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Network querying is a growing domain with vast applications ranging from screening
compounds against a database of known molecules to matching sub-networks across
species. Graph indexing is a powerful method for searching a large database of graphs.
Most graph indexing methods to date tackle the exact matching (isomorphism) problem,
limiting their applicability to specific instances in which such matches exist. Here we
provide a novel graph indexing method to cope with the more general, inexact match-
ing problem. Our method, SIGMA, builds on approximating a variant of the set-cover
problem that concerns overlapping multi-sets. We extensively test our method and com-
pare it to a baseline method and to the state-of-the-art Grafil. We show that SIGMA
outperforms both, providing higher pruning power in all the tested scenarios.

Keywords: Indexing; graph matching; network querying.

1. Introduction

Data in many biological domains are represented as graphs, where nodes corre-
spond to molecules and edges connect related molecules. Mining such data to

*A preliminary version of this paper appeared as Mongiovi et al.l in the Proceedings of the CSB
2009 Conference.
T Corresponding author.
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search for specific subgraphs is a fundamental step in identifying similarities among
molecules, molecular networks etc. For example, querying for protein pathways
within a collection of protein-protein interaction networks can identify matching
pathways that are conserved in evolution and assist in the functional annotation of
proteins and the prediction of their interactions.

Graph indexing is a common technique for performing searches in large
databases. In a pre-processing phase, each graph of the database is analyzed in
order to extract and store its features (composing the graph index). These could be
either all the paths up to a certain length,> % trees” or general subgraphs.®® These
indices are then used by a filtering phase to prune graphs that cannot contain
instances of the query. The remaining candidates are finally verified in a matching
phase through a subgraph matching algorithm.!?

While many graph indexing algorithms have been suggested for the exact search
(subgraph isomorphism) problem, very few algorithms exist for inexact search. In
the most basic variant of the problem, the goal is to allow matches that are isomor-
phic to the query up to a few edge indels. Since edge insertions (i.e. extra edges in
the match that do not have counterparts in the query) can be discarded while only
improving the quality of the match, the core of the problem is handling edge dele-
tions. More general variants allow label mismatches, node insertions and deletions
and so on.

Molecular compounds, for instance, can be represented as graphs where atoms
are vertices and bounds are edges. Molecules which share part of a given molecular
structure often have similar chemical properties. Here inexact matching may assist
in the identification of drugs which are active against some pathologies or have side
effect, when the molecular structure responsible for a particular activity or side
effect is known. Figure 1 shows that antidepressive molecules such as L-tryptophan
share compounds with alkaloids, amines isolated from plants, including poisons such
as strychnine and with powerful hallucinogenic drugs such as LSD. The shared parts

query DB results

L-tryptophan Strychnine

Fig. 1. An example of inexact matching on molecular compounds. The compounds are represented
as graphs where vertices are atoms and are labeled with their element symbol (unlabeled vertices
correspond to C atoms), and edges are bonds (double bounds are represented as single edges).
The red-colored part of strychnine and LSD matches a part of the Tryptophan structure. Finding
this match allows to identify compounds which share chemical properties.
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are highlighted. By deleting 7 edges from L-tryptophan, the remaining compound
has a match in strychnine, while 5 deletions are needed to find a match in LSD.
In Ref. 11 it is shown that both L-tryptophan and LSD are involved in serotonin
syndrome and that strychnine poisoning produces similar symptoms, being involved
in differential diagnosis.

To tackle the inexact matching problem, several systems®® apply exact search
techniques to queries that contain wildcard-nodes that can match any node and
wildcard-paths, which are paths of any length that connect the two nodes. Indexing
is used to filter out graphs in the database that do not contain the subparts of the
query that are completely specified. A shortcoming of this approach is the need to
specify in advance the parts of the query that may change.

Grafil'? has been the first attempt to realize indexing for inexact searches. It
transforms the edge deletions into feature misses in the query graph, and uses an
upper bound on the maximum number of allowed feature misses for graph filter-
ing. Grafil in fact clusters the features according to their selectivity and applies a
multi-filter strategy, where each filter uses a distinct cluster and the filtering results
are combined. SAGA'3 is a more flexible indexing system, which can handle also
node insertions and deletions. Key to the algorithm is a distance measure between
graphs. Fragments of the query are compared to database fragments using the dis-
tance measure. Matching fragments are then assembled into larger matches using a
clique detection heuristic and, finally, candidate matches are evaluated. The SAGA
algorithm was successfully applied to mine biological pathways, but its distance
metric limits its applicability in other domains in which one seeks direct control
over the number of edge deletions introduced. Closure-Tree'* is another tool for
inexact matching which focuses on the edit distance between the query and its can-
didate matches. However, for efficiency reasons, the edit distance computations are
approximate and, hence, the tool can miss true matches.

