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1. Introduction 

Technologies for generating high-density arrays of cDNAs and oligonucleotides 

are developing rapidly, and changing the landscape of biological and biomedical 

research. They enable, for the first time, a global, simultaneous view on the 

transcription levels of many thousands of genes, when the cell undergoes specific 

processes and in certain conditions. For several organisms, the sequences of  all 

genes are available, and thus, transcript levels of the complete gene collection can 

already be monitored today. The potential of such technologies is tremendous: 

Monitoring gene expression levels in different developmental stages, tissue types, 

clinical conditions and different organisms can help understanding gene function 

and gene networks, assist in the diagnosis of disease conditions and reveal the 

effects of medical treatments. Undoubtedly, other applications will emerge in 

coming years. 

A word on terminology: gene expression data is usually represented by a matrix, 

with rows corresponding to genes, and columns corresponding to conditions, 

experiments or time points. The content of the matrix is the expression levels of 

each gene under each condition. Those levels may be absolute, relative or 

otherwise normalized. Each column contains the results obtained from a single 

array in a particular condition, and is called the profile of that condition. Each row 

vector is the expression pattern of a particular gene across all the conditions. 

More formal definitions will be given in the sequel. 

What is Clustering: A key initial step in the analysis of gene expression data is 

the detection of groups of genes that exhibit similar expression patterns. This 

translates to the algorithmic problem of clustering. A clustering problem consists 

of elements and a characteristic vector for each element. A measure of similarity 

is defined between pairs of such vectors. (In gene expression, elements are usually 

genes and the vector of each gene is its expression pattern; similarity can be 

measured in various ways that are problem dependent, for example, by the 

correlation coefficient between vectors.) The goal is to partition the elements into 

subsets, which are called clusters, so that two criteria are satisfied: Homogeneity - 

elements in the same cluster are highly similar to each other; and separation - 

elements from different clusters have low similarity to each other.  
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The Array Technology: There are currently two main technologies that generate 

large-scale gene expression data. Both are based on performing a large number of 

hybridizations in parallel in a single experiment on high-density arrays (a.k.a. 

“DNA chips”), between probes and targets. cDNA microarrays (Schena et al. 

1996, Schena 1996, Marshall and Hodgson 1998, Ramsay 1998) contain large sets 

of cDNA sequences, each several hundred bases long, immobilized on a solid 

substrate. In an array experiment, many gene-specific cDNAs are spotted on a 

single matrix. The matrix is then simultaneously probed with cDNA 

representations of total RNA pools from test and reference cells, tagged with 

distinct fluorescent dyes, allowing one to determine the relative amount of 

transcript present in the pool by the relative intensities of the fluorescent signals 

generated at each spot. In oligonucleotide microarrays (Fodor et al. 1993, 

Lipshutz et al. 2000, Harrigton et al. 2000), each gene is represented on the array 

by a set of 15-20 oligonucleotide probes, typically 25 bases long, designed to 

hybridize to different regions of the same RNA. This use of multiple detectors 

greatly improves reproducibility and accuracy of RNA quantification, and reduces 

the rate of false-positives and miscalls. 

 

Outline of this Chapter: In this chapter we shall describe applications of 

clustering to gene expression data. We shall outline some of the popular 

algorithms in this field, and focus mainly on the CLICK algorithm developed by 

Sharan and Shamir (2000). In clustering of genes, we shall present results of 

CLICK in comparison to the other algorithms. Some of these results were 

previously reported in (Sharan and Shamir 2000,2001). The latter also contains a 

broader exposition of other clustering methods. In addition, we shall present 

results of using CLICK to find common regulatory motifs in upstream regions of 

clustered genes, and to classify tissues based on their expression profiles. The 

results demonstrate the utility of clustering in general, and CLICK in particular, in 

a wide variety of applications to gene expression analysis. 

2. Algorithms 

In this section we first give basic mathematical background on clustering. We 

then describe three clustering algorithms used for gene expression analysis. We 
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end the section with a discussion on how to measure the quality of a suggested 

clustering solution. 

2.1 Mathematical Background 

Let N={e1,…,en} be a set of n elements, and let C={C1,…,Cl} be a partition of N 

into disjoint subsets. Each subset is called a cluster, and C is called a clustering 

solution, or simply a clustering. Two elements ei and ej are called mates with 

respect to C if they are members of the same cluster in C. In the gene expression 

context, the elements are the genes and we often assume that there exists some 

correct partition of the genes into “true” clusters. Alternatively, the elements are 

the conditions or tissues, that are assumed to belong to one of several categories, 

e.g., tumor or normal tissues. When C is the true clustering of N, elements that 

belong to the same true cluster are simply called mates. 

The input data for a clustering problem is typically given in one of two forms: (I) 

Fingerprint data - each element is associated with a real-valued vector, called its 

fingerprint, or pattern, which contains p measurements on the element, e.g., 

expression levels of an mRNA at p different conditions (cf. Eisen and Brown 

1999). (II) Similarity data - pairwise similarity values between elements. These 

values can be computed from fingerprint data, e.g., by correlation between 

vectors. Alternatively, the data can represent pairwise dissimilarity, e.g., by 

computing distances. Fingerprints contain more information than similarity 

values, but the latter are completely generic and can be used to represent the input 

to clustering in any application. (Note that there is also a practical storage 

consideration regarding the presentation: The fingerprint matrix is of order n×p 

while the similarity matrix is of order n×n. In gene expression applications often 

n>>p. In contrast, in tissue classification applications often n<<p.) 

