and what variables are zeroized. Their application to the program requires a conditioning

construct that enforces a constraint conditioned on the value of the activity variables. Such conditioning can

be constructed by inequality constraints that take effect iff the condition is met. For example, we can

formulate the constraint a! b � c, which requires b � c iff a = 1, by the modified constraint

b � c - (1 - a). The generalized formulation is as follows:

Max � s:t:

8k‚ t < T : (wk‚ t ^ wk‚ t + 1)! ak‚ t + 1 = F(ak‚ t)

8k‚ t < T : (wk‚ t ^ :wk‚ t - 1)! Iak‚ 0 = ak‚ T

8k‚ t > 0 : wk‚ t ! Iak‚ T>ak‚ t

8k < K : (wk‚ T ^ wk + 1‚ T )! Iak + 1‚ T>ak‚ T

8k‚ t < T - 1 : wk‚ t � wk‚ t + 1

8k < K : wk‚ T � wk + 1‚ T

8k : wk‚ T - 1 = wk‚ T

8k‚ t : :wk‚ t ! Iak‚ t = 0n ‚ (5)

where 0n denotes a vector of n zeros and the last constraint results in zeroizing variables that are not in use.

3.4. Robustness to state perturbations

To quantify robustness, we first consider the sensitivity of a model to small perturbations to its current

state, similar to Fretter et al. (2009); Sevim and Rikvold (2008); and Ghanbarnejad and Klemm (2012). As

attractors represent the steady states or behaviors of the system under study, it is natural to consider the

ability of a perturbation to alter the system’s behavior. Such perturbations could occur due to the inherent

noise in the biological system.
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Let (G‚ F) be a given model with a set ATT of attractors. Given a state a of an attractor A, we consider

perturbations of k of its bits corresponding to a set S of nodes. We denote the perturbed state by

XOR(a‚ S) 6! A. We say that a is sensitive to S if. We say that A is sensitive to S if there exists such a 2 A.

We evaluate the robustness of a model by a weighted average of its sensitive attractors, where attractors

are weighted by their basin size estimate and the result is averaged over multiple choices of S, constrained

to have cardinality k. The procedure is as follows:

Algorithm 1: Stochastic state sensitivity score

1. Calculate model attractors.

2. Sample a state s and a node set S uniformly at random.

3. Simulate the model from s to derive its attractor A.

4. Sample a state a 2 A uniformly at random.

5. Simulate the model from XOR(a‚ S) to determine A’s sensitivity to S.

6. Repeat steps (1–5) 200 times and average the sensitivity results.

As an alternative sensitivity measure, we use an ILP formulation to compute an upper bound rather than

an average on sensitivity. That is, we find the maximal weighted average of attractors that are sensitive to a

set S of a given cardinality. Denote the relative basin size of attractor A 2 ATT by wA : = jfs 2 f0‚ 1gn :
s! Agj=2n. We can use the stochastic procedure above to estimate wA for each a 2 ATT . For the for-

mulation, we further assume that any state reaches its attractor after at most P steps. We denote the set of

attractor states by R. We represent the perturbed set S by binary variables s1‚ . . . ‚ sn, and formulate the

following program:

Max
X

A2ATT

wA � IbA
P
2RnAs:t:

X
i

si � k

8A 2 ATT : IaA2A

8A 2 ATT : IbA
0

= XOR(aA‚ S)

8A 2 ATT : PATH(bA
0 ‚ . . . ‚ bA

P):

3.5. Robustness to logic perturbations

An orthogonal way to measure the robustness of a model is by the effects of perturbing its logical

functions on the model’s attractors (Li et al., 2004; Sevim and Rikvold, 2008). As before, we assume that

up to k bits are changed in the truth tables of the Boolean functions.

Let (G‚ F) be a source model with a set ATT of attractors and let (G‚ F0) be the perturbed model with a set

ATT 0 of attractors. We consider the percent of model states whose associated attractors were eliminated by

the change:
P

A2ATTnATT 0 wA. For brevity, we omit the constraint regarding the number of bit changes.