In this paper we present the Set-cover-based Inexact Graph Matching Algorithm
(SIGMA), an efficient feature-based filtering algorithm for inexact graph matching.
The algorithm is based on associating a feature set with each edge of the query
and looking for collections of such sets whose removal will allow exact matching
of the query with a given graph. This translates into the problem of covering the
missing features of the graph with overlapping multisets. We formulate this variant
of set cover and provide a greedy approximation for it. We extensively test SIGMA
in a simulated setting, querying small molecules against a database of molecular
compounds. We compare it to a baseline filtering method and to the state-of-the-art
Grafil; we show that SIGMA exhibits consistently higher filtering power, where the
difference grows with the size of the query.

To demonstrate the utility of SIGMA in a real biological setting, we apply it to
query yeast and human protein complexes. While there are previous methods for
protein complex querying, such as Torque'® and QNet,6 this is the first application
of a graph indexing technique for this task. In contrast to the previous methods,
SIGMA aims to find matches that are topologically similar to the query, and does
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not assume homeomorphism of the two topologies (as in QNet) or that the exact
topology is not important (as in Torque).
Our contribution is three-fold:

(i) We define a new effective pruning rule for inexact matching based on multiset
multi-cover, a variant of the well known set-cover problem.

(ii) We provide a tight greedy approximation for multiset multi-cover, which is
crucial for efficient and effective pruning.

(ili) We evaluate the performance of the proposed method, compared to a state-
of-the-art approach, over a molecular compound dataset. In addition, we apply
our method in a systematic comparison of protein complexes from yeast and
human.

The paper is organized as follows: Section 2 provides the basic definitions of
graph indexing. Section 3 derives new pruning rules for inexact matching that are
based on several variants of the set cover problem. Finally, experimental results and
a comparison to Grafil are presented in Sec. 4.

2. Preliminaries

An undirected labeled graph (in the following, simply a graph) is a 4-tuple G =
(V,E,%,1) where V is the set of vertices, E is the set of edges, 3 is the alphabet
of labels and [ : V' — ¥ is a function which maps each vertex to a label. We denote
as V(G) the set of vertices of G and by E(G) the set of edges of G. We say that a
graph G is subgraph of G2, denoted G; C Go, if Vi C V5 and E; C Fj.

Given two graphs G1 = (V1, B, X,1), Go = (Va, B2, X, 1) an isomorphism (that
respects the labels) between G; and G is a bijection ¢ : V3 — V4 so that:

e (u,v) € By & (¢(u), 9(v)) € Ez
o [(u)=1(¢(u),YueW

A subgraph isomorphism between G7 and Gg is an isomorphism between G and
a subgraph of G2. We say that a graph G; admits an exact match in Go if there
exist a subgraph isomorphism between G; and G3. We say that a graph G; admits
an inexact match in Go with r deletions if there exists a subgraph isomorphism
between a graph G, obtained from G; by removing arbitrarily r edges, and Ga. We
say also that GGy is contained in G5 with r deletions.

We define a multiset as a pair (A, m) where A is a set and m is a function
from A to the set N of natural numbers. We say that m(a) is the multiplicity
of the element a. Given a set U, we say that A’ = (A4, m) is a multiset of U if
A C U. For simplicity, we extend the function m() to all element of U by setting
m(u) = 0 for each u € U — A. We define the cardinality of a multiset A’ = (A4, m)
s [A] = 3,y m(a)

Let A’ = (A,m) and B’ = (B,n) be two multisets. We define the difference
A'—B’ as the set C' = (C,p) where C' = {c € Alm(c) > n(c)} and p(c) = m(c)—n(c)
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for each element ¢ € C. We define the intersection A’ N B’ as the set C' = (C,p)
where C = AN B and p(c) = min(m(c),n(c)) for each element ¢ € C. We define
the union A’ U B’ as the set C' = (C,p) where C' = AU B and p(c) = m(c) + n(c)
for each element ¢ € C'. We say that A’ C B’ if for each a € A we have a € B and
m(a) < nl(a).

