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Abstract

Perturbation experiments, in which a certain gene is knocked out and the expression levels of other genes are observed,
constitute a fundamental step in uncovering the intricate wiring diagrams in the living cell and elucidating the causal roles
of genes in signaling and regulation. Here we present a novel framework for analyzing large cohorts of gene knockout
experiments and their genome-wide effects on expression levels. We devise clustering-like algorithms that identify groups
of genes that behave similarly with respect to the knockout data, and utilize them to predict knockout effects and to
annotate physical interactions between proteins as inhibiting or activating. Differing from previous approaches, our
prediction approach does not depend on physical network information; the latter is used only for the annotation task.
Consequently, it is both more efficient and of wider applicability than previous methods. We evaluate our approach using a
large scale collection of gene knockout experiments in yeast, comparing it to the state-of-the-art SPINE algorithm. In cross
validation tests, our algorithm exhibits superior prediction accuracy, while at the same time increasing the coverage by over
25-fold. Significant coverage gains are obtained also in the annotation of the physical network.
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Introduction

High-throughput technologies are routinely used to map

molecular interactions within the cell. These include chromatin

immuno-precipitation experiments for measuring protein-DNA

interactions (PDIs) [1], and yeast two-hybrid assays [2] and co-

immunoprecipitation screens [3] for measuring protein-protein

interactions (PPIs). The resulting maps provide a scaffold from

which one can extract regulatory-signaling mechanisms that

underlie cellular processes and responses.

Physical interactions however may not be sufficient to deduce

causal roles played by genes in regulation and signaling. For such

deduction, perturbation studies are necessary and are traditionally

employed [4]. Here, we focus on perturbation studies in which a

gene is knocked out and as a result multiple genes change their

expression levels. These measurements can be used to derive a

functional map of genes, providing a complementary view to the

physical one. While in the physical map an edge between two

proteins (PPI) or between a protein and a gene’s promoter

sequence (PDI) indicates a direct association, in the functional map

an edge connects two genes if knocking out one of them affects the

expression level of the other.

The problem of explaining knockout experiments using a

physical network was first introduced by [5]. The authors looked

at a specific setting of the problem where the objective is to annotate

each physical edge with the direction in which information flows

through that interaction, and a sign, representing the regulatory

effect of the interaction (activation or suppression). A followup work

by Ourfali et al. [6] introduced the SPINE algorithm, aimed at

annotating the physical network while maximizing the expected

number of knockout effects that can be explained by the physical

model. In both cases, the annotated physical network was used for

predicting new knockout effects (up- or down-regulation).

Another line of work, related to the analysis of single knockout

experiments, is the analysis of genetic interactions. Qi et al. [7]

used a functional network of genetic interactions for inferring

physical and genetic associations in yeast. They identified relations

of complex/pathway co-membership with paths of even length in

the functional network, whereas novel genetic relations were

identified with odd-length paths. Segre et al. [8] studied a partition

of the yeast metabolic system into groups based on patterns of

aggravating and alleviating effects in response to double gene

perturbations. The groups were constructed hierarchically so as to

interact with each other monochromatically, i.e., with purely

aggravating or purely alleviating effects across groups, enabling the

authors to predict new genetic interactions.

Here we present a novel approach for analyzing a functional

network to infer knockout effects. In contrast to previous work, our

method does not depend on knowledge of a physical network, but

in fact decouples the task of predicting knockout effects from the

task of annotating the edges of the physical network. The method

is based on partitioning the genes into functional groups whose

members are indistinguishable with respect to the rest of the

(functional) network.

We start by considering a partition of the genes into two

‘‘chromatic’’ groups with links of up-regulation between the

groups and links of down-regulation within each group. To

motivate this model, we show that if the latent physical network

that underlies the functional data has no cycles with an aggregate

negative sign (i.e., the product of the signs along the cycle’s edges is
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negative), then such a partition is indeed possible. We devise

several tests for the two-group assumption and find that it is

sufficient to explain a large fraction of the analyzed data.