The goal in a clustering problem is to partition the set of elements into 

homogeneous and well-separated clusters. That is, we require that elements from 

the same cluster will be highly similar to each other, while elements from 

different clusters will have low similarity to each other. This “meta-formulation” 

does not define a specific optimization problem, since homogeneity and 

separation can be mathematically formulated in various ways, leading to a variety 

of optimization problems. Note also, that even when homogeneity and separation 
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are precisely defined, those are two opposing objectives: The better the 

homogeneity – the poorer the separation, and vice versa.  

Clustering problems and algorithms are often represented in graph-theoretic terms 

and we shell use this representation here. We therefore include some basic 

definitions on graphs. We refer the readers to Golumbic (1980) and Even (1979) 

for more background and terminology on graphs. 

Let G=(V,E) be a weighted graph.  We denote the vertex set V of G also by V(G). 

For a subset R of V, the subgraph induced by R, is obtained from G by deleting all 

vertices not in R and the edges incident on them. The weight of a vertex v is the 

sum of the weights of the edges incident on v. A cut C in G is a subset of its 

edges, whose removal disconnects G. The weight of C is the sum of the weights of 

its edges. A minimum weight cut is a cut in G with minimum weight.  

For a set of elements K⊆N, we define the fingerprint or centroid of K to be the 

mean vector of the fingerprints of the members of K. For two fingerprints x and y  

we denote their similarity by S(x,y) and their dissimilarity by d(x,y). A similarity 

graph is a weighted graph in which vertices correspond to elements and edge 

weights are derived from the similarity values between the corresponding 

elements. Hence, the similarity graph is just an equivalent representation of the 

similarity matrix. 

An alternative formulation of the clustering problem is hierarchical: Rather than 

asking for a single partition of the elements, one seeks an iterated partition: A 

dendogram is a rooted weighted tree, with leaves corresponding to elements. The 

customary (perhaps counter-intuitive) way is to present the tree with the root at 

the top and the leaves at the bottom. Each edge defines the cluster of elements 

contained in the subtree below that edge. The edge's weight (or length) reflects the 

dissimilarity between that cluster and the remaining elements. In this formulation 

the clustering solution is the dendogram, and each non-singleton cluster, 

corresponding to a rooted subtree, is split into subclusters. The determination of 

disjoint clusters is left to the judgment of the user. Typically, one tends to 

consider as a genuine cluster the set of elements of a subtree just below a 

connecting edge of high weight. 

Irrespective of the representation of the clustering problem input, judicious 

preprocessing of the raw data is essential to meaningful clustering. This 

preprocessing is application dependent and must be chosen in view of the 
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expression technology used and the biological questions asked. The goal of the 

preprocessing is to normalize the data and calculate the pairwise element 

(dis)similarity, if applicable. Common procedures for normalizing fingerprint data 

include transforming each fingerprint to have mean zero and variance one, a fixed 

norm or a fixed maximum entry. Statistically based methods for data 

normalization have also been developed recently (cf. Kerr et al. 2000). 

 

Several algorithmic techniques were previously used for clustering gene 

expression data, including hierarchical clustering (Eisen et al. 1998), self 

organizing maps (Tamayo et al. 1999), and graph theoretic approaches (Sharan 

and Shamir 2000). We describe these approaches in the sequel.  For other 

approaches to clustering expression patterns, see (Ben-Dor et al. 1999, Hartuv and 

Shamir 2000, Milosavljevic et al. 1995, Alon et al. 1999, Getz et al. 2000, Heyer 

et al. 1999). For more extensive reviews and more information and background on 

clustering, see (Hartigan 1975, Everitt 1993, Mirkin 1996, Hansen and Jaumard 

1997, Shamir and Sharan 2001).  

2.2 Hierarchical Clustering 

Hierarchical clustering solutions are typically represented by a dendogram. 

Algorithms for generating such solutions often work either in a top-down manner, 

by repeatedly partitioning the set of elements, or in a bottom-up fashion. We shall 

describe here the latter approach. Such agglomerative hierarchical clustering 

algorithms are among the oldest and most popular clustering methods (Cormack 

1971). They proceed from an initial partition into singleton clusters by successive 

merging of clusters until all elements belong to the same cluster. Each merging 

step corresponds to joining two clusters. The general scheme due to Lance and 

Williams (1967) follows. It is assumed that D=(d(i,j)) is the input dissimilarity 

matrix. 

The agglomerative hierarchical clustering scheme: 

1. Find a minimal entry d(i,j) in  D, and merge clusters i and j. 

2. Modify D by deleting rows and columns i,j and adding a new row and 

column i∪j, with their dissimilarities defined by: 

d(k,i∪j)=d(i∪j,k)=αid(k,i)+αjd(k,j)+γ|d(k,i)-d(k,j)| 

3. If there is more than one cluster, then go to Step 1. 
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Common variants of this scheme, obtained for appropriate choices of the α-s and 

γ parameters, are the following: 

Single-linkage: d(k, i∪j)=min{d(k,i), d(k,j)}. 

