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Abstract. In a maximum sign assignment problem one is given an undi-
rected graph and a set of signed source-target vertex pairs. The goal
is to assign signs to the graph’s edges so that a maximum number of
pairs admit a source-to-target path whose aggregate sign (product of its
edge signs) equals the pair’s sign. This problem arises in the annota-
tion of physical interaction networks with activation/repression signs. It
is known to be NP-complete and most previous approaches to tackle it
were limited to considering very short paths in the network. Here we pro-
vide a sign assignment algorithm that solves the problem to optimality
by reformulating it as an integer program. We apply our algorithm to
sign physical interactions in yeast and measure our performance using
edges whose activation/repression signs are known. We find that our al-
gorithm achieves high accuracy (89%), outperforming a state-of-the-art
method by a significant margin.
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1 Introduction

A holy grail of biological research is obtaining a working model of the cell.
Protein-protein interactions (PPIs) form the skeleton of signal processing cir-
cuitry. Despite their importance, current models of PPI networks are mostly
topological, lacking the underlying logic of those circuits. In this paper we tackle
combinatorial problems arising in the annotation of PPI networks with signs of
activation/repression. Constructing such an annotation is a key step in decipher-
ing the logic of those networks.

Current technologies for PPI mapping do not provide information on the
direction of signal flow or the activation/repression effect of the measured inter-
actions. Such information can be gained from additional, indirect data such as
gene expression knockout experiments. The latter pinpoint pairs of genes such
that the deletion of a gene (cause) leads to a change in the expression level of
the other gene (effect) with a certain sign (down- or up-regulation). Yeang et
al. [7] were the first to suggest a computational framework for annotating net-
works with directions and signs given cause-effect data. Later work by Ourfali
et al. [4] formulated the sign assignment problem as an integer programming
problem, aiming to maximize the expected number of cause-effect pairs that
can be explained. The main caveat of these works is the need to consider an



exponential space of paths in the network during the optimization process, ne-
cessitating heuristic approaches that focus on very short paths (with at most 3
edges) and miss information contained in longer ones. Finally, Peleg et al. [5]
gave an algorithm that assigns signs to nodes in a manner that is independent
of a PPI network; these signs are then used in order to predict edge signs in the
network. Their algorithm was shown to compare favorably to the previous sign
assignment algorithms of [7, 4].

Here we revisit the problem of assigning signs to the edges of the PPI network
so as to best explain a given cause-effect data set. Following previous work, we
consider a cause-effect pair of a certain sign to be explained by an assignment if
the network contains a path from the cause to the effect whose aggregate sign
(product of the signs along its edges) is opposite (due to the knockout) to the
sign of the pair. Our goal is to assign signs to the edges of the network so that a
maximum number of cause-effect pairs can be explained. We study the resulting
Maximum Sign Assignment (MSA) problem, which was shown to be NP-hard
in [5]. We provide a polynomial 0.878-approximation algorithm for it and for
a constrained variant where some of the edges are pre-assigned with signs. We
further provide an integer programming formulation of the problem that allows
us to solve it to optimality on current networks. We apply our algorithm to
annotate a network of physical interactions in yeast, obtaining high success rates
against known sign data. In comparison to our previous state-of-the-art method
by Peleg et al. [5] the current approach attains significantly higher accuracy
levels (89% vs. 68-73%).

2 Preliminaries

Let G = (V,E) be an undirected graph, representing a protein network, with
a set V of vertices and a set E of edges. We assume that each edge e ∈ E is
associated with a sign s(e) ∈ {−1,+1} (which may be unknown) describing its
activation/repression effect. For a path P , we define its sign as the product of
the signs of its edges (assuming their signs are known), i.e., s(P ) =

∏
e∈P s(e).

Our goal is to infer the edge signs from knockout data which can be summarized
as triples of a knockout gene u, an affected gene v and the effect sign s. Our
assumption, following [7], is that each such triple can be explained by a path in
G from u to v whose sign is −s (and due to the knockout the observed effect is
s). The problem is formally stated as follows:

Definition 1 (Maximum Sign Assignment (MSA)). Given an undirected
graph G = (V,E) and a collection of signed vertex pairs {(u, v, s)}u,v∈V,s∈{+1,−1},
assign signs to the edges of G so that a maximum number of signed pairs (u, v, s)
admit a path whose sign is s.