Nevertheless, we find that negative feedback mechanisms within

signaling pathways lead to deviations of the experimental data

from this model. To tackle such deviations, we extend our

algorithm to more than two groups, based on ideas from the work

of [8] (described above).

We validate our methods using a collection of over two hundred

knockout experiments in yeast [9]. We conduct cross validation

experiments by hiding a subset of the resulting knockout pairs (of a

deleted gene and an affected gene), and using the remaining pairs

to predict the effects of the hidden pairs (up- or down-regulation).

We attain high accuracy (88%) and coverage (73.8%) levels in the

prediction task (when applying the extended algorithm). More-

over, the high efficiency of our algorithms allows us to analyze the

entire data set in seconds. These results provide a substantial

improvement over the state of the art SPINE algorithm [6], and

over a previous benchmark by Yeang et al. [5]. In contrast to our

approach, these methods are not ‘‘network-free’’; instead they

depend on a brute-force enumeration of all possible physical

pathways between every knockout pair. Often times, such an

enumeration is not feasible, which limits the applicability of these

methods to gene pairs that are at most 3 edges apart in the

physical network. In yeast, this limits the algorithms to a miniscule

fraction of 4% of the knockout pairs available. Consequently,

SPINE attains a coverage level of 2.6%, a 25-fold reduction in

comparison to our method; at the same time, it also yields a lower

accuracy (72%).

Finally, we tackle the task of annotating the physical edges with

signs of activation or suppression. We provide an efficient

algorithm for annotating a given physical network so as to explain

a maximal number of functional relations. We validate the

algorithm by using manual annotation of the filamentous growth

pathway [10], and the high osmolarity glycerol (HOG) pathway

[11]. Altogether, we obtain accuracy levels that are comparable

to those of SPINE [6] while significantly improving on its

coverage.

Results/Discussion

We follow the seminal work of Yeang et al. [5] who aimed at

explaining the results of knockout experiments using a physical

(PPI and PDI) network. In each experiment a selected gene was

knocked out, and the genome-wide expression response was

measured. The basic paradigm of their work was that any

knockout effect, i.e., the increase/decrease in expression of a

certain gene following the knockout of another gene, can be

explained via a physical pathway that connects the knocked out

gene to the affected gene. Moreover, the aggregate influence of the

interactions along the pathway should be equal to the complement

of the observed effect. Consequently, they aimed at annotating the

physical network with activation/suppression attributes so as to

explain a maximal number of the observed effects. They used this

annotation to predict new knockout effects.

Given a set of knockout experiments, we start by representing

them as a functional network whose nodes are genes and edges

connect gene pairs if knocking out one of them significantly

changes the expression level of the other. The sign of an edge in

the functional network complements that of the knockout effect (as

it represents the wild type effect): ‘‘+’’ when the knockout results in

down-regulation, and ‘‘2’’ otherwise. In the following we suggest a

novel approach that utilizes the structure of this network in order

to predict knockout effects. We evaluate our approach and

compare it to the previous work of [5,6] using a data set of 24,457

high confidence knockout pairs obtained from genome-wide

expression measurements in yeast under 210 single-gene knock-

outs [5,9].

The sign-linear model
We say that a functional network is sign-linear if there exists a

Boolean assignment k(v) [ fz, {g for every gene v such that the

sign of each edge (u, v) in the network is k(u)k(v) (a condition

which can be cast in the form of a linear equation, hence the name

of the model; see Methods). In this case we also say that k explains

the input functional relations. Assuming that a given functional

network is sign-linear essentially means that we can retain all the

information from the knockout experiments by partitioning the

genes into two groups. Gene pairs linked by a down-regulation

edge in the functional network will be on the same group and pairs

linked by an up-regulation edge will be on different groups.

To motivate this assumption, it is imperative to consider its

implication on the physical network that underlies the observed

knockout effects. We say that a physical network is sign-consistent if it

does not contain an undirected cycle (i.e., any loop in the network

when disregarding edge directions) with a negative aggregate sign

(Methods). Notably, the sign-consistency assumption is reminiscent

of the acyclicity assumption that is the basis for Bayesian modeling

of biological networks [12,13]. As we show in Text S1, a sign-

consistent physical network implies a sign-linear functional

network, and for every functional network, one can construct a

sign-consistent physical network that explains it.

