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ABSTRACT

One of the critical stages in drug development is the identification of potential side effects for
promising drug leads. Large-scale clinical experiments aimed at discovering such side effects
are very costly and may miss subtle or rare side effects. Previous attempts to systematically
predict side effects are sparse and consider each side effect independently. In this work, we
report on a novel approach to predict the side effects of a given drug, taking into consid-
eration information on other drugs and their side effects. Starting from a query drug, a
combination of canonical correlation analysis and network-based diffusion is applied to
predict its side effects. We evaluate our method by measuring its performance in a cross
validation setting using a comprehensive data set of 692 drugs and their known side effects
derived from package inserts. For 34% of the drugs, the top scoring side effect matches a
known side effect of the drug. Remarkably, even on unseen data, our method is able to infer
side effects that highly match existing knowledge. In addition, we show that our method
outperforms a prediction scheme that considers each side effect separately. Our method thus
represents a promising step toward shortcutting the process and reducing the cost of side
effect elucidation.

Key words: canonical correlation analysis, drug side effect, drug target, network diffusion,

prediction.

1. INTRODUCTION

Systems medicine is an emerging discipline in systems biology that aims at integrating clinical

databases with large-scale molecular interaction data to elucidate diseases and drugs (Lamb et al., 2006).

Applications of such approaches range from predicting gene-disease associations and drug-target relations

(Campillos et al., 2008) to discovering new drugs (Lamb et al., 2006).

Beyond the development of new drug leads, a critical stage in drug development is the identification of

side effects that result from treatment with the drug. Drug safety has gained much attention in recent years,

and has become a serious bottleneck in drug development, leading to the reduction in the number of newly

approved drugs despite the enormous research efforts invested in drug discovery (Billingsley, 2008). The

elucidation of adverse reactions may occur long after the approval of a drug, as in the case of rosiglitazone
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maleate (Avienda�), and can even lead to discontinuing the use of the drug, as in the case of rofecoxib

(Vioxx�) (Moore et al., 2007).

Previous attempts to relate drugs to their side effects are few and depend on specific information on the

drug in question, that is not available at large scale. Xie et al. (2009) used protein-ligand binding pre-

dictions to identify off-targets for a given drug. The latter were used to pinpoint known pathways that are

likely to be affected by the drug and consequently predict its side effects. This approach depends on protein

structure information and accurate pathway information, which greatly limits its applicability. In particular,

biological processes involved in side effect reaction to treatment are still largely unknown and inferring

side effects, even when given the respective drug targets, remains a formidable task (Need et al., 2005).

Cruz-Monteagudo et al. (2006) used the so-called MARCH-INSIDE chemical descriptors to represent drug

molecules. Using these descriptors, they built a classification function for each side effect independently by

applying linear discriminant analysis (LDA). Unfortunately, the authors did not test their approach on

randomized data. Thus, it is hard to assess the quality of their method.

In contrast to the sparse work on side effect prediction, the related area of elucidating gene-disease and

drug-target associations has become very active in recent years. State-of-the-art methods for predicting

gene-disease associations are based on the observation that genes that cause similar diseases tend to lie

close to one another in a network of protein-protein interactions (Oti et al., 2006; Franke et al., 2006).

Given a query disease, genes causing similar diseases are identified, and a network-based computation is

used to prioritize candidate genes according to their proximity to this initial set (Kohler et al., 2008;

Vanunu and Sharan, 2008; Wu et al., 2008). Several methods have been suggested for drug-target pre-

diction. Campillos et al. (2008) construct a comprehensive drug-side effect data set and use it, in con-

junction with chemical properties, to define a similarity metric between drugs. Given a query drug, they

identify similar drugs and propose their targets as candidate targets for the drug. Yildirim et al. (2007)

examine a drug-target network in which drugs are connected based on shared targets and find that drug

cluster according to the Anatomical Therapeutic Chemical (ATC) classification. Despite the insights of-

fered by this network, no prediction scheme was suggested. A somewhat related work by Yang et al. (2009)

uses text mining to highlight genes responsible for serious adverse drug reactions. Finally, Kutalik et al.

