
April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

Journal of Bioinformatics and Computational Biology
Vol. 8, No. 2 (2010) 199–218
c© Imperial College Press
DOI: 10.1142/S021972001000477X

SIGMA: A SET-COVER-BASED INEXACT GRAPH
MATCHING ALGORITHM∗

MISAEL MONGIOVÌ†, RAFFAELE DI NATALE‡, ROSALBA GIUGNO§,
ALFREDO PULVIRENTI¶ and ALFREDO FERRO‖

Dipartimento di Matematica ed Informatica, Università di Catania
V.le A. Doria, 6, Catania, 95125, Italy

†mongiovi@dmi.unict.it
‡dinatale@dmi.unict.it
§giugno@dmi.unict.it

¶apulvirenti@dmi.unict.it
‖ferro@dmi.unict.it

RODED SHARAN

Blavatnik School of Computer Science, Tel Aviv University
Tel Aviv, 69978, Israel

roded@tau.ac.il

Received 20 July 2009
Revised 15 October 2009
Accepted 15 October 2009

Network querying is a growing domain with vast applications ranging from screening
compounds against a database of known molecules to matching sub-networks across
species. Graph indexing is a powerful method for searching a large database of graphs.
Most graph indexing methods to date tackle the exact matching (isomorphism) problem,
limiting their applicability to specific instances in which such matches exist. Here we
provide a novel graph indexing method to cope with the more general, inexact match-
ing problem. Our method, SIGMA, builds on approximating a variant of the set-cover
problem that concerns overlapping multi-sets. We extensively test our method and com-
pare it to a baseline method and to the state-of-the-art Grafil. We show that SIGMA
outperforms both, providing higher pruning power in all the tested scenarios.

Keywords: Indexing; graph matching; network querying.

1. Introduction

Data in many biological domains are represented as graphs, where nodes corre-
spond to molecules and edges connect related molecules. Mining such data to

∗A preliminary version of this paper appeared as Mongiov̀ı et al.1 in the Proceedings of the CSB
2009 Conference.
†Corresponding author.

199

http://dx.doi.org/10.1142/S021972001000477X

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

200 M. Mongiov̀ı et al.

search for specific subgraphs is a fundamental step in identifying similarities among
molecules, molecular networks etc. For example, querying for protein pathways
within a collection of protein-protein interaction networks can identify matching
pathways that are conserved in evolution and assist in the functional annotation of
proteins and the prediction of their interactions.

Graph indexing is a common technique for performing searches in large
databases. In a pre-processing phase, each graph of the database is analyzed in
order to extract and store its features (composing the graph index). These could be
either all the paths up to a certain length,2–6 trees7 or general subgraphs.8,9 These
indices are then used by a filtering phase to prune graphs that cannot contain
instances of the query. The remaining candidates are finally verified in a matching
phase through a subgraph matching algorithm.10

While many graph indexing algorithms have been suggested for the exact search
(subgraph isomorphism) problem, very few algorithms exist for inexact search. In
the most basic variant of the problem, the goal is to allow matches that are isomor-
phic to the query up to a few edge indels. Since edge insertions (i.e. extra edges in
the match that do not have counterparts in the query) can be discarded while only
improving the quality of the match, the core of the problem is handling edge dele-
tions. More general variants allow label mismatches, node insertions and deletions
and so on.

Molecular compounds, for instance, can be represented as graphs where atoms
are vertices and bounds are edges. Molecules which share part of a given molecular
structure often have similar chemical properties. Here inexact matching may assist
in the identification of drugs which are active against some pathologies or have side
effect, when the molecular structure responsible for a particular activity or side
effect is known. Figure 1 shows that antidepressive molecules such as L-tryptophan
share compounds with alkaloids, amines isolated from plants, including poisons such
as strychnine and with powerful hallucinogenic drugs such as LSD. The shared parts

Fig. 1. An example of inexact matching on molecular compounds. The compounds are represented
as graphs where vertices are atoms and are labeled with their element symbol (unlabeled vertices
correspond to C atoms), and edges are bonds (double bounds are represented as single edges).
The red-colored part of strychnine and LSD matches a part of the Tryptophan structure. Finding
this match allows to identify compounds which share chemical properties.

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 201

are highlighted. By deleting 7 edges from L-tryptophan, the remaining compound
has a match in strychnine, while 5 deletions are needed to find a match in LSD.
In Ref. 11 it is shown that both L-tryptophan and LSD are involved in serotonin
syndrome and that strychnine poisoning produces similar symptoms, being involved
in differential diagnosis.

To tackle the inexact matching problem, several systems5,6 apply exact search
techniques to queries that contain wildcard-nodes that can match any node and
wildcard-paths, which are paths of any length that connect the two nodes. Indexing
is used to filter out graphs in the database that do not contain the subparts of the
query that are completely specified. A shortcoming of this approach is the need to
specify in advance the parts of the query that may change.

Grafil12 has been the first attempt to realize indexing for inexact searches. It
transforms the edge deletions into feature misses in the query graph, and uses an
upper bound on the maximum number of allowed feature misses for graph filter-
ing. Grafil in fact clusters the features according to their selectivity and applies a
multi-filter strategy, where each filter uses a distinct cluster and the filtering results
are combined. SAGA13 is a more flexible indexing system, which can handle also
node insertions and deletions. Key to the algorithm is a distance measure between
graphs. Fragments of the query are compared to database fragments using the dis-
tance measure. Matching fragments are then assembled into larger matches using a
clique detection heuristic and, finally, candidate matches are evaluated. The SAGA
algorithm was successfully applied to mine biological pathways, but its distance
metric limits its applicability in other domains in which one seeks direct control
over the number of edge deletions introduced. Closure-Tree14 is another tool for
inexact matching which focuses on the edit distance between the query and its can-
didate matches. However, for efficiency reasons, the edit distance computations are
approximate and, hence, the tool can miss true matches.