Complete-linkage: d(k, i∪j)=max{d(k,i), d(k,j)}. 

Average-linkage: d(k, i∪j)= (ni⋅d(k,i) + nj⋅d(k,j))/(ni+nj),  where ni denotes the 

number of elements in cluster i. 

 

Eisen et al. (1998) developed a clustering software package based on average-

linkage hierarchical clustering. The clustering program is called Cluster, and the 

accompanying visualization program is called TreeView. Both programs are 

available at http://rana.stanford.edu/software/. The gene similarity metric used is a 

form of correlation coefficient. The algorithm iteratively merges elements whose 

similarity value is the highest, as explained above. The output of the algorithm is a 

dendogram and an ordered fingerprint matrix. The rows in the matrix are 

reordered based on the dendogram, so that groups of genes with similar 

expression patterns are adjacent.  

 

2.3 Self Organizing Maps 

The self organizing map (SOM) was developed by Kohonen (1997) as a method 

for fitting a number of ordered discrete reference vectors to the distribution of 

vectorial input samples. The method assumes that the number of clusters is 

known. Those clusters are organized as a set of nodes in a hypothetical “elastic 

network”, with a simple neighborhood structure on the nodes, e.g., a two-

dimensional k×l grid. Each node n in the grid is associated with a reference vector. 

In the process of running the algorithm, the input vectors direct the movement of 

the reference vectors towards the denser areas of the input vectors space, so that 

an organization of the input vectors over the network emerges. In the following 

we describe the SOM algorithm in the Euclidean space. 

The SOM process is iterative. Denote by fi(n) the position of the reference vector 

of node n at the i-th iteration. The initial positioning f1 is random. The algorithm 

iteratively selects a random data point p, identifies the node np whose reference 
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vector fi(np) is closest to p, and updates the position of all reference vectors 

towards p according to a predefined learning function l(·): 

)]()[,,()()(1 nfpinnlnfnf ipii −+=
+

 

The amount of position adjustment determined by l(n,np,i) decreases as the 

distance between n and np (in the grid) and the iteration number grow. The 

intuition for this learning process is that the reference vectors that are close 

enough to p will be pulled towards it, and the stiffness of the grid structure will 

propagate some of impact to neighboring nodes. For much more on self 

organizing maps the reader is referred to Kohonen (1997).  

 

Tamayo et al. (1999) devised a gene expression clustering software, GeneCluster, 

which uses the SOM algorithm.  The software is available at 

http://waldo.wi.mit.edu/MPR/. In their implementation they incorporated a 

neighborhood learning function, which is zero for nodes distant from np and 

equals 0.02T /(T+100i) for nodes close to np, where T is the maximum number of 

iterations. GeneCluster accepts an input file of expression levels together with a 

two dimensional grid geometry for the nodes. The number of grid points is the 

prescribed number of clusters. The resulting clusters are visualized by presenting 

for each cluster its average expression pattern along with error bars displaying the 

standard deviation at each condition. Clusters are presented in their grid order, as 

clusters of close nodes tend to be similar. 

Another implementation of SOM for clustering gene expression profiles was 

developed by Toronen et al. (1999).  

2.4 CLICK 

The CLICK (CLuster Identification via Connectivity Kernels) algorithm (Sharan 

and Shamir 2000)  employs a graph theoretic approach to clustering. The software 

is available at http://www.math.tau.ac.il/~rshamir/click.html. The algorithm first 

preprocesses the input data and forms a weighted similarity graph. It then 

recursively partitions the current set of elements into two subsets. Before a 

partition, the algorithm tests if the subgraph induced by the current subset of 

elements is a kernel of a cluster (the definition of a kernel is given below). If this 

is the case, the subgraph is not partitioned further. Otherwise, a minimum weight 

cut is computed in the subgraph, and the current set of elements is split into the 
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two subsets separated by that cut. The output is a list of kernels which serve as a 

basis for the eventual clusters, and a set of singletons, i.e., single vertices to be 

handled later. This scheme is detailed below. It is assumed that procedure 

MinWeightCut(G) computes a minimum weight cut of G and returns a partition of 

G into two subgraphs H and K according to this cut. 

 

Form-Kernels(G): 

If V(G)={v} then move v to the singleton set. 

Else if G is a kernel then output V(G). 

Else  

     (H,K) ← MinWeightCut(G). 

    Form-Kernels(H). 

    Form-Kernels(K). 

 

CLICK builds on a statistical model, which gives probabilistic meaning to edge 

weights in the similarity graph and to the stopping criterion. The key probabilistic 

assumption of CLICK is that pairwise similarity values between elements are 

normally distributed: Similarity values between mates are normally distributed 

with mean µT and variance σT
2, and similarity values between non-mates are 

normally distributed with mean µF and variance σF
2, where µT>µF. This situation 

often holds on real data, and can be asymptotically justified under certain 

assumptions (Sharan and Shamir 2000). 

The algorithm uses the values of these distribution parameters as well as the 

probability pmates that two randomly chosen elements are mates. These parameters 

can be computed directly from a known solution on a subset of the elements  

(such a solution is often available, e.g., in oligofingerprinting experiments 

(Poustka et al. 1999)). Alternatively, the parameters can be estimated using the 

EM algorithm, assuming the above probabilistic model (see, e.g., Mirkin 1996, 

Sec. 3.2.7). 