(2008) integrate gene expression data and drug response data under different cell lines. They identify co-

modules of genes and drugs with similar behavior across a subset of the cell lines, leading to the prediction

of new drug targets.

Here we present a systematic approach for predicting side effects for drugs. Our approach combines two

algorithms to predict side effects. The first algorithm is based on canonical correlation analysis which is

used to obtain a low dimensional subspace that jointly contains drug-side effect associations and molecular

data on drugs, such as their chemical structure. Data on new drug queries are projected onto this subspace

and an efficient algorithm is used to identify corresponding side effect vectors that best correlate with the

projected data. The second algorithm is based on diffusion in a side effect similarity network. Starting from

a prior solution that is based on the side effects of drugs that are similar to the query, a diffusion process is

used to obtain final scores that are smooth over the network. Both algorithms consider all known drug-side

effect associations for the prediction task. We show that this approach is better than an approach based on

analyzing each side effect independently.

We evaluate our method by measuring its performance in 20-fold cross validation using a comprehensive

data set of 692 drugs and their known side effects derived from package inserts. For 34% of the drugs, the

top scoring side effect matches a known side effect of the drug; for almost two thirds of the drugs, our

method infers a correct side effect among the five top ranking predictions. In comparison, applying the

algorithm to randomized instances, ‘‘correct’’ predictions are obtained for only 10% (top ranking) or 32%

(among the five top ranking) of the drugs. Furthermore, we show that an attempt to analyze the data by

considering each side effect independently results in reduced performance with only 14.7% correct pre-

dictions for the top scoring side effect.

We further validate our method in a blind test on *450 drugs that were not part of the initial data, but for

which some side effect information exists in the literature. Remarkably, even on these unseen data, our

method is able to infer side effects that highly match existing knowledge: for 45% of the drugs, a correct

side effect is included among the five top ranking predictions. Finally, we show the utility of our method in

drug target elucidation. We make predictions for over 4,000 drugs for which no side effect information is

readily available. We then show a significant correlation between the side effect similarity and target

similarity among these drugs. Not only does this agree with a previous study that used this correlation to
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predict drug targets (Campillos et al., 2008), but importantly, it suggests that target prediction algorithms

can be applied also in the vast regime of drugs whose side effects have not been mapped to date.

2. ALGORITHMIC APPROACH

We present two novel algorithms for predicting side effects, which are then combined to yield the final

ranking of side effects for a given drug. The first algorithm is based on canonical correlation analysis. It

requires as input an attribute matrix describing the drugs. In a training phase, it learns a linear projection of

the attribute and side effect data onto a joint low-dimensional space such that per drug, the correlation

between the projected vectors of attributes and side effects is maximized. This projection is then used to

infer the side effects of a test drug. The second algorithm is based on diffusion in a side effect similarity

network. Given a query drug, the algorithm first identifies side effects of similar drugs. Starting from these

side effects, a diffusion process is executed to obtain a final ranking that is smooth over the side effect

network.

In the following, we denote the number of drugs by n and the number of side effects by m. We assume

that we are given as input a drug attribute matrix Rp·n, in which each drug is described by a set of p

attributes; a drug–side effect association matrix Em·n; and an attribute vector q for a query drug. In a

preprocessing step, we normalize the rows of E and R to have mean 0.

2.1. Canonical correlation analysis

In canonical correlation analysis, we aim to uncover and exploit the correlation between the two data sets

that represent the drugs, R and E in our case, by projecting these data sets into a joint space and using the

projection for the prediction task. We assume that corresponding vectors in each of the data sets should be

highly correlated under some joint representation. Intuitively, our objective is to find two projection

matrices, (WE)m · k and (WR)p · k, that project E and R onto a common k-dimensional subspace in which the

correlations between projected vectors corresponding to the same drugs are maximized. The projection

vectors are chosen so that the set of projected vectors under each of the data sets will be orthonormal.