In this paper we present the Set-cover-based Inexact Graph Matching Algorithm
(SIGMA), an efficient feature-based filtering algorithm for inexact graph matching.
The algorithm is based on associating a feature set with each edge of the query
and looking for collections of such sets whose removal will allow exact matching
of the query with a given graph. This translates into the problem of covering the
missing features of the graph with overlapping multisets. We formulate this variant
of set cover and provide a greedy approximation for it. We extensively test SIGMA
in a simulated setting, querying small molecules against a database of molecular
compounds. We compare it to a baseline filtering method and to the state-of-the-art
Grafil; we show that SIGMA exhibits consistently higher filtering power, where the
difference grows with the size of the query.

To demonstrate the utility of SIGMA in a real biological setting, we apply it to
query yeast and human protein complexes. While there are previous methods for
protein complex querying, such as Torque15 and QNet,16 this is the first application
of a graph indexing technique for this task. In contrast to the previous methods,
SIGMA aims to find matches that are topologically similar to the query, and does

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

202 M. Mongiov̀ı et al.

not assume homeomorphism of the two topologies (as in QNet) or that the exact
topology is not important (as in Torque).

Our contribution is three-fold:

(i) We define a new effective pruning rule for inexact matching based on multiset
multi-cover, a variant of the well known set-cover problem.

(ii) We provide a tight greedy approximation for multiset multi-cover, which is
crucial for efficient and effective pruning.

(iii) We evaluate the performance of the proposed method, compared to a state-
of-the-art approach, over a molecular compound dataset. In addition, we apply
our method in a systematic comparison of protein complexes from yeast and
human.

The paper is organized as follows: Section 2 provides the basic definitions of
graph indexing. Section 3 derives new pruning rules for inexact matching that are
based on several variants of the set cover problem. Finally, experimental results and
a comparison to Grafil are presented in Sec. 4.

2. Preliminaries

An undirected labeled graph (in the following, simply a graph) is a 4-tuple G =
(V, E, Σ, l) where V is the set of vertices, E is the set of edges, Σ is the alphabet
of labels and l : V → Σ is a function which maps each vertex to a label. We denote
as V (G) the set of vertices of G and by E(G) the set of edges of G. We say that a
graph G1 is subgraph of G2, denoted G1 ⊆ G2, if V1 ⊆ V2 and E1 ⊆ E2.

Given two graphs G1 = (V1, E1, Σ, l), G2 = (V2, E2, Σ, l) an isomorphism (that
respects the labels) between G1 and G2 is a bijection φ : V1 → V2 so that:

• (u, v) ∈ E1 ⇔ (φ(u), φ(v)) ∈ E2

• l(u) = l(φ(u)), ∀u ∈ V1

A subgraph isomorphism between G1 and G2 is an isomorphism between G1 and
a subgraph of G2. We say that a graph G1 admits an exact match in G2 if there
exist a subgraph isomorphism between G1 and G2. We say that a graph G1 admits
an inexact match in G2 with r deletions if there exists a subgraph isomorphism
between a graph Gr obtained from G1 by removing arbitrarily r edges, and G2. We
say also that G1 is contained in G2 with r deletions.

We define a multiset as a pair (A, m) where A is a set and m is a function
from A to the set N of natural numbers. We say that m(a) is the multiplicity
of the element a. Given a set U , we say that A′ = (A, m) is a multiset of U if
A ⊆ U . For simplicity, we extend the function m() to all element of U by setting
m(u) = 0 for each u ∈ U − A. We define the cardinality of a multiset A′ = (A, m)
as |A′| =

∑
a∈A m(a)

Let A′ = (A, m) and B′ = (B, n) be two multisets. We define the difference
A′−B′ as the set C′ = (C, p) where C = {c ∈ A|m(c) > n(c)} and p(c) = m(c)−n(c)

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 203

for each element c ∈ C. We define the intersection A′ ∩ B′ as the set C′ = (C, p)
where C = A ∩ B and p(c) = min(m(c), n(c)) for each element c ∈ C. We define
the union A′ ∪ B′ as the set C′ = (C, p) where C = A ∪ B and p(c) = m(c) + n(c)
for each element c ∈ C. We say that A′ ⊆ B′ if for each a ∈ A we have a ∈ B and
m(a) ≤ n(a).

Given a multiset C and two multisets A, B ⊆ C, it is easy to verify that the
following relations hold:

• C − (C − A) = A

• C − A ⊆ C − B ⇔ B ⊆ A

2.1. Filtering techniques for exact matching

Given a database D = {G1, G2, . . . , Gn} of graphs, performing an exact graph query
Q in D calls for finding all graphs G in D such that Q ⊆ G.

Since checking all graphs of D is very expensive, a feature-based indexing system
applies a filter-and-verification framework which allows to prune the graphs of the
databases which cannot contain the query. A feature is a small graph which allows
to discriminate, by checking its inclusion, the graphs which could contain the query
from the graphs that cannot contain it. We denote as F the set of all possible
features. The choice of F depends on the particular system used. In this paper we
refer to a generic set of features.