If a network is sign-linear then one can efficiently compute a

Boolean assignment that explains the input functional relations,

and the task of predicting a knockout effect translates to computing

the product of the signs of the participating nodes. In the general

case, such a perfect Boolean assignment might not exist. Instead,

we aim to find an assignment that will satisfy as many of the

observed functional relations as possible (see Methods and

Figure 1). To tackle this computationally hard problem, we use

an efficient randomized heuristic that is guaranteed to converge to

a local maximum. Given a locally-optimal Boolean assignment k,

the sign of the effect of gene u on gene v is predicted to be

Author Summary

Observing a complex biological system in steady state is
often insufficient for a thorough understanding of its
working. For such inference, perturbation experiments are
necessary and are traditionally employed. In this work we
focus on perturbations in which a gene is knocked out
and as a result multiple genes change their expression
levels. We aim to use a given set of perturbation
experiments to predict the results of new experiments.
Using a large cohort of gene knockout experiments in
yeast, we show that the emerging map of causal relations
has a very simple structure that can be utilized for the
prediction task. The resulting prediction scheme, and its
extension to more complex functional maps, greatly
improve on extant approaches, increasing the coverage of
known relations by 25-fold, while maintaining the same
level of prediction accuracy. Unique to our approach is its
independence of physical network data, leading to its
high efficiency and coverage as well as to its wide
applicability to organisms whose interactions have not
been mapped to date. We further extend our method to
annotate the interactions of a physical network as
activating or suppressing, obtaining significant coverage
gains compared to current approaches.

Network-Free Inference of Knockout Effects
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k(u)k(v). We run the randomized procedure multiple times,

potentially obtaining different assignments k, and compute a

consensus assignment (Methods). It should be noted that the

algorithm is restricted to genes that are implicated in at least one

experiment (either as a knocked out gene or as an affected gene;

see Methods).

We tested the validity of the sign-linearity assumption using the

yeast knockout data. Applying a single iteration of the sign-linear

algorithm to the entire data set, we obtained a Boolean assignment

that satisfies over 83% of the knockout pairs (pv1e{10, Text S1).

This result indicates that the respective functional network is

highly structured and can be readily utilized for predicting

knockout effects under the sign-linear model.

The yeast mating network benchmark
We use the yeast mating network, studied in [5,6], as a first test

case. The mating network contains 46 genes involved in pheromone

response and 58 physical interactions (25 PPIs and 33 PDIs). The 46

genes span 149 (of 24,457) functional relations. Due to scalability

problems, the application of both previous methods was limited to

103 of the functional interactions, considering only pairs of genes

that are at most 5 edges apart in the physical network.

Two variants of SPINE [6] were employed for predicting the

results of knockouts in the mating network, one that assigns signs

to edges, and one that assigns signs to nodes (forcing all the edges

that emanate from a node to carry its sign). We compare the

performance of the sign-linear algorithm on the restricted set of

103 knockout pairs to the results of [5] and both variants of [6]. All

algorithms were applied in a leave-one-out cross validation setting,

each time hiding a single knockout pair and using the remaining

ones to predict its outcome. The ensuing performance is evaluated

using two quality measures: (i) Accuracy: the percentage of correct

predictions out of all predictions made; and (ii) coverage: the

percentage of knockout pairs that were predicted correctly out of

the entire set of knockout pairs.