Formally, the problem is defined as follows:

max
WE , WR

Tr(WT
E ERT WR), subject to

WT
E EET WE¼WT

R RRT WR¼ I
(1)

where Tr (M) is the trace of M. This optimization problem can be reduced to an eigenvector problem:

denote CEE¼EET, CER¼ERT, CRE¼RET and CRR¼RRT. Consider first the case where each of the

projection matrices is a single vector, and define the following optimization problem:

max
we, wr

wT
e CERwrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
e CEEwe � wT

r CRRwr

p (2)

Since the expression to optimize is invariant under scaling of the projections we and wr, one can fix the two

terms in the denominator to 1 and optimize the numerator. The resulting Lagrangian is:

L(ke, kr, we, wr)¼wT
e CERwr �

ke

2
wT

e CEEwe� 1
� �

� kr

2
wT

r CRRwr � 1
� �

Taking derivatives and comparing to zero we find that le¼ lr¼ l and, consequently, that wr can be

expressed as:

wr ¼
C� 1

RR CREwe

k
(3)

and that we is the solution to the generalized eigenproblem:

CERC� 1
RR CREwe¼ k2CEEwe (4)
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To solve the original problem (Eq. 1), let WR¼ (wr, 1 . . . wr, k) be the matrix whose columns are the vectors

solving Eq. 3, and let WE¼ (we, 1 . . . we, k) be the matrix whose columns are eigenvectors solving Eq. 4.

Then

Tr(WT
E CERWR)¼

Xk

i¼ 1

wT
e, iCERwr, i

¼
Xk

i¼ 1

wT
e, iCERC� 1

RR CREwe, i

ki

¼
Xk

i¼ 1

k2
i wT

e, iCEEwe, i

ki

¼
Xk

i¼ 1

ki

Thus, choosing eigenvectors corresponding to the k largest eigenvalues will maximize the objective of

Eq. 1.

It remains to show that this solution respects the optimization constraints. The constraints of the La-

grangian ensure that the entries along main diagonal of WT
E EET WE and WT

R RRT WR are equal to one. To

show that the off-diagonal elements of these matrices are zero, we apply the Cholesky decomposition to

CEE and CRR (both are symmetric): CEE ¼ LEELT
EE and CRR¼ LRRLT

RR. Denoting ue¼ LT
EEwe and

A¼ L� 1
EE CER(LT

RR)� 1, we can reformulate Eq. 4 as a standard eigenproblem:

L� 1
EE CER LT

RR

� �� 1
L� 1

RR CRE LT
EE

� �� 1
ue¼AAT ue¼ k2ue (5)

As AAT is symmetric, its eigenvectors {ue,i} are orthogonal, implying that for i= j:

wT
e, iEET we, j¼wT

e, iLEELT
EEwe, j¼ uT

e, iue, j¼ 0 (6)

To avoid over-fitting and to account for numerical instabilities, we use a regularized version of CCA

(Leurgans et al., 1993). The regularization takes additional regularization factors ZE and ZR, which are used

to penalize the norm of the column vectors of WE and WR. Instead of using two regularization factors, we

follow Wolf and Donner (2008) and use a single additional regularization parameter, Z, and the largest

eigenvalues, lE and lR, of EET and RRT, respectively. Thus, in the regularized version of CCA, the terms

CEE and CRR in Eq. 2 are replaced with

C�EE ¼ (EET þ gkEI) (7)

C�RR¼ (RRT þ gkRI)

Finally, we use the projection matrices to compute a score vector for the query drug. To this end, the

attribute vector q of the query drug is projected onto the subspace identified by the CCA: qproj¼WT
R � q. In

accordance with the goal of CCA, we seek a corresponding side effect vector v whose projection maximizes

the correlation to qproj. Formally, we seek:

max
v

qT
projW

T
E v

qproj

�� �� WT
E vk k

(8)

The maximum is achieved when WT
E v¼ qproj; however, as WT

E projects v into a smaller subspace, the

system of equations is under-determined. To obtain a unique solution, f, we use the pseudoinverse of WT
E ,

denoted by (WT
E )y:

f ¼ WT
E

� �y
qproj (9)