Basically, graph-based graphs indexing systems are based on the observation
that for a query Q to admit a match in the graph G, it is necessary that each
feature of F contained in Q is also contained in G. More precisely, when we say
that a feature f is contained in G we mean that there exists an isomorphism between
f and a subgraph of G. The pruning is performed by the following phases:

• Pre-processing: This phase is off-line and is independent from the query. Each
graph of the database is examined in order to extract all features of F which are
contained in the graph. The set of features of all graphs are recorded in a data
structure called graph index.

• Filtering: The given query Q is examined in order to extract a set of features
contained in Q. A candidate graph set is computed comparing the extracted set
of features against the corresponding sets in the graph index.

• Matching: Each candidate graph is examined in order to verify if there are
matches between the query and the graph.

The feature-based condition for Q to be contained in G can be expressed as
a pruning rule. We denote as HG the set of features contained in the graph G.
Given a query Q, the graph G can be discarded if HQ � HG. To apply this pruning
rule we only check the existence of a subgraph isomorphism between features and
graphs. Given a feature f and a graph G there can be several distinct subgraphs
of G which admit an isomorphism with the feature f . Each subgraph of G which
admits an isomorphism with f is referred as a distinct feature occurrence of f

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

204 M. Mongiov̀ı et al.

Fig. 2. An example of exact matching in a database of graphs. Here we consider as features simply
edges (graphs with size 1). The first row shows the query graph Q and the database of graphs
{G1, G2, G3}. The second and third rows report respectively, the sets of features and the multisets
of features associated to each graph. The multiplicity of multisets take into account the number
of feature occurrences. For instance, the query Q contains two occurrences of the feature triangle-

square, one over the nodes 1-2 and the other over the nodes 3-2. In this example the query Q is
contained in the graph G1 but not in the graphs G2 and G3. G2 can be discarded by the filtering
process because the feature triangle-square is not contained in HG2 . G3 can be discarded taking
into account the number of occurrences by observing that the feature triangle-square have two
occurrences in the query and only one in the graph.

in G. The pruning power can be increased by considering the number of feature
occurrences. We denote as FG the multiset of features of the graph G which associate
to each feature, the number of occurrences of it in the graph. For the query Q to
be contained in the graph G, the number of occurrences of each feature in Q must
be lower or equal to the number of occurrences of the corresponding feature in G.
This means that we can discard the graph G if FQ � FG.

For example, the query Q in Fig. 2 matches with the graph G1 but not with
G2 and G3. It contains one occurrence of the feature triangle-triangle and two
occurrences of the feature triangle-square. G2 can be discarded by observing HQ �
HG2 . By considering the number of feature occurrences, G3 can also be discarded,
since FQ � FG3 .

3. A Filtering Technique for Inexact Matching

In this section we develop effective pruning rules for inexact matching. We focus on
the following problem: Given a query Q and a graph G, does Q admit an inexact

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 205

match in G with at most r deletions? The scheme that we develop is based on
associating a feature set Fe with each edge e of the query (i.e. the set of features
that contain this edge) and looking for collections of such sets whose removal will
allow exact matching of the query with G. The resulting problem can be formulated
as a set cover problem: given a set Y (of features of Q which are missing in G) and
a family S of sets (of features associated to each edge), find the smallest subfamily
Γ of S that covers Y , i.e.

⋃
X∈Γ X ⊇ Y .

Such a subfamily represents a set of query edges whose deletion assure that all
the features of Q are contained in G. If a subfamily Γ of size r does not exist, we
can assume that if we delete r edges in all possible ways, we can always find at least
one feature of the query which is not contained in the graph, therefore the graph
can be discarded.

We can strengthen the above formulation by considering the multiplicity of
feature occurrences. Let Eγ ⊆ E(Q) be a subset of the query edges. We denote as
FQ the multiset of features of Q and as FEγ the multiset of features which contain
at least one of the edges in Eγ . If Q admits an inexact match in G with r deletions,
there must exist an r-size edge set Eγ such that FQ−FEγ ⊆ FG. Hence the following
pruning rule can be inferred:

Pruning rule 1. Given a query Q with r allowed deletions, a graph G can be
discarded if for each Eγ ⊆ E(Q) with |Eγ | = r we have

FEγ
⊇ FQ − FG

Clearly this pruning rule cannot be applied efficiently because the number of
possible r-subsets of E(Q) grows exponentially with r, and the rule must be verified
for all the graphs in the database. Instead, we resort to a multiset cover approach
and define a new pruning rule based on a greedy algorithm.

In the multiset multi-cover problem Y = (Y ′, mY) is a multiset and S is a
family of multisets. Each element (feature) f of Y has a multiplicity mY (f) which
specifies the number of times f has to be covered, and it occurs in each set X of
S with a given multiplicity mX(f). The goal is to find the minimum-size set Γ
such as

⋃
X∈Γ X ⊇ Y , i.e. for each f ∈ Y ′,

∑
X∈Γ mX(f) ≥ mY (f). In its general

formulation, a set of S can be chosen several times (Γ is a multiset too). In what
follows we consider the further constraint that each set of S can be chosen at most
once. In our case, the multiset to be covered is Y = FQ − FG, and the collection of
covering multisets is S = {Fe}e∈E(Q). If Y admits no multiset multi-cover of size r

then G can be discarded (see Fig. 3).
Set-cover is known to be NP-complete,17 but can be solved by a simple greedy

heuristic with approximation ratio H(max{|X | : X ∈ S}), where H(n) = 1 +
1/2 + · · · + 1/n.17,18 The more general multiset multi-cover problem was shown to
admit the same approximation ratio.19 Figure 4 describes a greedy heuristic for the
multiset multi-cover problem. At each iteration, the algorithm chooses the multiset
X of the family S which maximizes the number of newly covered feature occurrences
of Y . The chosen set is added to the cover, and its elements are removed from Y .