Given a multiset C' and two multisets A, B C C, it is easy to verify that the
following relations hold:

e C—(C—A)=4A
eC-ACC-BoBCA

2.1. Filtering techniques for exact matching

Given a database D = {G1, Ga, ..., Gy} of graphs, performing an exact graph query
Q@ in D calls for finding all graphs G in D such that @ C G.

Since checking all graphs of D is very expensive, a feature-based indexing system
applies a filter-and-verification framework which allows to prune the graphs of the
databases which cannot contain the query. A feature is a small graph which allows
to discriminate, by checking its inclusion, the graphs which could contain the query
from the graphs that cannot contain it. We denote as F the set of all possible
features. The choice of F depends on the particular system used. In this paper we
refer to a generic set of features.

Basically, graph-based graphs indexing systems are based on the observation
that for a query @ to admit a match in the graph G, it is necessary that each
feature of F contained in @ is also contained in G. More precisely, when we say
that a feature f is contained in G we mean that there exists an isomorphism between
f and a subgraph of GG. The pruning is performed by the following phases:

e Pre-processing: This phase is off-line and is independent from the query. Each
graph of the database is examined in order to extract all features of F which are
contained in the graph. The set of features of all graphs are recorded in a data
structure called graph indez.

e Filtering: The given query () is examined in order to extract a set of features
contained in Q. A candidate graph set is computed comparing the extracted set
of features against the corresponding sets in the graph index.

e Matching: Each candidate graph is examined in order to verify if there are
matches between the query and the graph.

The feature-based condition for ) to be contained in G can be expressed as
a pruning rule. We denote as Hg the set of features contained in the graph G.
Given a query @, the graph G can be discarded if Hy ¢ H¢. To apply this pruning
rule we only check the existence of a subgraph isomorphism between features and
graphs. Given a feature f and a graph G there can be several distinct subgraphs
of G which admit an isomorphism with the feature f. Each subgraph of G which
admits an isomorphism with f is referred as a distinct feature occurrence of f
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0 G, G, G,
1
3
H,, Hs, Hs, He,
A—A A—A A—A A—A
A—A A—A A—0 A—0
A—O o—a A—O
FQ FG1 FG2 FG3
A—aA A—aA A—A A—A
A—A A—A A—0 A—R
A— A—0 A—0 A—0
A—A o—a
A—O o—a

Fig. 2. An example of exact matching in a database of graphs. Here we consider as features simply
edges (graphs with size 1). The first row shows the query graph @ and the database of graphs
{G1,G2,G3}. The second and third rows report respectively, the sets of features and the multisets
of features associated to each graph. The multiplicity of multisets take into account the number
of feature occurrences. For instance, the query @ contains two occurrences of the feature triangle-
square, one over the nodes 1-2 and the other over the nodes 3-2. In this example the query Q is
contained in the graph G1 but not in the graphs G2 and G3. G2 can be discarded by the filtering
process because the feature triangle-square is not contained in Hg,. GG3 can be discarded taking
into account the number of occurrences by observing that the feature triangle-square have two
occurrences in the query and only one in the graph.

in G. The pruning power can be increased by considering the number of feature
occurrences. We denote as F; the multiset of features of the graph G which associate
to each feature, the number of occurrences of it in the graph. For the query @ to
be contained in the graph G, the number of occurrences of each feature in ) must
be lower or equal to the number of occurrences of the corresponding feature in G.
This means that we can discard the graph G if Fy ¢ Fg.

For example, the query @ in Fig. 2 matches with the graph G; but not with
G5 and G3. It contains one occurrence of the feature triangle-triangle and two
occurrences of the feature triangle-square. G can be discarded by observing Hg ¢
H¢,. By considering the number of feature occurrences, G's can also be discarded,
since Fo ¢ Fg,.