In general, a pseudoinverse is computed using singular value decomposition, but here we can use the

specific structure of WE to compute it more efficiently using matrix multiplication. Formally, using the

notation above, ue¼ LT
EEwe, and in matrix form, UE¼ LT

EEWE. Substituting that into Eq. 9, we get:

f ¼ ((LT
EE)� 1UE)yqproj (10)

Since LT
EE is invertible, the pseudoinverse of (LT

EE)� 1 is LT
EE. Since UE has linearly independent columns, its

pseudoinverse is equal to (UT
E UE)� 1UT

E . It follows that
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f ¼ (UT
E UE)� 1UT

E LT
EEqproj¼UT

E LT
EEqproj

¼ LEEUEEqproj¼CEEWEqproj

2.2. Diffusion-based prediction

The second algorithm that we use is based on a diffusion process in a side effect similarity matrix, aiming

to score side effects so that: (i) prior information is taken into account; and (ii) similar side effects receive

similar scores. Such an approach was applied successfully for predicting disease-causing genes (Vanunu

and Sharan, 2008).

Formally, given a similarity matrix between side effects (S) and a prior information vector y, we seek a

score vector f which satisfies:

f ¼ aS � f þ (1� a)y (11)

where a 2 [0, 1] is a parameter reflecting the relative importance of the two (possibly contradicting)

requirements on f.

We build S based on E, by measuring the Jaccard coefficient between the sets of drugs associated with

each side effect. Formally, let G(s) denote the set of drugs associated with side effect s. Then the similarity

between side effects i and j is given by the Jaccard coefficient of their corresponding drug sets:

~SSi, j¼
C(i) \ C (j)j j
C(i) [ C (j)j j : (12)

To account for the different similarity profiles of different side effects, we normalize the similarities by

setting Si, j¼ ~SSi, j=
ffiffiffiffiffiffiffiffiffiffiffiffi
Pi � Pj

p
, where Pi¼

P
j
~SSi, j.

The computation of the prior vector is based on a similarity function between drugs. The latter is

computed using R and its specific definition depends on the attribute data at hand (see Section 3.1). Let Dq,d

denote the similarity between the query drug q and any other drug d. We apply a nearest neighbor approach,

defining the prior value for side effect s as the highest similarity score Dq,d between a drug d and the query,

across all drugs associated with s: ys¼ maxd2C(s) Dq, d

� �
.

In Zhou et al. (2004), it is shown that if the eigenvalues of S are in [�1, 1] (which is the case under our

normalization) then f can be computed using an iterative process

f 0¼ y; f t¼ aS � f t� 1þ (1� a)y (13)

which efficiently converges to the analytical solution: f¼ (I� aS)�1 (1� a)y.

2.3. Merging score vectors

Invoking the CCA-based prediction and the diffusion-based prediction yields two score vectors. Dif-

ferent strategies for merging these two vectors into a single ranking can be applied. Merging the two score

vectors directly is problematic as the scores are not necessarily comparable. We follow ideas from Lin and

Hauptmann (2004), who use a logistic function for the merging. The logistic function is a monotonic

transformation of the score, thus preserving the relative ranking of each algorithm on the one hand, while

rescaling the scores to the same range on the other hand.

Formally, given score vectors s1 and s2, with mean values �ss1 and �ss2, respectively, the combined score

vector is given by:

score(s1, s2)¼ 1

2

1

1þ e� (s1 � �ss1)
þ 1

1þ e� b� a(s2 � �ss2)

� 	
(14)

where a and b are two free parameters which adjust between the two scoring systems.

2.4. Parameter tuning and performance evaluation

The prediction algorithm has several parameters. Two parameters are used by the CCA algorithm: Z, the

regularization parameter; and k, the dimension of the subspace to which the data are projected. One

parameter is used by the diffusion algorithm: a, the relative weight of the prior term versus the smoothing

term. Two final parameters, a and b, control the merging of the two score vectors.
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We tune the parameters using grid search in a cross validation setting. Specifically, in each iteration of a

20-fold cross validation, 5% of the drugs serve as a test set and their side effect associations are hidden; 5%

additional drugs serve as an internal test set to tune the parameters; the rest 90% of the drugs are used for

training. First, the parameters of the two algorithms—Z, k, and a—are learned, maximizing the perfor-

mance of each algorithmic variant separately on the internal test data. Next, the mixing parameters a and b

are learned. Finally, the learned parameters are used to evaluate the performance of the algorithm on the

test data. We note that in each cross validation iteration, the CCA projection and the side effect similarity

network are recomputed.