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

206 M. Mongiov̀ı et al.

Fig. 3. An example of a query Q and a graph G which contains a copy of Q with two deletions.
We consider as features all connected subgraphs containing exactly two edges. Left: Q and all the
feature occurrences it contains (FQ). The line type of feature occurrences is chosen according to
the feature they correspond to. Each set Fi indicates all the feature occurrences that contain the
edge i. Right: G, its multiset of features (FG) and the multiset of missing features (FQ − FG).

The minimum cover of FQ − FG by the family {F1, F2, F3, F4} is of cardinality 2, implying that
at least two deletions are needed for a match. {F1, F2} is a possible cover, implying that G is a
candidate to match Q with edges 1 and 2 deleted.

Fig. 4. A greedy algorithm for the multiset multi-cover problem.

For the greedy algorithm to be used effectively for filtering, it is essential to
have a tight lower bound of the optimal solution. We prove a tight lower bound
below.

Let Y = (Y ′, mY) be the multiset of features to be covered. Let cost(f, i) be a
function from Y ′ ×N to R, which assigns a cost to each feature occurrence covered
by the greedy algorithm. The feature occurrences are ordered by the time they are
covered by the algorithm. The cost is assigned at each step (execution of the while
loop) of the algorithm, spreading a unit cost over all the feature occurrences which
are being covered, i.e. each feature occurrence is assigned a cost 1/c, where c is
the number of newly covered occurrences. Formally the function cost is defined as
follows: Let new cov(f, s) be the number of newly covered occurrences of f at the

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 207

step s and cov(f, s) be the total number of covered occurrences of f after the step
s, i.e. cov(f, s) =

∑
t=1···s new cov(f, t). The function cost is defined as

cost(f, i) =

1∑
f∈Y ′

new cov(f, s)
if cov(f, s − 1) < i ≤ cov(f, s)

0 otherwise

Let Γ be the cover returned by the greedy algorithm, Γ∗ the exact cover and
rX(f) = min(mX(f), mY (f)). The following theorem bounds the size of the cover
returned by the greedy algorithm.

Theorem 1. Let α(f) = cost(f, mY (f)) and β =
∑

f∈Y ′
∑mY (f)

i=1 (α(f)−cost(f, i))
then,

|Γ∗| ≥ min
Γ′⊆S:

P
(X,mX)∈Γ′

P
f∈X rX (f)α(f)−β≥|Γ|

|Γ′|

Proof. We show that ∑
(X,mX)∈Γ∗

∑
f∈X

rX(f)α(f) − β ≥ |Γ|

The claim follows since Γ∗ ⊆ S and each element of a set is always greater than or
equal to the minimum over that set.

The total cost assigned to all the feature occurrences is equal to |Γ|. Thus:

|Γ| =
∑

f∈Y ′

mY (f)∑
i=1

cost(f, i)

=
∑

f∈Y ′
mY (f) · cost(f, mY (f))

−
∑
f∈Y ′

mY (f)∑
i=1

(cost(f, mY (f)) − cost(f, i))

=
∑

f∈Y ′
mY (f)α(f) − β

≤
∑

(X,mX)∈Γ∗

∑
f∈X

rX(f)α(f) − β.

By the above theorem, we obtain the following pruning rule:

Pruning rule 2. Given a query Q with r allowed deletions and a graph G. Let |Γ|
be the cover returned by the greedy algorithm when executed on FG − FQ. G can
be discarded if

r < min
Γ′⊆S:

P
(X,mX)∈Γ′

P
f∈X rX(f)α(f)−β≥|Γ|

|Γ′|

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

208 M. Mongiov̀ı et al.

The right side can be easily computed by ranking the sets of S by the score∑
f∈X rX(f)α(f) in decreasing order, and taking them one by one until the sum of

the scores is greater than or equal to |Γ| + β.

3.1. An attempt to increase the filtering power

Using multisets alone does not capture interdependencies between them, i.e. two
multisets of features may include the same feature occurrence but in the cover we
may count it twice (see Fig. 5).

To this end we introduce a new variant of the set-cover problem, which we call
Multi-cover by Overlapping Multisets (MOM). Let U be a set of elements (feature
occurrences), F a set of features and f a function that associates with each element
of U a feature from F . Given A ⊆ U , we define the covering of A, denoted as
Covf (A), as the multiset D′ = (D, m) of F so that D = {f(a)|a ∈ A} and m(d) =
|{a ∈ A|f(a) = d}|. We define the MOM problem as follows: For a multiset Y of
F and given a family S of subsets of U , find the smallest subfamily Γ of S so that
Covf (

⋃
X∈Γ X) ⊇ Y .

Note that in Fig. 5 the minimum cover for MOM is {F1, F6, F7}, so G is not a
candidate to match Q with at most two deletions.

Fig. 5. A graph which cannot be pruned solving the multiset multi-cover problem. Inexact match-
ing with at most two deletions are searched for. Features are subgraphs containing exactly two
connected edges. The left side shows the query Q and all its feature occurrences (FQ). The line
type of a feature occurrence is uniquely associated with that feature. Each set Fi indicates all the
feature occurrences containing the edge i. The right side shows the target graph G, its multiset
of features (FG) and the multiset of missing features (FQ − FG). For the multiset multi-cover
problem, {F6, F7} is a cover of FQ − FG since the feature f is counted twice. This means that Q
is candidate to match G with 2 deletions. Considering f only once (see MOM defined below) the
minimum cover would be {F1, F6, F7} and G would be discarded.