3. A Filtering Technique for Inexact Matching

In this section we develop effective pruning rules for inexact matching. We focus on
the following problem: Given a query @) and a graph G, does @ admit an inexact
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match in G with at most r deletions? The scheme that we develop is based on
associating a feature set F, with each edge e of the query (i.e. the set of features
that contain this edge) and looking for collections of such sets whose removal will
allow exact matching of the query with G. The resulting problem can be formulated
as a set cover problem: given a set Y (of features of ) which are missing in G) and
a family S of sets (of features associated to each edge), find the smallest subfamily
I" of S that covers Y, ie. Uy p X 2 V.

Such a subfamily represents a set of query edges whose deletion assure that all
the features of @) are contained in G. If a subfamily I" of size r does not exist, we
can assume that if we delete r edges in all possible ways, we can always find at least
one feature of the query which is not contained in the graph, therefore the graph
can be discarded.

We can strengthen the above formulation by considering the multiplicity of
feature occurrences. Let E, C E(Q) be a subset of the query edges. We denote as
Fg the multiset of features of @ and as Fiz, the multiset of features which contain
at least one of the edges in F. If ) admits an inexact match in G with r deletions,
there must exist an r-size edge set E, such that Fig—Fr, C Fg. Hence the following
pruning rule can be inferred:

Pruning rule 1. Given a query @ with r allowed deletions, a graph G can be
discarded if for each E, C E(Q) with |E,| = r we have

Fp, 2 Fq - Fg

Clearly this pruning rule cannot be applied efficiently because the number of
possible r-subsets of E(Q) grows exponentially with r, and the rule must be verified
for all the graphs in the database. Instead, we resort to a multiset cover approach
and define a new pruning rule based on a greedy algorithm.

In the multiset multi-cover problem Y = (Y’ my) is a multiset and S is a
family of multisets. Each element (feature) f of Y has a multiplicity my (f) which
specifies the number of times f has to be covered, and it occurs in each set X of
S with a given multiplicity mx (f). The goal is to find the minimum-size set T’
such as Jyp X 2 Y, ie. for each f € Y, > v pmx(f) > my(f). In its general
formulation, a set of S can be chosen several times (I is a multiset too). In what
follows we consider the further constraint that each set of S can be chosen at most
once. In our case, the multiset to be covered is Y = Fg — Fz, and the collection of
covering multisets is S = { I }cep(@)- If Y admits no multiset multi-cover of size r
then G can be discarded (see Fig. 3).

Set-cover is known to be NP-complete,'” but can be solved by a simple greedy
heuristic with approximation ratio H(maz{|X| : X € S}), where H(n) = 1 +
1/2+ -+ +1/n.1"!® The more general multiset multi-cover problem was shown to
admit the same approximation ratio.'® Figure 4 describes a greedy heuristic for the
multiset multi-cover problem. At each iteration, the algorithm chooses the multiset
X of the family S which maximizes the number of newly covered feature occurrences
of Y. The chosen set is added to the cover, and its elements are removed from Y.
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Fig. 3. An example of a query @ and a graph G which contains a copy of @ with two deletions.
We consider as features all connected subgraphs containing exactly two edges. Left: @Q and all the
feature occurrences it contains (Fg). The line type of feature occurrences is chosen according to
the feature they correspond to. Each set F; indicates all the feature occurrences that contain the
edge i. Right: G, its multiset of features (F) and the multiset of missing features (Fo — Fg).
The minimum cover of Fy — Fg by the family {F, F», F3, F4} is of cardinality 2, implying that
at least two deletions are needed for a match. {Fi, Fo} is a possible cover, implying that G is a
candidate to match @ with edges 1 and 2 deleted.

Greedy-Multiset-Multicover(Y, S)
'« ¢
whileY # ¢ do
X « argma:ryes|y nyYy|

Y+~Y-X
I+« Tu{X}
return I

Fig. 4. A greedy algorithm for the multiset multi-cover problem.

For the greedy algorithm to be used effectively for filtering, it is essential to
have a tight lower bound of the optimal solution. We prove a tight lower bound
below.