Table 1 summarizes the performance of the different approach-

es. While the best performance is achieved by [5] and the edge

variant of [6], the accuracy and coverage of the sign-linear

Figure 1. Algorithmic overview. (A) A physical network model with nodes representing proteins and edges representing protein-DNA interactions.
The sign of an interaction is denoted by its arrow type: regular (activating) or cut (suppressing). Note that the network is not sign-consistent since for
example, A is linked to D by two paths with different aggregate signs. (B) A functional network generated by the physical network (every knockout effect
is explained by at least one path in the physical network, see Methods) with edges representing knockout effects and nodes representing the respective
genes. The sign of a functional edge is denoted by its arrow type: regular (down-regulation) or cut (up-regulation). (C) The sign-linear algorithm. The
functional network is translated into a set of Boolean equations. One optimal solution for the equations is setting k(c) to z and the rest to {, satisfying all
equations (green frame, bottom) but one (purple frame, top). The ensuing partition into two groups is depicted with edges corresponding to functional
relations between groups. This partition can be used for predicting new knockout effects. (D) The sign-clustering algorithm. For each pair of nodes the
presented p-value reflects their similarity in the functional network. A partition into clusters using a cutoff of pv0:5 is depicted with edges defined as in
panel C. This partition refines the one obtained by the sign-linear algorithm (3 groups instead of 2), correctly modeling all the knockout effects.
doi:10.1371/journal.pcbi.1000635.g001

Table 1. Performance comparison in predicting knockout
effects.

Method
Global
Acc.

Global
Coverage

Mating
Acc.

Mating
Coverage

Sign-linear 80.2% 76.4% 93.3% 92.2%

Sign-clustering 88.3% 73.8% 96% 94%

SPINE node variant 72.5% 2.6% 89.3% 89.3%

SPINE edge variant NA NA 99% 98%

Yeang et al. [5] NA NA 97.1% 97.1%

Shown are coverage and accuracy levels in predicting knockout effects using
the entire knockout data (left) or focusing on the mating network (right). The
results for the sign-linear and sign-clustering algorithms are presented for the
most permissive decision cutoff (w50%).
doi:10.1371/journal.pcbi.1000635.t001

Network-Free Inference of Knockout Effects
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algorithm are only slightly lower. Importantly, our model employs

a substantially simpler model with the number of variables being

equal to the number of nodes, rather than to the number of edges

(as in the other two models), making it less prone to over-fitting.

Comparing the sign-linear model to the node variant of SPINE,

which has an equivalent number of variables (one binary variable

per gene), the sign-linear algorithm is found superior in both

accuracy and coverage.

We further tested our method using varying sizes of the training

set (leaving out 10%, 20% and 50% of the knockout pairs). The

accuracy level remained stable at 90% even when leaving out 50%

of the pairs. The coverage level was at 90% when leaving out 10%

or 20% of the pairs, but dropped to 38% when leaving out 50% of

the pairs.

Genome-wide application
The simplicity of the model and the independence of physical

data allows the sign-linear algorithm to be applied on large data

sets on which the methods of [5] and [6] could not be applied.

Considering the complete data set of 210 knockout experiments,

the applications of [5] and [6] were confined to less than 4% (974)

of the knockout pairs, for reasons of scalability. The limited set

contained only pairs of genes that are at most 3 edges apart in the

physical network. For the same reason, a cross-validation scheme

similar to the one used for the mating subnetwork could not be

applied with those algorithms, even with the limited data set. In

contrast, the sign-linear algorithm could be tested in cross

validation (each time leaving out 200 knockout pairs), and

generated predictions for over 95% (23,312) of the pairs.

We compare the results of the sign-linear algorithm to results

from [6], who applied the node variant of SPINE on the reduced

data set without using cross validation (Text S1). The results in

Table 1 show that the sign-linear algorithm outperforms SPINE

both in accuracy (80.2% vs. 72.5%) and, more strikingly, in

coverage (76.4% vs. 2.6%).

Thus far, we predicted a functional edge to be (for instance) up-

regulation if the majority (more than 50%) of the obtained

assignments implied so. Further probing the results of the sign-

linear algorithm, we calculated the levels of accuracy and coverage

obtained for more stringent decision cutoffs (i.e., predict an effect

only if a certain percentage (larger than 50%) of the assignments

agree). Figure 2 plots the resulting accuracy-coverage curve.