Let S=(Sij) be the input similarity matrix. Form a weighted similarity graph G in 

which the weight wij of the edge (i,j) reflects the probability that i and j are mates, 

and is derived from the normal density function and Bayes Theorem: 
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The current subgraph is determined to be a kernel if the value of a minimum cut in 

it is positive. This is the case if and only if for every cut C  in the current 

subgraph, the probability that it contains only edges between mates exceeds the 

probability that C contains only edges between non-mates.  

The actual implementation omits from the graph all edges with values below some 

predefined non-negative threshold, computes the minimum cut in that simplified 

graph using the Hao-Orlin algorithm (1994), and corrects the solution value for 

the missing edges. In order to reduce running time on very big instances, a 

screening heuristic removes low weight vertices from large components. The 

removed vertices are marked as singletons and handled at a later stage. 

CLICK first produces kernels which form the basis of the eventual clusters. 

Subsequent processing includes singleton adoption, recursive clustering process 

on the set of remaining singletons, and  an iterative merging step. The singletons 

adoption step is based on computing  similarities between singletons' and clusters' 

fingerprints. The merging step iteratively merges two kernels whose fingerprint 

similarity is the highest, provided that this similarity exceeds a predefined 

threshold. Visualization of the clusters shows average expression patterns and 

standard error bars for each cluster. 

2.5 Assessment of solutions 

A key question in the design and analysis of clustering techniques is how to 

evaluate solutions. We present in this section figures of merit for measuring the 

quality of a clustering solution. Different measures are applicable in different 

situations, depending on whether a (partial) true solution is known or not, and 

whether the input is fingerprint or merely similarity data. We describe below 

some of the applicable measures in case the true solution is unknown. For other 

possible figures of merit we refer the reader to (Everitt 1993, Hansen and Jaumard 

1997, Yeung et al. 2000).  

When the true solution is not known, we evaluate the quality of a suggested 

solution by computing two figures of merit that measure its homogeneity and 

separation. For fingerprint data, homogeneity is evaluated by the average 
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similarity between the fingerprint of an element and that of its cluster. Precisely, if 

cl(u) is the cluster of u, F(X) and F(u) are the fingerprints of a cluster X and an 

element u, respectively, and S is the similarity function, then 

∑
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Separation is evaluated by the weighted average similarity between cluster 

fingerprints. That is, if the clusters are X1,…,Xt, then 
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Hence, a solution improves if HAve increases, and if SAve decreases. In computing 

the above measures singletons are considered as additional one-member clusters. 

3. Clustering Genes 

In this section we describe three applications of CLICK for forming gene clusters 

on previously analyzed datasets. For the first dataset we present a comparison 

with GeneCluster. On the second, a comparison with Cluster. For the third dataset 

we present a comparison among CLICK, GeneCluster, CAST (Ben-Dor et al., 

1999) and K-Means (Herwig et al., 2000).  

3.1 Yeast Cell-Cycle 

The yeast cell cycle dataset of Cho et al. (1999) contains  the expression levels of  

6,218 S. cerevisiae putative gene transcripts (identified as ORFs) measured at 10-

minutes intervals over two cell cycles (160 minutes). We compared CLICK's 

results to those of GeneCluster (Tamayo et al. 1999). To this end, we applied the 

same filtering and data normalization procedures of (Tamayo et al. 1999). The 

filtering removes genes which do not change significantly across samples, 

resulting in a set of 826 genes. Additionally, the 90-minutes time-point was 

removed. The expression levels of each gene were normalized to have mean zero 

and variance one within each of the two cell-cycles. CLICK clustered the genes 

into 30 clusters in 14 seconds, leaving 55 unclustered singletons. A summary of 

the homogeneity and separation parameters for the solutions produced by CLICK 

and GeneCluster is shown in Table 1. CLICK obtained results superior in both 

parameters. 



12 

 

Table1  
 

 

 

Two putative true cluster are the sets of late G1-peaking genes and M-peaking 

genes, reported in (Cho et al. 1999). Out of the late G1-peaking genes that passed 

the filtering, CLICK placed 91% in a single cluster. In contrast, Tamayo et al. 

(1999) report that in their solution 87% of these genes were contained in three 

clusters. Out of the M-peaking genes that passed the filtering, CLICK placed 95% 

in a single cluster, while in the solution of (Tamayo et al. 1999) 92.5% of the 

genes are again partitioned among three different clusters. 

3.2 Serum Response 

The dataset of Iyer et al. (1999) contains the expression levels of 8,613 human 

genes obtained as follows: Human fibroblasts were deprived of serum for 48 

hours and then stimulated by addition of serum. Expression levels of genes were 

measured at 12 time-points after the stimulation. An additional data-point was 

obtained from a separate unsynchronized sample. A subset of 517 genes whose 

expression levels changed substantially  across samples was analyzed by the 

hierarchical clustering method of Eisen et al. (1998). The data was normalized by 

dividing each entry by the expression level at time zero, and taking a logarithm of 

the result. For ease of manipulation, we also transformed each fingerprint to have 

a fixed norm. The similarity function used was dot-product, giving values 

identical to those used by Eisen et al. (1998). CLICK clustered the genes into 10 

clusters in 32 seconds, leaving 26 singletons. These clusters are shown in Figure 

1. Table 2 presents a comparison between the clustering quality of CLICK and the  

hierarchical clustering of Eisen et al. (1998) on this dataset. (The determination of 

clusters from the dendogram was done manually by Eisen et al.) Again, CLICK 

performs better in both parameters. 