Let Y = (Y, my) be the multiset of features to be covered. Let cost(f,i) be a
function from Y’ x N to R, which assigns a cost to each feature occurrence covered
by the greedy algorithm. The feature occurrences are ordered by the time they are
covered by the algorithm. The cost is assigned at each step (execution of the while
loop) of the algorithm, spreading a unit cost over all the feature occurrences which
are being covered, i.e. each feature occurrence is assigned a cost 1/c¢, where ¢ is
the number of newly covered occurrences. Formally the function cost is defined as
follows: Let new_cov(f, s) be the number of newly covered occurrences of f at the
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step s and cov(f, s) be the total number of covered occurrences of f after the step
s, i.e. cou(f,s) =, .. new_cov(f,t). The function cost is defined as

1

if cov(f,s — 1) < i < cov(f,s)
cost(f,i) = { fer

0 otherwise

Let T be the cover returned by the greedy algorithm, I'* the exact cover and
rx (f) = min(mx(f),my(f)). The following theorem bounds the size of the cover
returned by the greedy algorithm.

Theorem 1. Let a(f) = cost(f,my(f)) and =3y Zni”(f)( (f)—cost(f,i))
then,

| > min |
L/CS: 3 x myyer pex Tx (Ha(f)=F=|T]

Proof. We show that
S Y x(Palf) - A= T
(X,mx)eT* fEX

The claim follows since I'* C S and each element of a set is always greater than or
equal to the minimum over that set.
The total cost assigned to all the feature occurrences is equal to |T'|. Thus:

my (f)

T = Z Z cost(f,i)

fey’ i=1

Z my (f) - cost(f,my(f))

fevr

my (f)

_ Z Z (cost(f,my (f)) — cost(f,4))

feyr =1

= > my(falf) -8

fey”
< Y Y rx(alh) -8 .
(X,mx)er feX
By the above theorem, we obtain the following pruning rule:
Pruning rule 2. Given a query ) with r allowed deletions and a graph G. Let |T|

be the cover returned by the greedy algorithm when executed on Fg — F. G can
be discarded if

r< min IT|
/CSiS i yers Dsex rx (Hal(f)—B2T|
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The right side can be easily computed by ranking the sets of S by the score
> rex rx(f)a(f) in decreasing order, and taking them one by one until the sum of
the scores is greater than or equal to || + S.

3.1. An attempt to increase the filtering power

Using multisets alone does not capture interdependencies between them, i.e. two
multisets of features may include the same feature occurrence but in the cover we
may count it twice (see Fig. 5).

To this end we introduce a new variant of the set-cover problem, which we call
Multi-cover by Overlapping Multisets (MOM). Let U be a set of elements (feature
occurrences), F a set of features and f a function that associates with each element
of U a feature from F. Given A C U, we define the covering of A, denoted as
Covy(A), as the multiset D’ = (D, m) of F so that D = {f(a)|a € A} and m(d) =
{a € Alf(a) = d}|. We define the MOM problem as follows: For a multiset Y of
F and given a family S of subsets of U, find the smallest subfamily I' of S so that
Covg(UxerX)2Y.

Note that in Fig. 5 the minimum cover for MOM is {F}, Fs, F7}, so G is not a
candidate to match ) with at most two deletions.

Fig. 5. A graph which cannot be pruned solving the multiset multi-cover problem. Inexact match-
ing with at most two deletions are searched for. Features are subgraphs containing exactly two
connected edges. The left side shows the query @ and all its feature occurrences (Fg). The line
type of a feature occurrence is uniquely associated with that feature. Each set F; indicates all the
feature occurrences containing the edge i. The right side shows the target graph G, its multiset
of features (Fg) and the multiset of missing features (Fg — Fg). For the multiset multi-cover
problem, {Fg, F} is a cover of Fg — Fg since the feature f is counted twice. This means that Q
is candidate to match G with 2 deletions. Considering f only once (see MOM defined below) the
minimum cover would be {Fi, Fg, Fr} and G would be discarded.



SIGMA: A Set-Cover-Based Inexact Graph Matching Algorithm 209

Greedy-MOM(Y, S)
Z U
'« ¢
whileY # ¢ do
X ¢+ argmazs g|Covy (XNnZ)ny)|
Y <Y —Covs(XNZ)

Z+—7Z-X
<+~ TuU{X}
return I

Fig. 6. A greedy algorithm for MOM.

It can be shown that this problem is also NP-hard by reduction from set-cover.
A greedy algorithm for it is given in Fig. 6. In the greedy algorithm for MOM in
Fig. 6 a further set Z is used to keep track of the covered elements. When a set is
added to the cover, its elements are removed from Z in order to avoid considering
them twice.

We can now define a new pruning rule based on MOM which is equivalent to
pruning rule 1.