Evidently, the curve decreases monotonically, where for a

coverage level of 10% we achieve over 98% accuracy. We also

investigated the stability of the predictions across the different

runs, observing that over half of the knockout pairs are predicted

consistently by at least 90% of the runs (Figure S2).

Finally, we tested the robustness of the sign-linear algorithm to

noise in the input data. Following [6], we flipped 5%, 10% and

15% of the input signs and applied the sign-linear algorithm to the

perturbed data. The algorithm was highly consistent in its

predictions, maintaining consistency levels of 93.3%, 90.1% and

86% under the different noise levels.

Going beyond sign linearity
While the sign-linear algorithm gave promising results, its

underlying assumption is quite restrictive and about 20% of the

data do not follow it. To characterize the deviations from the

linearity assumption in a finer manner, we devised several local

linearity tests for the following properties: (i) Local linearity 1

(LL-1) occurs when the effects of two knocked out genes on a

common target is consistent with their effect on each other

(Figure 3a). (ii) LL-2 entails that two different knocked-out genes

should have the exact same influence on all of their common

targets or the exact opposite influence (Figure 3b). (iii) LL-3

requires symmetry, i.e., if two genes affect each other then the

effects have to be equal (Figure 3c). Notably, the three tests

represent all the ways in which a contradiction to the sign-linearity

property can be reached with at most two knockout genes and two

affected genes (Text S1).

We evaluated the prevalence of these three properties in the

yeast knockout data set and compared the results to those obtained

on randomized data sets (Text S1). The results in Figure 3d show

that the regularities represented by LL-2 and LL-3 are indeed

more prevalent than the random expectation. On the other hand,

it is apparent that LL-1 is significantly less prevalent than in

random. A possible explanation for the deviation from LL-1 may

be the prevalence of signaling pathways in our data. It is

reasonable to hypothesize that knocking out different components

of the same pathway will result in deprivation of similar substrates

and consequently generate a similar cellular response. Further-

more, the cellular response might utilize negative feedback

mechanisms for activating the malfunctioning pathway by

increasing the expression levels of the respective genes (rather

than reducing it, as expected by LL-1; see Figure 3e). To provide

support for these hypotheses we examined knockout profiles of

components in manually curated pathways from the KEGG

database [14]. For each pair of knocked out genes that are

members of the same pathway we checked how many of their

common targets are affected in the same manner. We found that

genes in the same pathway indeed tend to affect the same genes

(pv1e{9), have similar effects on their common targets

(pv1e{10), but increase each other’s expression when knocked

out (pv6e{3). Similar results were obtained for genes that co-

reside in the same MIPS [15] complex (data not shown).

One particular example is the biosynthesis of steroids pathway

(KEGG:sce00100). Out of the 23 genes in the pathway we consider

a subset of nine genes that were knocked out in [9]. Overall there

are 26 knockout pairs involving these genes where all of the

respective effects are up-regulation. The performance of the sign-

linear algorithm in predicting these effects is understandably low,

Figure 2. Accuracy versus coverage in the prediction of
knockout effects on the genome-wide knockout data set.
Results for the sign-linear and sign-clustering algorithms are displayed
for different decision cutoffs. The results were obtained using cross
validation, each time leaving out 200 knockout pairs. Results for SPINE
are presented for its node variant as provided by [6], without using
cross validation.
doi:10.1371/journal.pcbi.1000635.g002

Network-Free Inference of Knockout Effects
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due to the violation of the LL-1 property, with 20 of the 26 effects

wrongly assigned as down-regulation (notably, due its limited

applicability, SPINE could not generate predictions for any of the

knockout pairs within this set). The algorithm we present next uses

a more flexible (albeit more complex) model designed to account

for the under representation of the LL-1 property and to correctly

model the relations exhibited within signaling pathways.

The sign-clustering algorithm
A natural extension of the sign-linear model is to partition the

genes into multiple (greater than two) groups, and use this as a

baseline for predicting knockout effects. Taking an approach

similar to [8], we assign the genes into groups by clustering

together genes that are functionally similar. For a given pair of

genes, our measure of functional similarity reflects both the

similarity in their response to knockouts as well as the similarity of

their effects on other genes when knocked out themselves

(Methods).