Table 2 
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3.3 Yeast Cell-Cycle Revisited 

Here we describe a ‘blind’ comparison among several clustering algorithms, 

including CLICK, CAST, GeneCluster and K-Means, on a yeast cell-cycle dataset 

containing the gene expression levels of yeast ORFs over 79 conditions. The 

dataset is available at http://cellcycle-www.stanford.edu. This comparison was 

originally reported in (Shamir and Sharan 2001). The original dataset (Spellman 

et al. 1998) contains samples from yeast cultures synchronized by four 

independent methods: α factor arrest (samples taken every 7 minutes for 119 

minutes); arrest of a cdc15 temperature sensitive mutant (samples taken every 10 

minutes for 290 minutes); arrest of a cdc28 temperature sensitive mutant (this part 

of the data is from (Cho et al. 1999), as described in section 3.1), and elutriation 

(samples taken every 30 minutes for 6.5 hours). It also contains separate 

experiments in which G1 cyclin Cln3p or B-type cyclin Clb2p were induced. 

Spellman et al. identified in this data 800 genes that are cell-cycle regulated 

(Spellman et al. 1998). The dataset that we used contains the expression levels of 

698 out of those 800 genes, which have no missing entries, over the 72 conditions 

that cover the α factor, cdc28, cdc15, and elutriation experiments. As in (Tamayo 

et al. 1999), the 90 minutes datapoint was omitted from the cdc15 experiment. 

Each row of the 698×72 matrix was normalized to have mean 0 and variance 1. 

(Note that by normalizing the variance different gene amplitudes are 

deemphasized and periodicity is made more prominent). 

Based on the analysis conducted by Spellman et al. we expect to find in the data 

five main clusters: G1-peaking genes, S-peaking genes, G2-peaking genes, M-

peaking genes, and M/G1-peaking genes. Each of these clusters was shown to 

contain biologically meaningful sub-clusters. The dataset was clustered using four 

methods: K-Means (Herwig et al. 2000), GeneCluster (Tamayo et al. 1999), 

CAST (Ben-Dor et al. 1999), and CLICK (Sharan and Shamir 2000). The 

similarity measure used was Pearson correlation coefficient. The authors of each 

of the programs were given the dataset and asked to provide a clustering solution. 

The identity of the dataset was not described and genes were permuted in an 

attempt to disguise the data source. (Admittedly, the test was not  really blind, 

since someone familiar with the gene expression literature could have identified 

the nature of the data.) The authors were told in advance that the criteria of 
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average homogeneity and average separation would be used to evaluate the 

quality of the solutions. 

Table 3 summarizes the solutions produced by each program, and their 

homogeneity and separation parameters. The so-called 'True' clustering, reported 

in Spellman et al. (1998) was obtained manually by comparing the expression 

patterns and the literature and is not very accurate (M. Eisen, private 

communication). The solution produced by CLICK contains 67 unclustered 

singletons.  

 

Table 3 
 
 

4. Identifying regulatory motifs  

Global gene expression data enables the delineation of genetic regulatory 

networks via direct or indirect approaches. In the direct approach, the effects of 

activation or repression of a specific transcription factor (TF) on gene expression 

are monitored. This way, genes located downstream from p53 (Zhao et al. 2000), 

BRCA1 (Harkin et al. 1999) and C-myc (Coller et al. 2000) in their respective 

pathways, were identified. 

The indirect approach for the delineation of regulatory networks relies on the 

hypothesis that genes exhibiting similar expression patterns across a large panel of 

biological conditions share common regulatory elements in their promoter 

regions. In other words, co-expression is correlated with co-regulation (Tavazoie 

et al. 1999, Zhang 1999, Brazma and Vilo 2000). The regulatory elements in the 

promoter region represent the “switches” that respond to signals from various 

cellular signaling pathways. The response can be either as part of the normal 

developmental program of the organism, or in response to external perturbations, 

stresses and alterations in physiological conditions.  The binding of transcription 

factors to their binding sites in the promoter region enhances (or represses) the 

transcription initiation complex recruitment and assembly on the basal promoter 

in the proximity of the transcription start site, thereby influencing transcription 

initiation.   
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The approach that aims to detect cis-regulatory TF’s binding sites from co-

expression comprises two steps: (I) Cluster analysis aimed at the identification of 

clusters of genes sharing similar expression patterns.  (II) Sequence analysis, 

which searches for sequence patterns that are over-represented in upstream 

regions of members of the same cluster. The derivation of regulatory networks 

through the identification of common cis-regulatory elements shared by co-

regulated genes was successfully demonstrated in yeast (Spellman et al. 1998, 

Cho et al. 1998, Jelinsky et al. 2000) and arabidopsis thaliana (Maleck et al. 

2000).  

In order to test the utility of CLICK for motif identification, we have analyzed the 

dataset published recently by Jelinsky et al. (2000). In that experiment, gene 

expression levels of all 6,200 ORFs of the yeast Saccharomyces Cerevisiae were 

measured in order to study the cellular response to DNA damage. In total, gene 

expression profiles in 26 biological conditions were measured, including 

treatments with various DNA damaging agents at several time points and doses. 