We measure the quality of the predictions by computing a precision-recall curve for varying numbers of

predictions per drug. Given a desired number of predictions, k, we consider the union of the top k ranking

predictions for all drugs and compute: (i) precision, the percent of correct predictions; and (ii) recall, the

percent of true side effects that were recovered. To summarize the curve we compute the area under it, as

well as the area under its leftmost section where the recall is smaller than 0.2. To resolve cases in which

several side effects attain the same score, we adjust the ranks of these side effects to be their average

(unadjusted) rank.

To assess the significance of the results obtained by the algorithm, we applied it also to randomized

instances of the data. The randomization was performed by permuting the columns of the drug-side effect

association matrix E, thus randomizing the relations between drugs and their side effect vectors, while

preserving the distribution of side effects in the data.

3. RESULTS

3.1. Data retrieval and similarity computations

Drugs and their associated side effects were obtained from SIDER (Kuhn et al., 2010), an online

database containing drug–side effect associations extracted from package inserts using text mining

methods (Campillos et al., 2008). This data set spans 880 drugs, 1382 side effects, and 61,102 drug–side

effect associations. Drugs and side effects vary greatly in their number of associations. Some effects

are present in almost all drugs (e.g., dizziness, edema and nausea), while others are associated with very

few drugs (e.g., flashbacks, rectal polyp); and similarly for drugs. Thus, we filtered from the association

data drugs and side effects that lie at the top 10% (greater than 151 associations for drugs and 127

associations for side effects), as well as side effects and drugs having less than two association. The

resulting drug-side effect network contained 692 drugs, 680 side effects, and 12,871 associations. These

data were represented in a binary association matrix, E, where Es,d¼ 1 if and only if drug d is associated

with side effect s.

The prediction algorithm can be applied with various drug attribute schemes, drug similarity measures

and side effect similarity measures. For drugs, we experimented with two supporting data sets: (i) chemical

hashed fingerprints; and (ii) NCI-60 drug response data for the different drugs under different cell lines

(Kutalik et al., 2008). For side effects, we based our similarity computation on their sets of associated drugs

(see Section 2).

3.1.1. Chemical data–based computation. Structures for the drugs molecules were downloaded

from PubChem (Wheeler et al., 2008). Hashed fingerprints based on these chemical structures were

computed using the open source Chemistry Development Kit (CDK) (Steinbeck et al., 2003, 2006). The

description matrix, R, used by the CCA prediction algorithm, is the matrix whose columns are the hashed

fingerprints.

The similarity score between drugs, used by the diffusion algorithm, was calculated according to the

Tanimoto 2D score between the two fingerprints, which is equal to their Jaccard coefficient. Formally, let rd

denote the hashed fingerprint for drug d(rd
i 2 0, 1f g, i 2 1 . . . 1024). The similarity score between two

drugs, j and l, is given by:

D(chem)
j, l ¼Tanimoto(rj, rl)¼

P
i(r

j
i � rl

i)P
i(r

j
i þ rl

i � r
j
i � rl

i)
(15)
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3.1.2. Response data–based computation. We downloaded the drug response data used by Kutalik

et al. (2008) from http://serverdgm.unil.ch/bergmann/PingPong.html. The data were

used to build the description matrix R. An entry in R lists the concentration of a drug that is needed to

achieve 50% growth inhibition under a certain cell line (log(GI50)). Missing data were replaced by the

mean response to the drug over all cell lines. The similarity score between drugs, used by the diffu-

sion algorithm, was calculated according to the Pearson correlation between the corresponding response

profiles.

3.2. Chemical structure–based prediction performance

In our first application of the algorithm we used the drug chemical structure information as supporting

data. We tested the algorithm in a 20-fold cross validation setting, where in each cross validation iteration

5% of the data were hidden, serving as a test set, and the other 95% served as a training set. Within the

training set, an internal cross validation was conducted to train the parameters of the algorithm as described

in Section 2.4.