Pruning rule 3. Given a query @ with r deletions. Denote as F, the set of feature
occurrences of ) which contain the edge e € E(Q). A graph G can be discarded if
for each E, C E(Q) of size r

Covy U F.| 2 Fg—Fg

eckE,

Since Covg(U.ep, Fe) = Fi, we get that
Theorem 2. Pruning rule 3.1 is equivalent to pruning rule 1.

Theorem 1 and pruning rule 2 apply to the MOM greedy algorithm as well, so
the same lower bound can be used to prune the graphs.

4. Experimental Results

To evaluate our filtering methods we applied them to query a large database of
molecular compounds and to detect cross-species similarities between protein com-
plexes. We compared our performance to the state-of-the-art Grafil'? as well as to
a baseline filtering method called Edge.'? The latter simply compares the edges of
the query to those of a given graph and discards all graphs that miss (with respect
to the query) more edges than the number of allowed deletions. This filtering is in
fact equivalent to both our filtering and that of Grafil when considering edge-based
features only.



210 M. Mongiovi et al.

4.1. Implementation

Two versions of our tool have been implemented: one is based on the multiset multi-
cover formulation, and the other is based on the MOM formulation. Both tools use
Edge as a first pruning step and then apply pruning rule 2. They are compared
with our own implementation of Edge and Grafil (which includes Edge as part of
the filtering). To perform a uniform analysis, paths of length up to 4 were used as
features for all the compared systems. The candidate verification was performed by
enumerating all possible subgraphs of the query that can be obtained by deleting
any set of r edges, and running an efficient subgraph isomorphism algorithm called
VF220 over each graph.

4.2. Benchmark

We used two query settings. The first, a simulated setting, contained queries of
small molecules from the Antiviral Screen Dataset (AIDS).?! The second, a real
setting, contained queries of protein complexes in yeast and human.

The AIDS database contains the topological structures of 42,000 chemical com-
pounds that have been tested for evidence of anti-HIV activity. Each compound
of the dataset was converted into a graph where vertices are atoms, edges are
bonds between atoms, and the element symbols are used to label the vertices.
Multiple bonds were represented by single edges. We obtained a dataset of graphs
ranging from 20 to 270 vertices in size. Queries were extracted at random from
the AIDS database. The extraction procedure picks a graph and a vertex of that
graph at random; it then generates a subgraph starting from the picked vertex and
adding edges until a specified size is reached. We generated queries with size ranging
between 16 and 48.

The yeast and human protein complex datasets contain graph representations of
the set of complexes of each of the species, where vertices correspond to proteins and
edges correspond to protein-protein interactions (PPIs). Human complexes were
retrieved from CORUM?? and yeast complexes were retrieved from SGD.?3 The
topology of each complex was inferred from PPI data taken from BioGRID.?* In
order to assign labels to the vertices (proteins), we executed an all-pair BLAST on
yeast and human proteins, and then clustered them according to the BLAST scores.
To this end, we used average-linkage hierarchical clustering with a score cutoff of
40 bits and a maximum cluster size threshold of 500. This procedure yielded 6703
clusters. Each protein was then labeled with the id of the cluster containing it.
Removing the complexes with no edges, we obtained a set of 785 human complexes
and 284 yeast complexes. We queried the human complexes against the collection
of yeast complexes.

4.3. Results

We applied all three methods (SIGMA, Grafil and Edge) to the AIDS database with
queries of sizes ranging from 16 to 48. We allowed between 1 to 4 deletions and
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Query size 16 Query size 24
50000 T T T 35000 " . : .
Edge —— Edge ——
Grafil -~ 30000 | Grafil - A
40000 ¢ SIGMA - 1 SIGMA -
» o 25000
2 2
5 %0000y £ 20000 |
e) e)
§ 20000 | § 15000 |
x7 . 10000 |
10000 f *
5000
0 1 2 3 4 5 0 1 2 3 4 5
Deletions Deletions
Query size 32 Query size 48
20000 " " " . : . ;
Edge —— 7500 Edge ——
Grafil - Grafil
15000 | SIGMA ¥ 6000 | SIGMA %
3 3
S S 4500 +
2 10000 | 5
3 % 3000 |
(&) O
5000 | )
" 1500 | T
0 1 2 3 4 5 0 1 2 3 4 5
Deletions Deletions