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 209

Fig. 6. A greedy algorithm for MOM.

It can be shown that this problem is also NP-hard by reduction from set-cover.
A greedy algorithm for it is given in Fig. 6. In the greedy algorithm for MOM in
Fig. 6 a further set Z is used to keep track of the covered elements. When a set is
added to the cover, its elements are removed from Z in order to avoid considering
them twice.

We can now define a new pruning rule based on MOM which is equivalent to
pruning rule 1.

Pruning rule 3. Given a query Q with r deletions. Denote as Fe the set of feature
occurrences of Q which contain the edge e ∈ E(Q). A graph G can be discarded if
for each Eγ ⊆ E(Q) of size r

Covf

 ⋃

e∈Eγ

Fe

⊇ FQ − FG

Since Covf (
⋃

e∈Eγ
Fe) = FEγ we get that

Theorem 2. Pruning rule 3.1 is equivalent to pruning rule 1.

Theorem 1 and pruning rule 2 apply to the MOM greedy algorithm as well, so
the same lower bound can be used to prune the graphs.

4. Experimental Results

To evaluate our filtering methods we applied them to query a large database of
molecular compounds and to detect cross-species similarities between protein com-
plexes. We compared our performance to the state-of-the-art Grafil12 as well as to
a baseline filtering method called Edge.12 The latter simply compares the edges of
the query to those of a given graph and discards all graphs that miss (with respect
to the query) more edges than the number of allowed deletions. This filtering is in
fact equivalent to both our filtering and that of Grafil when considering edge-based
features only.

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

210 M. Mongiov̀ı et al.

4.1. Implementation

Two versions of our tool have been implemented: one is based on the multiset multi-
cover formulation, and the other is based on the MOM formulation. Both tools use
Edge as a first pruning step and then apply pruning rule 2. They are compared
with our own implementation of Edge and Grafil (which includes Edge as part of
the filtering). To perform a uniform analysis, paths of length up to 4 were used as
features for all the compared systems. The candidate verification was performed by
enumerating all possible subgraphs of the query that can be obtained by deleting
any set of r edges, and running an efficient subgraph isomorphism algorithm called
VF220 over each graph.

4.2. Benchmark

We used two query settings. The first, a simulated setting, contained queries of
small molecules from the Antiviral Screen Dataset (AIDS).21 The second, a real
setting, contained queries of protein complexes in yeast and human.

The AIDS database contains the topological structures of 42,000 chemical com-
pounds that have been tested for evidence of anti-HIV activity. Each compound
of the dataset was converted into a graph where vertices are atoms, edges are
bonds between atoms, and the element symbols are used to label the vertices.
Multiple bonds were represented by single edges. We obtained a dataset of graphs
ranging from 20 to 270 vertices in size. Queries were extracted at random from
the AIDS database. The extraction procedure picks a graph and a vertex of that
graph at random; it then generates a subgraph starting from the picked vertex and
adding edges until a specified size is reached. We generated queries with size ranging
between 16 and 48.

The yeast and human protein complex datasets contain graph representations of
the set of complexes of each of the species, where vertices correspond to proteins and
edges correspond to protein-protein interactions (PPIs). Human complexes were
retrieved from CORUM22 and yeast complexes were retrieved from SGD.23 The
topology of each complex was inferred from PPI data taken from BioGRID.24 In
order to assign labels to the vertices (proteins), we executed an all-pair BLAST on
yeast and human proteins, and then clustered them according to the BLAST scores.
To this end, we used average-linkage hierarchical clustering with a score cutoff of
40 bits and a maximum cluster size threshold of 500. This procedure yielded 6703
clusters. Each protein was then labeled with the id of the cluster containing it.
Removing the complexes with no edges, we obtained a set of 785 human complexes
and 284 yeast complexes. We queried the human complexes against the collection
of yeast complexes.

4.3. Results

We applied all three methods (SIGMA, Grafil and Edge) to the AIDS database with
queries of sizes ranging from 16 to 48. We allowed between 1 to 4 deletions and

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 211

 10000

 20000

 30000

 40000

 50000

0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 16

Edge
Grafil

SIGMA

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 24

Edge
Grafil

SIGMA

 5000

 10000

 15000

 20000

0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 32

Edge
Grafil

SIGMA

 1500

 3000

 4500

 6000

 7500

0 1 2 3 4 5

C
an

di
da

te
s

Deletions

Query size 48

Edge
Grafil

SIGMA

Fig. 7. A comparison of the number of candidates produced by SIGMA, Grafil and Edge. For each
query size, the average number of candidates over 100 queries of that size is reported.

tested the filtering power of the different approaches. We tried both variants of our
approach, multiset multi-cover and MOM, and got very similar results, hence we
report the former only. Compared to multiset multi-cover, MOM tends to generate
larger covers, but the computed lower bounds are often less tight. Therefore we
did not obtain a significant improvement in pruning power. Moreover, since MOM
needs to keep track of each single feature occurrence, the resulting filtering time is
higher than the corresponding time obtained by multiset multi-cover. The design of
a specific tight lower bound for MOM will be the subject of further investigation.
The comparison against Grafil and Edge is depicted in Fig. 7. For a given number
of deletions, the average number of candidates over 100 queries is reported. The
number of candidates of each query is highly variable, ranging from 1 to the whole
dataset. Evidently, SIGMA outperforms the other two methods on all query sizes.
The gap tends to increase with the size of the query. A more careful check over each
single query has shown that SIGMA outperformed Grafil in more than 95% of the
queries.