Overall, for 34.7% (240) of the 692 drugs, the algorithm ranked first one of the known side effects of

these drugs. For 63.4% (439) of the drugs, a correct side effect was ranked among the top five scoring side

effects. In comparison, when applying our algorithm to randomized instances of these data, for only 68.1

( – 7.69, 9.85%) of the drugs, on average, the top ranking side effect matched a known side effect of the

drug; and only 225.1 ( – 12.8, 32.5%) of the drugs, on average, had a known side effect among the top five

ranking side effects. These marked differences are also reflected in the areas under the curve: 0.119 on the

real data and 0.0524 ( – 0.0009) at random (Fig. 1 and Table 1).

We further compared the performance of the combined algorithm to those of applying the CCA or

diffusion-based computations by themselves. As evident from the results in Figure 1 and Table 1, the
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FIG. 1. Performance evaluation using chemical

structures. Dotted lines depict standard deviation for

random curve.

Table 1. Performance Statistics of the Different Algorithmic Variants

and a Comparison to a Random Application

Data set Result Combined alg. CCA Diffusion SVM Random

Chemical Top1 240 232 206 102 68.16 – 7.69

Top5 439 430 407 292 225.1 – 12.8

Area 0.1190 0.1095 0.1111 0.043 0.0524 – 0.0009

Area20 0.0483 0.0465 0.0412 0.0169 0.0145 – 0.0005

Response Top1 17 14 11 6 7.92 – 2.36

Top5 29 26 25 21 24.86 – 3.23

Area 0.1419 0.1382 0.1241 0.0993 0.1122 – 0.005

Area20 0.0373 0.035 0.0275 0.0175 0.0236 – 0.0024

Top1 lists the number of drugs having a known side effect ranked highest. Top5 lists the number of drugs having at least one known

side effect among the 5 highest ranking side effects. Area is the total area under the precision-recall curve; Area20 is the area under the

leftmost (recall < 0.2) section of the precision-recall curve. The best result in each row appears in bold.
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combined algorithm outperforms the diffusion-based variant and is marginally better than the CCA based

variant in all evaluation measures.

3.3. Response-based prediction performance

We additionally applied our algorithm using the drug response data. As the response information

was not available for many of the drugs, the application was limited to 58 drugs, spanning 188 side

effects. The algorithm ranked one of the known side effects highest for 17 (29%) of the drugs. For 29

(50%) drugs, a correct side effect was ranked among the top five scoring side effects. These results

significantly outperformed the random expectation (Table 1). Precision-recall curves for the different

algorithmic variants are displayed in Figure 2. As for the chemical structure data, the combined

algorithm outperformed diffusion based variant significantly and is marginally better than the CCA

variant.

3.4. A large-scale blind test

To further validate our approach, we downloaded from DrugBank (Wishart et al., 2006, 2008) a com-

pilation of 4,335 drugs that were not available in SIDER. Chemical structures and hashed fingerprints for

these new drugs were computed as described in Section 3.1, and side effect rankings were calculated using

the combined algorithm.

To evaluate the results of our prediction algorithm, we used the Hazardous Substances Data Bank

(HSDB), an online peer-reviewed database focusing on toxicology of potentially hazardous chemicals

(Wexler, 2001). For 448 drugs that had matching records in HSDB, the text in the Human Health Effects

section was downloaded and a simple textual search scheme was applied to extract annotated side effects.

For 102 (22.8%) of the drugs, the side effect that was ranked highest by our algorithm was also associated

to the corresponding drug in HSDB (Fig. 3). For 201 (44.9%) of the drugs, one or more of the 5 top scoring

side effects were confirmed by HSDB.