Max
X

A2ATT

wA � IAs:t:

8A 2 ATT : IA = 1! PATH(A)

8A 2 ATT : IA = 0! PATH(A):

To estimate the average rather than maximum sensitivity to changes, we use a stochastic procedure

similar to the above.

4. RESULTS

4.1. Data retrieval and implementation details

We downloaded 76 Boolean models from the CellCollective repository (Helikar et al., 2012), using the

truth tables’ export features. We excluded three models with missing information or could not be parsed

and three models with acyclic graphs (hence, no dynamic behavior).
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For each model, we applied four scoring variants quantifying the sensitivity of the model to state changes

(stochastic and ILP-based variants) and attractor elimination due to function changes (stochastic and ILP-

based variants). We used 1000 iterations to estimate each model’s attractors and their basin sizes. For

stochastic measures, we used 200 iterations per model. For optimization variants, we set the bound on the

path length to an attractor to be P = 1 (the results were qualitatively similar for P = 10). We explored

different values of the number k of bit changes. The results followed similar trends when k ranged from 1 to

4, we focus the description on k = 1.

We benchmarked the sensitivity of the different models against randomized models in which both

topology and logic functions are randomized. Specifically, the topology was randomized while preserving

in- and out-degrees using the switching method with 10n switch attempts; the Boolean functions were

randomized while preserving the number of 1s in their truth tables by permuting table rows. We generated

40 random models for each real model.

We split the processing jobs among five servers. Two with 72 CPUs (2300 MHz) and 258 GB RAM, and

the remaining three with 40 CPUs (2800 MHz) and 258 GB RAM. When running the stochastic algorithms,

we ran iterations in parallel, and let the ILP solver (Gurobi) utilize all cores. Table 1 provides running time

statistics. Running times varied considerably between models, and thus, we set a time-out of 90 minutes (in

addition to ILP problem setup time) for running the different scoring methods on each model and discarded

the results for models on which the computation was not completed within the given time bound. Overall,

we collected results for 30 of the 70 models. The source code used for the analysis can be found at

github.com/arielbro/attractor_learning, commit hash cd0874b6103f142ae3bb828e565e6162e7ff2f0e

4.2. Real models are more robust than their randomized counterparts

We applied our robustness computation pipeline to the 30 models described above and compared the

results with those obtained on randomized models. When applying the ILP-based sensitivity analysis of

model changes, we observed that in almost all cases (for both real and random models) a single bit change

was enough to eliminate the entire attractor space of a model. Thus, we computed an alternative score

where the change is constrained to a specific node at a time, producing a sensitivity score for each of the

model’s nodes, and modified the stochastic version similarly.

The distributions of the four score variants on real and random models are given in Figure 1. Evidently,

real models have lower sensitivity scores than random models across all score variants. To quantify the

deviation of the real models from the corresponding distributions of random scores, we used a Wilcoxon

signed-rank test, where the score of each real model was paired with the mean score of its random

counterparts. For the node-based model perturbation scores, we paired the mean score of vertices in a real

model with the mean scores of nodes in its random counterparts.

The comparison results are summarized in Table 2, revealing that in all cases the real models are more

robust to changes than their randomized instances. These differences were significant for all score types

(p < 0:05), and especially for the state changes (p < 0:005), as also evident from the box plots in Figure 2.

4.3. Stochastic versus optimization-based sensitivity analysis

It is interesting to compare the stochastic scores that measure the mean sensitivity to a change versus the

ILP-based optimization scores that measure the extremes. As an example, The majority of models had an

optimization score of 1 for attractor elimination, but less than 5% of the models had the corresponding

stochastic score of 1, suggesting that there is a marked difference between a random perturbation to the

Table 1. Running Times in Seconds of the Different

Scoring Variants

Variant Median Mean Max

Model change, ILP 0 1 11

Model change, stochastic 27 83 1917

State change, ILP 14 322 6728

State change, stochastic 6 38 1371

ILP, integer linear programming.
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logic of a model and a targeted one. For individual nodes, there was a correlation of 0:20 between the

stochastic and ILP-based variants. For state perturbations, there was a strong correlation (0:74) between the

stochastic and ILP-based variants. These relationships are visualized in Figure 3. The ILP-based scores are

not a perfect upper bound for the stochastic ones since they assume a restricted path length to a modified

attractor, but are almost always higher for the same model.