To evaluate the query processing time and quantify the pruning power, defined
as the ratio between the number of verified matches and the number of generated

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

212 M. Mongiov̀ı et al.

Table 1. Filtering time and number of candidates (between brackets)
obtained by Edge, Grafil and SIGMA over a database of 1000 graphs
extracted from the AIDS dataset. The values refer to the average over
10 query executions. All times are expressed in seconds.

Deletions Edge Grafil Sigma

1 0.008 (144.100) 0.056 (96.800) 0.167 (39.700)
2 0.016 (276.600) 0.140 (242.600) 0.327 (142.800)
3 0.049 (371.500) 0.414 (368.700) 0.462 (294.700)
4 0.145 (463.900) 1.136 (461.000) 0.603 (422.100)

Table 2. Number of matches found and overall query time (filtering +
matching) performed by Edge, Grafil and SIGMA over a database of
1000 graphs extracted from the AIDS dataset. The values refer to the
average over 10 query executions. All times are expressed in seconds.

Deletions Matches Edge Grafil Sigma

1 8.400 0.860 0.666 0.337
2 36.100 14.010 12.982 9.536
3 106.800 143.737 142.386 129.015
4 181.400 1226.785 1227.513 1176.640

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4 5

P
ru

ni
ng

 p
ow

er

Deletions

Edge
Grafil

SIGMA

Fig. 8. A comparison of the pruning power of SIGMA, Grafil and Edge.

candidates, we applied an exhaustive search algorithm to part of the data. Specif-
ically, we considered a subset of 1000 compounds and fixed the query size at 16.
The results, shown in Tables 1 and 2 and Fig. 8, are expressed as the average over
10 queries. Table 1 reports the filtering time and the number of candidates (between
brackets) obtained by the three algorithms. Table 2 reports the number of found
matches (number of molecules which contain the query) and the overall query time
(filtering + matching) performed by the three algorithms. The pruning power is
shown in Fig. 8. On this small dataset, SIGMA exhibits up to fourfold increase in
the pruning power.

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 213

 300

 400

 500

 600

 700

 800

 900

 1000

0 1 2 3 4

C
an

di
da

te
s/

M
at

ch
es

Deletions

Candidates
Matches

 10

 100

 1000

 10000

0 1 2 3 4

M
at

ch
in

g
T

im
e

(s
ec

)

Deletions

SIGMA

(a) (b)

Fig. 9. Performance of SIGMA on a dataset of protein complexes. (a) Reports the number of
candidates produced by the algorithm and the number of matches. (b) Reports the query time.

Finally, we applied our algorithm to compare protein complexes between yeast
and human. The yeast collection was preprocessed in 93 seconds. Each human
complex was then queried against the yeast collection with up to four possible
deletions. Figure 9(a) reports the number of matches and candidates found by
SIGMA per number of allowed deletions. The number of human-complexes used as
queries is 785, the number of yeast-complexes used as targets is 284. During the
filtering phase all queries with a number of edges less than 1 have been removed.
Figure 9(b) reports the total query time. SIGMA managed to match a total of
336 human protein complexes (1-31 matches per query), obtaining a total of 2104
matches; 439 of the matches were exact and the remaining 1635 were inexact. Some
of the most significant matches obtained are reported in Table 3. An exhaustive
list can be found in the supplementary material.25 For example, the “LSm2-8”
complex of human matches with the “small nucleolar ribonucleoprotein” complex
of yeast with 1 deletion. Figure 10 shows the “LSm2-8” complex of human, the
“small nucleolar ribonucleoprotein” complex of yeast and the match between them.

5. Conclusions

We have developed novel graph indexing strategies for inexact graph searches. The
resulting tool, called SIGMA, is based on a novel variant of the set-cover problem
and a greedy algorithm to approximate its solution.

In extensive tests on a chemical compound database, SIGMA was shown to
outperform existing methods for the problem, including the state-of-the-art Grafil.
Examining the results in detail, we believe that SIGMA performs better than Grafil
because Grafil uses only information about the number of query features that are
missing in the graph. In many cases, this criterion is not selective enough. In con-
trast, SIGMA takes the identity of the features into account, distinguishing between
different features, and hence achieves more filtering power. For example, consider

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

214 M. Mongiov̀ı et al.

Table 3. Some of the matches obtained querying Human complexes to a database of Yeast

complexes. The column Edges refers to the number of edges in the query. The last column reports
the number of deletions needed to obtain the match.

Query complex (Human) Edges Matching complexes (Yeast) Deletions

MCM complex 13 MCM complex 0
DNA replication preinitiation complex 0
pre-replicative complex 0

18S U11 U12 snRNP 12 ribonucleoprotein complex 2
small nuclear ribonucleoprotein complex 2
spliceosome 2

LSm1-7 complex 9 snRNP U6 0
ribonucleoprotein complex 0
small nuclear ribonucleoprotein complex 0
U4 U6 × U5 tri-snRNP complex 0
spliceosome 0
snRNP U5 0
snRNP U1 0
small nucleolar ribonucleoprotein complex 2

Lsm2-8 complex 8 snRNP U6 0
small nuclear ribonucleoprotein complex 0
ribonucleoprotein complex 0
snRNP U1 0

U4 U6 × U5 tri-snRNP complex 0
spliceosome 0
snRNP U5 0
small nucleolar ribonucleoprotein complex 1