3.5. Comparison with independent side effect prediction

We compared our approach, which analyzes side effects jointly, to an approach that considers each side

effect separately. For each side effect, we trained a soft margin support vector machine (SVM) classi-

fier, using the hashed chemical fingerprints of drugs as feature vectors. We used the same training/test

20-fold cross validation procedure as in our algorithm to tune the SVM parameter (C, misclassification

cost) and evaluated the predictions obtained. For the latter assessment we scored each prediction according

to its distance from the best separating hyperplane according to SVM methodology. We then computed

precision-recall curves for each classifier. The following results were obtained using a linear kernel SVM,

computed using SVMlight ( Joachims, 1999). We note that using non-linear kernel (radial basis function

kernel) did not change our findings (data not shown).

FIG. 2. Performance evaluation using response in cell

lines. Dotted lines depict standard deviation for random

curve.
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First we used all the SVM classifiers to generate predictions on the association between all drugs and

side effects (Fig. 1). For 102 drugs (14.7%), the SVM classifiers ranked a known side effect highest

compared with 240 (34.7%) drugs using the combined algorithm. Additionally, for 292 drugs (42.2%),

the SVM classifiers ranked a known side effect among the top five scoring side effects, compared with

439 (63.4%) drugs in the combined algorithm. The difference between the prediction quality was

best demonstrated by the area under the curves where the SVM-based predictions resulted in an area of

0.043 compared with 0.119 for the combined algorithm and 0.0524 for the random expectation (see

Section 2.4).

The aforementioned comparison might be misleading as the SVM classifiers were trained and opti-

mized for each side effect separately while the other algorithmic variants were trained on the entire

dataset. Therefore, we tested the prediction quality of the combined algorithm for each side effect inde-

pendently. For 516 (75.8%) of the side effects, the area under a precision-recall curve for the combined

algorithm was better than that of the respective SVM classifier (Fig. 4). Similar results were obtained by

using the maximum F1 measure where the combined algorithm scored highest for 524 (77%) of the side

effects.

3.6. Using side effect predictions for drug target elucidation

In a seminal article, Campillos et al. (2008) have shown that drugs with similar side effects are likely to

share molecular targets. Exploiting this correlation, they were able to predict new targets for drugs.

However, their analysis was limited to drugs with known side effects. Our method has the potential to

overcome this limitation as long as some molecular data is available on the drug in question.
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To demonstrate the utility of our method in drug target elucidation, we applied it to predict the side

effects of 4,335 drugs from DrugBank that do not have side effect information in SIDER. We then

computed the correlation between two drug similarity matrices: one that is based on comparing the top k

predicted side effects (via a Jaccard coefficient) and another that is based on comparing known drug targets

(via a Jaccard coefficient). The Pearson correlation between the two similarity matrices varied for varying

k, reaching a peak of 0.084 for k¼ 13 (Fig. 5). This correlation was significantly higher than the random

expectation (shuffling the drug-target associations while maintaining the same number of associated targets

per drug). Expectedly, the correlation was lower than that observed for the drugs whose side effects are

known (from SIDER).

4. CONCLUSION

Our contribution in this article is fourfold: (i) We show that computational prediction of side effects of

drugs is possible. We present an approach that combines correlation based analysis with network diffusion,

achieving very high retrieval accuracy. In cross validation, we are able to accurately predict side effects for

up to two thirds of the drugs; in a blind test, we are able to confirm our predictions for almost half of the

drugs. (ii) We demonstrate the use of different data sets, such as chemical structure and cell line response,

for the prediction task. The use of different data sets could potentially increase the sensitivity and speci-

ficity of the predictions. (iii) We find a significant correlation between the similarity of the predicted side

effects of drugs and their targets, indicating the potential utility of our algorithm in drug target identifi-

cation. (iv) We show that analyzing multiple side effects together improves on a simple approach that

considers each side effect independently.

Several extensions of our work are possible. The CCA algorithm that we presented is limited to the

analysis of one descriptive data set at a time. It is possible that using generalized canonical correlation

analysis one could extend the method to take into account multiple data sets. The descriptive data used

came from two sources: chemical structure information and cell line response data. Other sources of

descriptive data could be used, most notably gene expression data in response to drug treatment such as

those cataloged by the Connectivity Map project (Lamb et al., 2006).

In summary, we believe that our algorithm constitutes an important step toward shortcutting the process

of side effect identification in the development of new drugs.
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