Fig. 7. A comparison of the number of candidates produced by SIGMA, Grafil and Edge. For each
query size, the average number of candidates over 100 queries of that size is reported.

tested the filtering power of the different approaches. We tried both variants of our
approach, multiset multi-cover and MOM, and got very similar results, hence we
report the former only. Compared to multiset multi-cover, MOM tends to generate
larger covers, but the computed lower bounds are often less tight. Therefore we
did not obtain a significant improvement in pruning power. Moreover, since MOM
needs to keep track of each single feature occurrence, the resulting filtering time is
higher than the corresponding time obtained by multiset multi-cover. The design of
a specific tight lower bound for MOM will be the subject of further investigation.
The comparison against Grafil and Edge is depicted in Fig. 7. For a given number
of deletions, the average number of candidates over 100 queries is reported. The
number of candidates of each query is highly variable, ranging from 1 to the whole
dataset. Evidently, SIGMA outperforms the other two methods on all query sizes.
The gap tends to increase with the size of the query. A more careful check over each
single query has shown that SIGMA outperformed Grafil in more than 95% of the
queries.

To evaluate the query processing time and quantify the pruning power, defined
as the ratio between the number of verified matches and the number of generated
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Table 1. Filtering time and number of candidates (between brackets)
obtained by Edge, Grafil and SIGMA over a database of 1000 graphs
extracted from the AIDS dataset. The values refer to the average over
10 query executions. All times are expressed in seconds.

Deletions Edge Grafil Sigma
1 0.008 (144.100) 0.056 (96.800) 0.167 (39.700)
2 0.016 (276.600) 0.140 (242.600) 0.327 (142.800)
3 0.049 (371.500) 0.414 (368.700) 0.462 (294.700)
4 0.145 (463.900) 1.136 (461.000) 0.603 (422.100)

Table 2. Number of matches found and overall query time (filtering +
matching) performed by Edge, Grafil and SIGMA over a database of
1000 graphs extracted from the AIDS dataset. The values refer to the
average over 10 query executions. All times are expressed in seconds.

Deletions Matches Edge Grafil Sigma
1 8.400 0.860 0.666 0.337
2 36.100 14.010 12.982 9.536
3 106.800 143.737 142.386 129.015
4 181.400 1226.785 1227.513 1176.640
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Fig. 8. A comparison of the pruning power of SIGMA, Grafil and Edge.

candidates, we applied an exhaustive search algorithm to part of the data. Specif-
ically, we considered a subset of 1000 compounds and fixed the query size at 16.
The results, shown in Tables 1 and 2 and Fig. 8, are expressed as the average over
10 queries. Table 1 reports the filtering time and the number of candidates (between
brackets) obtained by the three algorithms. Table 2 reports the number of found
matches (number of molecules which contain the query) and the overall query time
(filtering + matching) performed by the three algorithms. The pruning power is
shown in Fig. 8. On this small dataset, SIGMA exhibits up to fourfold increase in
the pruning power.
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Fig. 9. Performance of SIGMA on a dataset of protein complexes. (a) Reports the number of
candidates produced by the algorithm and the number of matches. (b) Reports the query time.

Finally, we applied our algorithm to compare protein complexes between yeast
and human. The yeast collection was preprocessed in 93 seconds. Each human
complex was then queried against the yeast collection with up to four possible
deletions. Figure 9(a) reports the number of matches and candidates found by
SIGMA per number of allowed deletions. The number of human-complexes used as
queries is 785, the number of yeast-complexes used as targets is 284. During the
filtering phase all queries with a number of edges less than 1 have been removed.
Figure 9(b) reports the total query time. SIGMA managed to match a total of
336 human protein complexes (1-31 matches per query), obtaining a total of 2104
matches; 439 of the matches were exact and the remaining 1635 were inexact. Some
of the most significant matches obtained are reported in Table 3. An exhaustive
list can be found in the supplementary material.2> For example, the “LSm2-8”
complex of human matches with the “small nucleolar ribonucleoprotein” complex
of yeast with 1 deletion. Figure 10 shows the “LSm2-8” complex of human, the
“small nucleolar ribonucleoprotein” complex of yeast and the match between them.