In [5] it is shown that MSA is NP-complete and hard to approximate to
within a factor of 11/12. In the next section we shall develop approximation
algorithms for the problem and a constrained variant of it.



We assume that the input graph G = (V,E) is connected, otherwise one
can operate independently on each of its connected components. We note that
any cycle in G can be contracted without affecting the optimum solution. This
follows from the observation that by assigning -1 to one of its edges and +1 to
the remaining edges, every pair of vertices that admit a path that visits this
cycle can be satisfied. Thus, we may assume, w.l.o.g., that G is a tree. Given
a sign assignment to the edges of G, we say that two vertices admit a positive
path (resp., negative path) between them if there exists a path connecting the
vertices whose sign is +1 (resp., -1).

3 An approximation algorithm for MSA

We approximate the problem by reducing it into a MAX-E2-LIN2 problem. In
MAX-E2-LIN2 the input consists of a set of linear equations over Z2 with at
most two variables per equation; the goal is to find a solution that maximizes
the number of satisfied equations. MAX-E2-LIN2 is known to be hard to ap-
proximate to within 11/12. On the positive side, it can be 0.878-approximated
using the semi-definite programming approach of Geomans and Williamson [2].

Given an instance of MSA, we reduce it by representing every signed pair
(u, v, s) as a linear equation over Z2: xu ⊕ xv = f(s), where f(s) = (1− s)/2.

Theorem 1. The reduction is approximation preserving.

Proof. We prove that there exists a solution of the MAX-E2-LIN2 instance that
satisfies k equations iff there is a solution to the MSA instance that satisfies k of
the pairs. Let X be a solution to the MAX-E2-LIN2 instance which satisfies k of
the input equations. X induces a partition of V into two parts: {v ∈ V : Xv = 1}
and {v ∈ V : Xv = 0}. Vertices that did not participate in the equations are
arbitrarily assigned to one of the parts. Now, we can sign the edges as follows:
edges that cross between the two parts are assigned a minus sign; the rest are
assigned a plus sign. It is easy to check that under this assignment (and since
G is connected) every pair (u, v, s) whose corresponding equation was satisfied
admits a path of sign s.

Conversely, let S be a sign assignment which satisfies k pairs. Take an arbi-
trary vertex v and set Xv = 0. For any other vertex u ∈ V that has a positive
path to v, set Xu = 0; otherwise, u must have a negative path to v and we set
Xu = 1. Since G is a tree, every two vertices have a unique path between then,
so its sign is well defined. It is again easy to check that the proposed assignment
satisfies at least k equations (corresponding to the k satisfied pairs).

Corollary 1. MSA can be 0.878-approximated.

4 Dealing with assignment constraints

The discussion thus far assumed that any assignment is legal. In practice, some
edge signs are known in advance. Under such constraints the problem cannot



be reduced to a tree anymore, since some cycles cannot be contracted without
affecting the optimum solution. For a given sign assignment, a pair of vertices
are called ambiguous if they admit both a positive and a negative path between
them. In the following we call a graph strongly signed if there exists an assignment
to its yet unsigned edges such that every pair of vertices is ambiguous.

Lemma 1. A cycle is strongly signed iff it admits an assignment whose aggre-
gate sign is -1.

Proof. If a cycle is strongly signed then by definition the product of signs along
its edges is -1, as every two vertices on the cycle have exactly two paths connect-
ing them with one being negatively-signed and the other being positively-signed.

Conversely, if the product of edge signs along the cycle is -1 then every two
vertices on the cycle are ambiguous.

Our algorithm for the constrained case relies on decomposing the input graph
to its blocks. Recall that a block is a 2-vertex connected component. A block may
contain a single edge, or else it contains a cycle. Any block of size at least 3 admits
an open ear decomposition of its edges (P0, . . . , Pk). P0 may be any cycle of the
block. Each Pi, i > 0 is a path whose two end-points are distinct and included
in previous ears Pj , j < i.

Lemma 2. A block G of size at least 3 is strongly signed iff it admits an as-
signment such that the aggregate sign of some cycle in G is -1.

Proof. If G is strongly signed then pick any two ambiguous vertices and their
connecting positive and negative paths span a cycle as desired.