2,610 genes that changed by a factor of 3 or more in at least one condition were 

subjected to cluster analysis. The clustering reported in (Jelinsky et al. 2000) 

consists of 18 clusters, obtained by GeneCluster. In comparison, CLICK 

identified 33 clusters with more than 10 members.  

Once the clusters are identified, the motif finding algorithm is applied to promoter 

regions of the genes in each cluster. In this study, the search was performed on the 

500 bases upstream to the ORFs’ translation start sites. The analysis was 

performed using the AlignACE package (http://atlas.med.harvard.edu/, Roth et al. 

1998, Hughes et al. 2000) as done in (Jelinsky et al. 2000). (As the motif finding 

software was recently modified, in addition to its application to CLICK’s 

clustering, we also reapplied AlignACE to the clustering reported in (Jelinsky et 

al. 2000).) AlignACE employs Gibbs sampling for detecting over-represented 

motifs in a target set of sequences. It utilizes the mononucleotide frequencies as 

genomic background. To focus on regulatory motifs that potentially form the 

mechanistic basis for the observed co-expression, as well as to suppress false-

negatives, only motifs that exceed two score thresholds are reported. The first is 

an alignment score, which gauges the statistical significance of the identified 

motif over the genomic background. The second is a specificity score, which 
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gauges how specific is the identified motif to promoters of genes in the cluster, 

relative to promoter regions of other genes in the genome (Hughes et al. 2000).  

In total, 26 significant motifs were identified in CLICK’s clusters, and 30 such 

motifs were identified in GeneCluster’s clusters. The identified motifs were 

matched against the SCPD database of experimentally verified yeast’s TF binding 

sites (http://cgsigma.cshl.org/jian/, Zhu and Zhang 1999). Table 4A summarizes 

the number of motifs identified in each clustering as well as the number of  motifs 

that had a match in the SCPD DB. For both clustering methods, more than 60% of 

the motifs had a verified TF binding site match, a fact that indicates the utility of 

this approach. In addition, motifs with no match to known binding site were 

detected as well. Each of these motifs forms a hypothesis that should be subjected 

to further biological research.  

Of the 26 motifs identified in CLICK’s clusters, 17 were common with 

GeneCluster’s motifs. Common motifs were identified using CompareAce (part of 

the AlignAce package), which calculates a similarity coefficient for pairs of input 

motifs. Motifs whose similarity exceeded a threshold of 0.7 were regarded as 

common. Table 4B lists those common motifs. It is interesting to note that the 

percent of verified common motifs is particularly high (more than 75%, see Table 

4A). Hence, the four common, unidentified motifs are more likely to be true, as 

they were obtained by two different methods. 

The delineation of cis-regulatory motifs via analysis of promoters of co-regulated 

genes was so far demonstrated in model organisms where the identification of 

promoter regions is straightforward. Most TF binding sites are located within a 

few hundred bases upstream from the transcription start site. As the 5’-

untranslated regions (UTRs) are very short (100-200b), the predicted translation 

start sites are very proximate to the transcription start sites (most of which are 

unmapped). Therefore, sequence analysis aimed at detecting the regulatory 

elements, can be conducted on sequences in the upstream vicinity of the easy-to-

determine translation start sites. In contrast, the identification of promoters in 

mammals is much more difficult, as the 5’-UTR can be very long (up to several 

kilobases). However, several full length cDNA projects are being conducted, 

which will substantially increase the number of genes for which transcription start 

sites are mapped (Werner 2001). A recently published research indeed 

demonstrated that this approach for deciphering regulatory mechanism can be 



17 

successfully implemented in mammals, provided that promoters of co-regulated 

genes are mapped (Livesey et al. 2000). 

 

 

 

Table 4 
 

 

5. Tissue classification  

One of the most promising applications of gene expression analysis is the 

classification of tissue types according to their gene expression profiles (Golub et 

al. 1999). The power of gene expression analysis is directed at two important 

problems in this context: Cancer classification and drug discovery. Several recent 

studies (Alon et al.1999, Golub et al. 1999, Alizadeh et al. 2000) demonstrated 

that gene expression data can be used in distinguishing between similar cancer 

types, whose distinction is hard otherwise, thereby allowing more accurate 

diagnosis and treatment. Drug assessment is aided by expression profiling before, 

during and after treatment: The profiles pinpoint drug responsive genes, and 

indicate treatment outcome (Clarke et al. 1999). 

Here we focus on application of gene expression analysis, and cluster analysis in 

particular, to cancer classification. In cancer related gene expression studies, the 

data consist of expression levels of thousands of genes in several tissues. The 

tissues originate from two or more known classes, e.g., normal and tumor. The 

analysis aims at studying the typical expression profile of each class and 

predicting the classification of new unlabeled tissues. Classification methods 

employ supervised learning techniques, i.e., the known classification of the 

tissues is used to guide the algorithm in building a classifier. These include 

support vector machines (Ben-Dor et al. 2000, Furey et al. 2000), boosting, 

clustering (Ben-Dor et al. 2000), discriminant analysis (Xiong et al. 2000) and 

weighted correlation (Golub et al. 1999). Classification can be aided by first 

filtering the dataset from genes which are irrelevant to the required distinction. 