SMN1-SIP1-SNRP complex 8 ribonucleoprotein complex 1

p27-cyclinE-Cdk2 Ubiquitin 8 ribonucleoprotein complex 3
E3 ligase(SKP1A-SKP2- preribosome 3
CUL1-CKS1B-RBX1) complex 90S preribosome 4

transcription factor complex 4

SF3b complex 6 ribonucleoprotein complex 1
spliceosome 1
small nuclear ribonucleoprotein complex 2

snRNP U2 2

12S U11 snRNP 6 snRNP U5 1
snRNP U1 1
ribonucleoprotein complex 1
small nuclear ribonucleoprotein complex 1

U4 U6 × U5 tri-snRNP complex 1
spliceosome 1
snRNP U5 1
small nucleolar ribonucleoprotein complex 2

the query in Fig. 11. Compared to the peripheral edges, the central edges are
contained in a higher number of feature occurrences, thus they dominate the max-
imum number of feature misses. As a result, the graph G reported in the figure
cannot be discarded by Grafil but is discarded successfully by SIGMA.

Future work will include the management of mismatches and vertex deletions.
Although the proposed system can handle vertex deletions by the induced edge

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 215

Fig. 10. An example of match between a complex of human and a complex of yeast. The left side
represents the human “LSm2-8” complex whereas the right side represents the matching part of
the yeast “small nucleolar ribonucleoprotein” complex (composed by 20 nodes and 48 edges). The
dashed red line in the left-hand complex represents the missing edge while the red lines in both
the left and right hand complexes represent matching edges. Finally, gray lines in the right-hand
complex depict edges without a match and the dashed gray lines represent the connections to the
remaining part of the yeast complex.

Fig. 11. An example of a graph which is discarded by SIGMA but not by Grafil. We search for
the query graph Q with at most 1 deletion, considering paths of length 3 as features. The query
contains 3 occurrences of the feature A-A-B and 3 occurrences of A-B-A for a total of 6 feature
occurrences. By removing one of the more central edges we miss 3 feature occurrences, while
by removing one of the peripheral edges we miss only one feature occurrence. For one allowed
deletion, the maximum number of possible feature misses is 3. G misses 2 feature occurrences,
thus it cannot be discarded by Grafil. There are no edges of the query which cover the two missing
(in G) A-A-B features, thus G is discarded by SIGMA.

deletions, in some applications, the cost of a vertex deletion may not be necessarily
related to its degree. In summary, the development of graph indexing methods is
essential for efficiently mining biological databases. Methods for inexact matching,
like the one reported here, greatly increase the sensitivity of database searches and
promise to take a leading role in this area as databases continue to expand.

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

216 M. Mongiov̀ı et al.

Acknowledgments

We thank Sharon Bruckner for providing the protein complex datasets and for her
help in collecting data. R. Sharan was supported by an Israel Science Foundation
grant (No. 385/06). R. Giugno, A. Pulvirenti and A. Ferro were in part supported
by PROGETTO FIRB ITALY-ISRAEL grant No. RBIN04BYZ7: Algorithms for
Patterns Discovery and Retrieval in discrete structures with applications to Bioin-
formatics.

References

1. Mongiov̀ı M, Di Natale R, Giugno R, Pulvirenti A, Ferro A, Sharan R, A Set-cover-
based approach for inexact graph matching, in Proc 8th Annual International Con-
ference on Computational Systems Bioinformatics (CSB2009), 2009.

2. Giugno R, Shasha D, GraphGrep: A fast and universal method for querying graphs,
in Proc Int Conf Pattern Recognition (ICPR), pp. 112–115, 2002.

3. James CA, Weininger D, Delany J, Daylight theory manual-Daylight 4.71, 2000.
4. Kelley B, Frowns, http://frowns.sourceforge.net/, 2002.
5. Shasha D, Wang JTL, Giugno R, Algorithmics and applications of tree and graph

searching, in Proc ACM Symposium on Principles of Database Systems (PODS),
pp. 39–52, 2002.

6. Ferro A, Giugno R, Mongiov̀ı M, Pulvirenti A, Skripin D, Shasha D, GraphFind:
Enhancing graph searching by low support data mining techniques, BMC Bioinfor-
matics 9, 2008.

7. Zhang S, Hu M, Yang J, TreePi: A novel graph indexing method, in Proc IEEE 23rd
Int Conf Data Engineering, pp. 181–192, 2007.

8. Cheng J, Ke Y, Ng W, Lu A, Fg-index: Towards verification-free query processing on
graph databases, in Proc ACM SIGMOD Int Conf Management of Data, pp. 857–872,
2007.

9. Yan X, Yu PS, Han J, Graph indexing based on discriminative frequent structure
analysis, ACM Transactions on Database Systems 30:960–993, 2005.

10. Cordella L, Foggia P, Sansone C, Vento M, A (sub)graph isomorphism algorithm for
matching large graphs, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 26:1367–1372, 2004.

11. Bijl D, The serotonin syndrome, The Netherlands Journal of Medicine 62:309–313,
2004.

12. Yan X, Yu PS, Han J, Substructure similarity search in graph databases, in Proc
ACM SIGMOD Int Conf Management of Data, pp. 766–777, 2005.

13. Tian Y, McEachin RC, Santos C, States DJ, Patel JM, Saga: A subgraph matching
tool for biological graphs, Bioinformatics 23:232–239, 2007.