5. CONCLUSIONS

We have presented a first analysis of the attractor landscape of Boolean models of cellular circuits and its

sensitivity to state and logic changes. Our analysis combined novel ILP formulations with stochastic

simulations to overcome the inherent complexity of the problem. We found that real models are more

robust than their randomized counterparts with respect to both state and logic changes. The significant

difference between real and random models, across the four measures, supports the motivating assumption

that the abstract notion of robustness is captured in the dynamics of Boolean models.

FIG. 1. Distribution of model scores for each score variant, comparing real and random models. (a) ILP per-node

scores for model perturbation. (b) Stochastic per-node scores for model perturbation. (c) ILP scores for state pertur-

bation. (d) Stochastic scores for state perturbation. ILP, integer linear programming.

Table 2. Comparison of Mean Sensitivity Scores for

Real and Random Models

Variant Real Random p

Model change, ILP (nodes) 0.837 0.863 0.049

Model change, stochastic (nodes) 0.311 0.339 0.017

State change, ILP 0.226 0.416 3.89e-03

State change, stochastic 0.073 0.126 8.35e-04
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FIG. 2. Box plots showing the distribution of sensitivity scores for each base network. Whiskers denote furthest data

point within 1.5 IQR from median. Red dots denote the real models, and for per-node scores, the mean of real model

node scores. (a) ILP per-node scores for model perturbation. (b) Stochastic per-node scores for model perturbation. (c)

ILP scores for state perturbation. (d) Stochastic scores for state perturbation. IQR, interquartile range.
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While the analysis could be successfully applied to dozens of circuits with up to 62 nodes each, the

optimization problem remains challenging for larger circuits, especially when allowing longer paths from a

state to its associated attractor. Another interesting problem is the generalization of the methods presented

to asynchronous update schemes. Finally, further research is required to gain insight into the mechanisms

behind the increased robustness of real models.
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Schwab, J., Siegle, L., Kühlwein, S., et al. 2017. Stability of signaling pathways during aging—A boolean network

approach. Biology 6, 46.

Sevim, V., and Rikvold, P.A. 2008. Chaotic gene regulatory networks can be robust against mutations and noise.

J. Theor. Biol. 253, 323–332.

142 BRUNER AND SHARAN

D
ow

nl
oa

de
d 

by
 T

el
 A

vi
v 

U
ni

v 
Pa

ck
ag

e 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
8/

21
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Shachar, R., Ungar, L., Kupiec, M., et al. 2008. A systems-level approach to mapping the telomere length maintenance

gene circuitry. Mol. Syst. Biol. 4, 172.

Sharan, R., and Karp, R.M. 2006. Reconstructing boolean models of signaling. J. Comput. Biol. 13, 165–181.

Silberberg, Y., Kupiec, M., and Sharan, R. 2014. A method for predicting protein-protein interaction types. PLoS One

9, e90904.

Vandin, F., Upfal, E., and Raphael, B.J. 2011. Algorithms for detecting significantly mutated pathways in cancer.

J. Comput. Biol. 18, 507–522.

Vardi, L., Ruppin, E., and Sharan, R. 2012. A linearized constraint-based approach for modeling signaling networks.

J. Comput. Biol. 19, 232–240.

Yeger-Lotem, E., Riva, L., Su, L.J., et al. 2009. Bridging high-throughput genetic and transcriptional data reveals

cellular responses to alpha-synuclein toxicity. Nat. Genet. 41, 316–323.

Yosef, N., Ungar, L., Zalckvar, E., et al. 2009. Toward accurate reconstruction of functional protein networks. Mol.

Syst. Biol. 5, 248.

Address correspondence to:

Prof. Roded Sharan

Blavatnik School of Computer Science

Tel Aviv University

Tel Aviv 69978

Israel

E-mail: roded@post.tau.ac.il

and

ducker@vbi.vt.edu

A ROBUSTNESS ANALYSIS OF DYNAMIC BOOLEAN MODELS 143

D
ow

nl
oa

de
d 

by
 T

el
 A

vi
v 

U
ni

v 
Pa

ck
ag

e 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
8/

21
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 