Several methods have been suggested to choose subsets of informative genes, on 
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which improved classification accuracy can be attained (Ben-Dor et al. 2000, 

Furey et al. 2000, Xiong et al. 2000, Dudoit et al. 2000). 

Ben-Dor et al. (2000) have demonstrated the strength of clustering in 

classification problems. Key to their method is combining the labeling (known 

classification) information in the clustering process. Assume that we use a 

clustering algorithm with at least one free parameter. Given an unlabeled tissue, 

the clustering algorithm is applied repeatedly with different parameter values on 

the set of all tissues (known and unknown). Each solution is scored by its level of 

compatability with the labeling information, and the best solution is chosen. The 

classification of the unlabeled tissue is then determined according to the content 

of the cluster containing it, assigning it the most represented class in this cluster.  

The compatibility score for a clustering solution used by Ben-Dor et al. (2001) is 

simply the number of tissue pairs that are mates or non-mates in both the true 

labeling and in the clustering solution. Singletons are considered as 1-member 

clusters for this computation. The clustering algorithm used in that work was 

CAST. 

We have studied two classification datsets using CLICK. The first dataset of Alon 

et al. (1999) contains 62 samples of colon epithelial cells. These samples were 

collected from colon-cancer patients. They are divided into 40 ‘tumor’ samples 

collected from tumors, and 22 ‘normal’ samples collected from normal colon 

tissues of the same patients. Of the ~6000 genes represented in the experiment, 

2000 genes were selected based on the confidence in the measured expression 

levels. This data is available at http://www.sph.uth.tmc.edu/hgc. The second 

dataset of Golub et al. (1999) contains 72 leukemia samples. These samples are 

divided into 25 samples of acute myeloid leukemia (AML) and 47 samples of 

acute lymphoblastic leukemia (ALL). Of the ~7000 genes represented in the 

experiment, 3549 were chosen based on their variability in the dataset. The 

complete dataset is available at http://www.genome.wi.mit.edu/MPR. 

The application of CLICK to classify these datasets enumerates several 

combinations of parameters for CLICK, and chooses the one which is most 

compatible with the given labels. Compatibility was computed as in Ben-Dor et 

al. (2000). A sample is not classified if either it is a singleton in the clustering 

obtained, or no class has a majority in the cluster assigned to that sample. 
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In order to assess the performance of CLICK we employed the leave one out cross 

validation (LOOCV) technique, as done in (Ben-Dor et al. 2000). According to 

this technique, one trial is performed for each tissue in the dataset. In the i-th trial, 

the algorithm tries to classify the i-th sample based on the known classifications 

of the rest of the samples. The average classification accuracy is thus computed. 

Table 5 presents a comparison between the classification based on CLICK and 

that of CAST, as reported in Ben-Dor et al. (2000). The results are comparable, 

with CAST performing slightly better on the colon dataset, and CLICK 

performing slightly better on the leukemia dataset. 

 

Table 5 
 

 

 

Next, we tested CLICK’s utility in differentiating between two very similar types 

of cancer. We concentrated on part of the leukemia dataset comprising of the 47 

ALL samples only. For these samples an additional sub-classification into either 

T-cell or B-cell, is provided.  An application of CLICK to this dataset resulted in 

an almost perfect classification (see Table 6). 

 

Table 6 
 

 

Finally we examined the influence of feature selection on the classification 

accuracy. To this end, we sorted the genes in each dataset according to the ratio of 

their between-sum-of-squares and within-sum-of-squares values, as suggested in 

(Dudoit et al. 2000). This ratio is computed by the following formula: 
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Here i denotes the class number, ni its size, k denotes the sample number, xg,i is the 

average expression level of gene g at class i, xg is the average expression level of 

gene g, and xg
k is the expression level of gene g at sample k. 

We chose the 50 genes with the highest value and performed the classification 

procedure on the reduced dataset which contained the expression levels of these 

50 genes only. The results of this analysis are shown in Table 6. It is evident that 

in all cases  performance was substantially improved on the reduced dataset. 

Moreover, there were no unclassified tissues in the reduced datasets. 
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Table Legends 

 
Table 1: A comparison between CLICK and GeneCluster on the yeast cell-cycle dataset of (Cho et 

al. 1999). 

 
Table 2: A Comparison between CLICK and the hierarchical clustering of Eisen et al. (1998) on 

the dataset of response of human fibroblasts  to serum of (Iyer et al. 1999). 

 
Table 3: A summary of the clustering solutions and their figures of merit on the yeast cell-cycle 

dataset of (Spellman et al. 1998). 

 
Table 4: (A) Statistics on motifs identified in CLICK’s clusters (first column), GeneCluster’s 

clusters (second column) and in both clusterings (third column). First row: total number. Second 

row: number of motifs with a hit in the SCPD DB. (B) Motifs identified in both CLICK’s and 

GeneCluster’s clusters. Left column: CLICK’s motif name. Each motif is denoted by two 

numbers: the first is the cluster number and the second is the motif serial number in the cluster 

(AlignACE is capable of finding multiple motifs in a target set of sequences by an iterative 

masking procedure). The second row contains statistics on the prevalence of the motif in the 

cluster. Second column: the motif’s consensus sequence. Third column: an experimentally verified 

TF which matches the consensus sequence. (For TFs denoted by an ‘*’, there is one mismatch 

between the TF binding site consensus and the identified motif consensus, otherwise, there is a 

perfect match.) Forth column: The corresponding GeneCluster’s motifs (motifs with similarity 

coefficient above 0.7 to CLICK’s consensus). Motifs found more than once are grouped together 

in column 1. 