5. Conclusions

We have developed novel graph indexing strategies for inexact graph searches. The
resulting tool, called SIGMA, is based on a novel variant of the set-cover problem
and a greedy algorithm to approximate its solution.

In extensive tests on a chemical compound database, SIGMA was shown to
outperform existing methods for the problem, including the state-of-the-art Grafil.
Examining the results in detail, we believe that SIGMA performs better than Grafil
because Grafil uses only information about the number of query features that are
missing in the graph. In many cases, this criterion is not selective enough. In con-
trast, SIGMA takes the identity of the features into account, distinguishing between
different features, and hence achieves more filtering power. For example, consider
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Table 3. Some of the matches obtained querying Human complexes to a database of Yeast
complexes. The column Edges refers to the number of edges in the query. The last column reports
the number of deletions needed to obtain the match.

Query complex (Human)

Edges

Matching complexes (Yeast)

Deletions

MCM complex

18S U11_U12 snRNP

LSm1-7 complex

Lsm2-8 complex

SMN1-SIP1-SNRP complex

p27-cyclinE-Cdk2 Ubiquitin
E3 ligase(SKP1A-SKP2-
CUL1-CKS1B-RBX1) complex

SF3b complex

12S_U11_snRNP

13

12

MCM complex
DNA replication preinitiation complex
pre-replicative complex

ribonucleoprotein complex
small nuclear ribonucleoprotein complex
spliceosome

snRNP U6

ribonucleoprotein complex

small nuclear ribonucleoprotein complex
U4 U6 x U5 tri-snRNP complex
spliceosome

snRNP U5

snRNP U1l

small nucleolar ribonucleoprotein complex

snRNP U6

small nuclear ribonucleoprotein complex
ribonucleoprotein complex

snRNP U1l

U4 U6 x U5 tri-snRNP complex
spliceosome

snRNP U5

small nucleolar ribonucleoprotein complex

ribonucleoprotein complex

ribonucleoprotein complex
preribosome

90S preribosome
transcription factor complex

ribonucleoprotein complex

spliceosome

small nuclear ribonucleoprotein complex
snRNP U2

snRNP U5

snRNP Ul

ribonucleoprotein complex

small nuclear ribonucleoprotein complex
U4 U6 x U5 tri-snRNP complex
spliceosome

snRNP Ub

small nucleolar ribonucleoprotein complex

o

N == == FHFFHRFR NDNNRFR BRRWwWw P PO0OO000000 NODOODODODOO MNMNN OO

the query in Fig. 11. Compared to the peripheral edges, the central edges are
contained in a higher number of feature occurrences, thus they dominate the max-
imum number of feature misses. As a result, the graph G reported in the figure
cannot be discarded by Grafil but is discarded successfully by SIGMA.

Future work will include the management of mismatches and vertex deletions.
Although the proposed system can handle vertex deletions by the induced edge
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Fig. 10. An example of match between a complex of human and a complex of yeast. The left side
represents the human “LSm2-8” complex whereas the right side represents the matching part of
the yeast “small nucleolar ribonucleoprotein” complex (composed by 20 nodes and 48 edges). The
dashed red line in the left-hand complex represents the missing edge while the red lines in both
the left and right hand complexes represent matching edges. Finally, gray lines in the right-hand
complex depict edges without a match and the dashed gray lines represent the connections to the
remaining part of the yeast complex.

G

-

Fig. 11. An example of a graph which is discarded by SIGMA but not by Grafil. We search for
the query graph @ with at most 1 deletion, considering paths of length 3 as features. The query
contains 3 occurrences of the feature A-A-B and 3 occurrences of A-B-A for a total of 6 feature
occurrences. By removing one of the more central edges we miss 3 feature occurrences, while
by removing one of the peripheral edges we miss only one feature occurrence. For one allowed
deletion, the maximum number of possible feature misses is 3. G misses 2 feature occurrences,
thus it cannot be discarded by Grafil. There are no edges of the query which cover the two missing
(in G) A-A-B features, thus G is discarded by SIGMA.

deletions, in some applications, the cost of a vertex deletion may not be necessarily
related to its degree. In summary, the development of graph indexing methods is
essential for efficiently mining biological databases. Methods for inexact matching,
like the one reported here, greatly increase the sensitivity of database searches and
promise to take a leading role in this area as databases continue to expand.
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