14. He H, Singh AK, Closure-Tree: An index structure for graph queries, in Proc 22nd
Int Conf Data Engineering (ICDE’06), 2006.

15. Bruckner S, Hüffner F, Karp RM, Shamir R, Sharan R, Torque: Topology-free
querying of protein interaction networks, Nucl Acids Res 37:106–108, 2009.

16. Dost B, Shlomi T, Gupta N, Ruppin E, Bafna V, Sharan R, Qnet: A tool for querying
protein interaction networks, J Comput Biol 15:913–925, 2008.

17. Karp RM, Reducibility among combinatorial problems, Complexity of Computer
Computations 85–103, 1972.

18. Johnson DS, Approximation algorithms for combinatorial problems, J Comput System
Sci 256–278, 1974.

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 217

19. Rajagopalan S, Vazirani VV, Primal-dual RNC approximation algorithms for (multi)-
set (multi)-cover and covering integer programs, in Proc 34th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, Palo Alto, CA, USA, pp.
322–331, 1993.

20. Cordella LP, Foggia P, Sansone C, Vento M, An improved algorithm for matching
large graphs, in Proc 3rd IAPR TC-15 Workshop on Graph-based Representations in
Pattern Recognition, pp. 149–159, 2001.

21. NCI DTP Antiviral Screen data, http://dtp.nci.nih.gov/docs/aids/aids data.html.
22. Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M,

Waegele B, Schmidt T, Doudieu ON, Stumpflen V, Mewes HW, Corum: The compre-
hensive resource of mammalian protein complexes, Nucleic Acids Res 36, 2008.

23. Saccharomyces genome database, http://www.yeastgenome.org/, 2008.
24. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M, BioGRID: A

general repository for interaction datasets, Nucleic Acids Res 34, 2006.
25. Supplementary material, http://ferrolab.dmi.unict.it/sigma.html.

Misael Mongiov̀ı received his M.Sc. degree in computer sci-
ence in 2003, and his Ph.D. in 2007 from the Department of
Mathematics and Computer Science at the University of Cata-
nia headed by Prof. Alfredo Ferro.

He has been working for the Research and Development
Department of Proteo S.p.A. (Catania) taking part in several
projects and leading some of them. Currently he is at the
University of Catania as a postdoctoral fellow. His research inter-

ests lie in the field of data engineering, graph algorithms and bioinformatics.

Raffaele Di Natale received his B.Sc. degree in computer
science from University of Catania, Italy in 1997. From
1997 to 2008 his main activities concerned projecting and
developing software and in the last years, teaching com-
puter science too. He is a Ph.D. student in BioInformatics
at the Department of Biomedical Sciences and the Depart-
ment of Mathematics and Computer Science of the Catania
University.

Rosalba Giugno is an Assistant Professor at the Department of
Mathematics and Computer Science at the University of Cata-
nia, Italy. She received her B.Sc. degree in computer science
from Catania University in 1998 and the Ph.D. in computer
science from Catania University in 2003. She has been a vis-
iting researcher at Cornell University, Maryland University and
New York University. Her research interests include data mining
on structured data and algorithms for bioinformatics.

April 6, 2010 14:26 WSPC/185-JBCB S021972001000477X

218 M. Mongiov̀ı et al.

Alfredo Pulvirenti is an Assistant Professor at the Depart-
ment of Mathematics and Computer Science at the University
of Catania. He received his B.Sc. degree in computer science
from Catania University, Italy, in 1999 and the Ph.D. in com-
puter science from Catania University in 2003. He has been a
visiting researcher at New York University. His research inter-
ests include data mining and machine learning, and algorithms
for bioinformatics (sequences and structures).

Alfredo Ferro received his B.Sc. degree in mathematics from
Catania University, Italy, in 1973 and a Ph.D. in computer
science from New York University in 1981 (Jay Krakauer Award
for the best dissertation in the field of sciences at NYU). He
is currently professor of computer science at Catania University
and has been director of graduate studies in computer science
for several years. Since 1989, he has been the director of the
International School for Computer Science Researchers (Lipari

School http://lipari.cs.unict.it). He is the co-director of the International School on
Computational Biology and BioInformatics (http://lipari.cs.unict.it/bio-info/). His
research interests include bioinformatics, algorithms for large dataset management,
data mining, computational logic and networking.

Roded Sharan obtained his M.Sc. degree from the Hebrew
University of Jerusalem, Israel and his Ph.D. from the School
of Computer Science, Tel Aviv University, Israel. His doctoral
studies under the guidance of Prof. Ron Shamir and later his
post-doctoral research work with Prof. Richard Karp at the Uni-
versity of California, Berkeley shaped his interests in bioinfor-
matics, especially in the field of biological networks. He was then
offered a senior lecturer position at Tel Aviv University, to where

he returned as an Alon Fellow. Subsequently, he was awarded the Raymond and
Beverly Sackler Career Development Chair and the Krill Prize from the Wolf Foun-
dation. Today he is an Associate Professor at the Blavatnik School of Computer
Science at Tel Aviv University and heads a research group that focuses on the anal-
ysis of biological networks. Prof. Sharan has published numerous scientific papers
on bioinformatics and graph algorithms. His current research interests include com-
parative and integrative analysis of biological networks, systems medicine and tran-
scriptional regulation.

	1 Introduction
	2 Preliminaries
	2.1 Filtering techniques for exact matching

	3 A Filtering Technique for Inexact Matching
	3.1 An attempt to increase the filtering power

	4 Experimental Results
	4.1 Implementation
	4.2 Benchmark
	4.3 Results

	5 Conclusions