We prove the opposite direction by induction on the number of ears in the
decomposition of G. The base case trivially holds as the first ear is a cycle.
Suppose we constructed a partial decomposition P0, . . . , Pk−1, where P0 is the
strongly signed cycle, and let Pk be a new ear to be added to the decomposition.
By the induction hypothesis, every pair of vertices in P0∪. . .∪Pk−1 is ambiguous.
By this property, it is also trivial to see that every pair of vertices in Pk are
ambiguous – simply use as one path the path connecting them in Pk and as the
other path a path of opposite sign that visits the previous ears. Such a path
exists by the ambiguity of the end-points of Pk. Finally, consider two vertices
u ∈ P0 ∪ . . . ∪ Pk−1 and v ∈ Pk. Let w be one of the end-nodes in Pk such that
w 6= u. Since u and w are ambiguous the claim follows.

Since every unsigned edge in a block (of size at least 3) is on some cycle
and can be used to force the aggregate sign of this cycle, we get the following
corollary:

Corollary 2. A block of size at least 3 that is not strongly signed must be com-
pletely pre-assigned with signs to its edges. Moreover, every pair of vertices in
the block is unambiguous.



Given an input graph G, we can build a tree-like decomposition of G into its
blocks and cut-vertices. In this decomposition, the tree vertices are the blocks
and cut vertices of G; the tree edges connect cut vertices to the blocks that
contain them. Every path in this tree can be translated to a path in G. If a
block in G is strongly signed, all input pairs whose connecting path visits this
block can be satisfied and the block can be contracted. Every other block must
be a single edge or pre-assigned with signs. In particular, if we consider any
input pair whose connecting path visits a pre-assigned block, then any sub-path
used by the connecting path through the block has a pre-defined sign (since
the corresponding pair of cut vertices used are unambiguous). By multiplying
the sign of every input pair by the pre-defined signs of the sub-paths through
such pre-assigned blocks along its connecting path, we can contract all pre-
assigned blocks. This contraction reduces G into a tree and thus we can apply
the approximation algorithm of the previous section to it.

Corollary 3. Constrained-MSA can be 0.878-approximated.

4.1 An ILP formulation

As we have seen, both the constrained and unconstrained versions of MSA can be
reduced to solving a system of linear equations over Z2. The latter problem can
be easily translated to an integer linear program (ILP) formulation and solved
to optimality using an industrial solver such as CPLEX. Let xi1 ⊕ xi2 = ri
denote the i-th equation in the reduced instance. The translation is done by
defining auxiliary variables yi denoting whether equation i is satisfied. The exact
formulation is:

max
∑

i yi

s.t. yi = (xi1 + xi2 + ri + 1− 2γi) ∀i
yi, xi1 , xi2 , γi ∈ {0, 1} ∀i

where the γi-s are auxiliary variables that allow computing the parity of xi1 , xi2
and ri.

5 Experimental Results

5.1 Data acquisition and integration

We gathered yeast physical interactions, including PPIs, protein-DNA interac-
tions (PDIs) and kinase-substrate and phosphatase-substrate interactions (KPIs),
from different sources. We used the PPI data set ”Y2H-union” from Yu et al. [8],
which contains 2,930 highly reliable undirected interactions among 2,018 pro-
teins. The PDI data were taken from MacIsaac et al. [3]. We used the collection
of PDIs with p < 0.001 conserved over at least two other yeast species, which
consists of 4,095 unique PDIs spanning 2,079 proteins. The KPIs were collected



from Breitkreutz et al. [1] and included 1,361 KPIs among 802 proteins. We com-
plemented the interaction data by information on cause-effect pairs. To this end,
a set of 110,487 knockout pairs among 6,228 proteins was taken from Reimand
et al. [6]. We integrated the data to obtain a physical network of 3,659 proteins,
2,649 PPIs, 4,095 PDIs and 1,361 KPIs, which spans 52,650 of the cause-effect
pairs.

For validation purposes we collected sign information on the PDIs and KPIs
in our data set. For a given PDI, we assumed that it is positive (resp., negative)
if the transcription-factor involved is an activator (resp., repressor). We retrieved
activator-repressor information from the gene ontology (GO:0045893 for activa-
tors and GO:0045892 for repressors), obtaining signs for 1,938 PDIs. For a given
KPI, we assumed that it is positive if one of the two interacting proteins was a
kinase and the other was not a phosphatase; we assumed that it is negative if
one of the proteins was a phosphatase and the other was not a kinase. Overall,
we estimated signs for 1,148 KPIs. Note that the signs of kinase-phosphatase
edges remain undecided.