 
Table 5: A comparison of classification quality between CLICK and CAST on the colon data of 

(Alon et al. 1999) and the leukemia data of (Golub et al. 1999). For each dataset and clustering 

algorithm the percent of correct classifications (in the LOOCV iterations), incorrect classifications 

and unclassified elements are specified. 

 
Table 6: A summary of the classifications obtained by CLICK on the colon data of (Alon et al. 

1999), the whole leukemia dataset of (Golub et al. 1999), and part of the leukemia dataset which 

contains ALL samples only. For each dataset classifications were performed with respect to the 

total number of genes, and with respect to the 50 most informative genes. The percent of correct 

classifications (in the LOOCV iterations), incorrect classifications and unclassified elements are 

specified. 
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Figure Legends 

 
Figure 1:CLICK's clustering of the fibroblasts serum response dataset of  (Iyer et al., 1999). x axis: 

1-12: synchronized time points. 13: unsynchronized point. y axis: normalized expression levels. 

The solid line in each sub-figure plots the average pattern for that cluster. Error bars display the 

measured standard deviation. The cluster size is printed above each plot. 
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Tables 
 

Table 1: 

Program #Clusters Homogeneity Separation 

CLICK 30 0.8 -0.07 

GeneCluster 30 0.74 -0.02 

 

 

Table 2: 

Program #Clusters Homogeneity Separation 

CLICK 10 0.88 -0.34 

Hierarchical 10 0.87 -0.13 

 

 

Table 3: 

Program #Clusters Homogeneity Separation 

CLICK 6 0.66 -0.1 

K-Means 49 0.63 0.09 

GeneCluster 6 0.62 -0.07 

CAST 5 0.6 -0.15 

‘True’ 5 0.57 -0.13 
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Table 4: 

 4A. 

 CLICK GeneCluster Common 

Found 26 30 17 

Verified 17 19 13 

 

4B. 

CLICK Consensus Putative TF GeneCluster 

Clk 1_2 
16% (37/237)  

GGTGGCAAAW UASPHR Som 14_2  
30% (61/205) 
 

Clk 2_1 
63% (119/189) 

RAAAAAAAAA PHO2;SWI5 
 

Som 4_4 
38% (52/136) 

Clk 2_2 
44% (83/189) 

ATGTAYGGRTK RAP1 Som 1_2  
52% (85/165) 
 

Clk 2_3   30% (56/189) 
Clk 2_11 23% (44/189) 
Clk 9_3   87% (33/38) 

RAAAAATTT 
AAAAAWTTT 
TGAAAAWTTTT 

DAL82 Som 2_2   65% (48/74) 
Som 4_2   61% (83/136) 
 

Clk 2_7 
15% (29/189) 

NSYAGGCNGNR RAP1*, BUF* Som 1_4   17% (28/165) 
Som 1_8   11% (18/165) 
Som 1_9   15% (25/165) 

Clk 2_9 
12% (23/189) 

CYCNSCNRGNNGGA MCM1* 

 
Som 1_5 
15% (25/165) 

Clk 3_3 
21% (31/149) 

YNCGGNSNNNSGGS RAP1* 

 
Som 3_8 
13% (23/175) 

Clk 3_4 
19% (28/149) 

RRCCAATCAN ABF1,BAF1* Som 3_2  
21% (36/175) 

Clk 3_6 12% (18/149) 
Clk 3_7   8% (12/149) 

GGCNGGGCRKC 
TSGGCGGCNNTT 

URS1H Som 3_4 
8% (14/175) 

Clk 3_9 
19% (28/149) 

SGGNNNNNNNGGNN
NGG 

BUF * Som 3_6 
16% (28/175) 

Clk 2_8 
15% (28/189) 

SCNGCNNSCNGNNGS
G 

----- Som 1_6  
17% (28/165) 
 

Clk 3_11 
13% (19/149) 

MNNNGGGNNNRNNN
RNGGGR 

----- Som 6_7 
25% (28/114) 

Clk 3_21 
9% (13/149) 

NCCGNYGGNCCGR ----- 

 
Som 3_8 
13% (23/175) 

Clk 26_2 
90% (9/10) 

AGGGGCGGNG ----- Som 9_3 
15% (23/150) 
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Table 5: 

Dataset Method Correct Incorrect Unclassified 

Colon CLICK 85.5 9.7 4.8 

 CAST 88.7 11.3 0.0 

Leukemia CLICK 90.3 4.2 5.5 

 CAST 87.5 12.5 0.0 

 

 

Table 6: 

Dataset Size Correct Incorrect Unclassified 

Colon 2000 85.5 9.7 4.8 

 50 90.3 9.7 0.0 

Leukemia 3549 90.3 4.2 5.5 

 50 98.6 1.4 0.0 

ALL 3549 95.8 2.1 2.1 

 50 100.0 0.0 0.0 
 

 

 

 