5.2 Evaluation procedure

The algorithm can assign signs to two types of edges: (i) an edge within a strongly
signed block when it is the last unsigned edge of the block; (ii) and an edge
“participating” in the ILP. The former assignments are very scarce in our setting
as typically most of the edges reside in a single huge block. The latter assignments
are sensitive to the exact solution chosen by the ILP. To ensure that we focus
on non-arbitrary assignments, we test our confidence in each edge assignment in
the following way: for an edge e that is assigned sign s by the ILP, we rerun the
ILP while forcing the sign of e to be −s. If the resulting objective (number of
satisfied pairs) is equal to the original one, we view the assignment as arbitrary;
otherwise, the new objective is smaller than the optimal one and we say that the
assignment of e is confident. Finally, we focus the evaluation on those confidently
assigned edges.

5.3 Results

We applied our algorithm in three main settings and evaluated its results (see
Table 1). First, we used the entire unsigned network. In this case there are no
“last” edges whose signs are determined. Out of 167 edges participating in the
ILP, the assignment to 127 of them was confident. 56 of the 127 edges were
PDIs with known signs; none was a KPI with a known sign (with only 3 KPIs
among the 167 participating edges and the rest in strongly signed blocks). The
algorithm predicted correctly the signs of 50 of the 56 edges, yielding a success
rate of 89.3%.

Next, we reran the algorithm while using the known signs of the KPIs and
focusing the evaluation on the PDIs. While the additional information slightly
increased the number of confidently assigned edges (to 135), the intersection with



the known PDIs remained the same (56) and again 50 of these were predicted
correctly.

Finally, we reran the algorithm on two smaller network instances: one con-
taining PPIs and PDIs but no KPIs, and the other containing PDIs only. As the
network gets smaller, the strongly signed components cover less edges and, thus,
a larger fraction of the edges participate in the ILP and are assigned with signs.
Indeed, in the first application (PPIs and PDIs) more confident sign assignments
were made (191) compared to the original application. Out of 64 PDIs with
known signs that were confidently assigned, 57 were correctly predicted, yield-
ing a success rate of 89%. When operating on the PDI network only, the largest
number of confident sign assignments were made (263). Out of 79 PDIs with
known signs that were confidently signed, 70 were correctly predicted, yielding
a success rate of 89%.

Notably, in all cases reported above the percent of positive PDIs among the
confidently signed ones ranged from 68-72%, significantly lower than the success
rate of the algorithm. We further compared our results to the state-of-the-art
approach of Peleg et al. [5]. The approach of Peleg et al. works in two stages.
In the first stage, the cause-effect pair information is used to split the vertices
into groups so that signs of pairs within the same group tend to be positive
while signs of pairs crossing groups tend to be negative. Notably, this step is
independent of a physical network. The second stage uses the group information
to annotate the network’s edges with signs. Precisely, the sign of an edge is
determined based on the majority sign of pairs that come from the same groups
as the edge’s endpoints. This implies that in the setting we have used it suffices
to apply the method of Peleg et al. once to the entire knockout data, use it to
annotate the edges of the integrated network, and then evaluate its performance
with respect to each one of the test networks. The results are summarized in
Table 1 and show a marked advantage to our approach with success rates higher
by 16-22% across the different test cases.

Network Size #Assignments #Confident #Known %Success %Success of [5]

KPI+PDI+PPI 8,105 167 127 56 89.3 67.9
KPI (signed)+ 8,105 164 135 56 89.3 67.9
PDI+PPI
PDI+PPI 6,798 228 191 64 89.1 70.3
PDI 4,095 290 263 79 88.6 73.4
Table 1. Assessment of results and comparison to the network-free approach of Peleg
et al. [5]. The best result in each row appears in bold.

6 Conclusions

We provided an ILP based algorithm to predict edge signs in signaling-regulatory
networks. Our algorithm can account for known signs and evaluate the confidence



of the assignment. In application to real data it exhibits high success rates of
89%, outperforming the state-of-the-art method of Peleg et al. [5] by a significant
margin.

While the annotation results are promising, a current limitation of the al-
gorithm is the low percent of edges that are confidently assigned. One way to
tackle this problem is by combining sign prediction with direction prediction
which could potentially eliminate many degrees of freedom in the solution and
yield a higher percent of annotated edges.
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