The sign-clustering algorithm (Methods, Figure 1D) constructs the

groups using a (randomized) hierarchical clustering procedure.

Denote by M(u) the group to which u is assigned. To predict the

effect of (knocking out) gene u on gene v, the effects of genes from

M(u) on genes from M(v) are considered. The prediction is made

according to the majority of the considered effects (Methods); if no

such effects were observed, the prediction is left undecided. Similar

to the sign-linear algorithm, we run the clustering procedure

multiple times, potentially obtaining different partitions, and

compute a consensus prediction (Methods). Notably, the algorithm

does not explicitly determine the number of groups. Instead, it uses

a top-down procedure of iteratively partitioning the genes, until a

certain stopping criterion is met. The partitioning is stopped when

the concordance between the genes of the current candidate group

is higher than the chance expectation (Methods). While the

obtained groups do not necessarily correlate with densely

connected regions of the physical network, almost half of them

(49%) are functionally coherent with respect to the gene ontology

(GO) annotation (see Text S1 for functional coherency computa-

tion). This is expected as these groups contain genes with similar

functional relations according to the knockout data.

The sign clustering algorithm was applicable to over 83%

(20,445) of the knockout pairs. The sizes of the resulting clusters

varied from 1 to 35 with an average size of 4.5 (Figure S1). The

algorithm attained an accuracy level of 88.3% and a coverage level

of 73.8% (Table 1). Considering more stringent decision cutoffs as

Figure 3. Evaluating local linearity properties of the functional network. Edges represent functional relations with down-regulation
relations depicted as regular arrows and up-regulations as cut-arrows. (A) LL-1: if knocking out genes a or b has a similar (opposite) effect on a shared
target c, then if a affects b the relation should be down-regulation (up-regulation). (B) LL-2: for two knocked out genes (a, b) with at least two
common targets (c, d), the respective influences should be either equivalent (bottom) or the exact opposite (top). (C) LL-3: If two genes (u, v) affect
each other then the effects should have equal signs. (D) The prevalence of the three properties in the original data and in randomized networks. (E)
An example for the violation of LL-1 in the biosynthesis of steroids pathway. Two pathway members, ERG11 and ERG2, that increase each other upon
knockout, have the exact same effect on all their common targets, down-regulating 110 genes (orange rectangle) and up-regulating 308 genes
(green rectangle).
doi:10.1371/journal.pcbi.1000635.g003

Network-Free Inference of Knockout Effects
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before, the resulting accuracy-coverage curve (Figure 2) points to a

clear advantage in comparison to the sign-linear algorithm. The

stability of the predictions over the different runs was similar to

that of the sign-linear algorithm (Figure S2). The robustness to

noise was slightly lower (consistencies of 88.2%, 86.7% and 84.3%

when flipping 5%, 10% and 15% of the input signs, respectively).

Zooming in on the biosynthesis of steroids pathway, we see that

the sign-clustering algorithm correctly captures the respective

functional relations. It predicts correctly 24 out of 26 effects where

in 17 of the cases the correct prediction was made unanimously by

all the computed partitions.

Annotating the physical network
The partition into functional groups introduced above can also

facilitate the annotation of edges in a physical network with signs

of activation or suppression. Given a physical network, hypoth-

esized to provide the underlying ‘‘wiring’’ for the knockout effects,

the problem of assigning signs (‘‘+’’ for activation and ‘‘2’’ for

suppression) on its edges so as to explain a maximum number of

knockout pairs is computationally hard (Text S1). We present a

novel algorithm for this problem that determines the sign of a

physical edge between two proteins according to the functional

relations between the groups of their respective genes, associating

‘‘negative’’ functional relations (up-regulation) with ‘‘negative’’

physical interactions (suppression) and vice versa (Text S1). In the

following we concentrate on partitions into two groups k, where

the algorithm predicts a physical edge from node u to v to be

k(u)k(v). As before, we use multiple Boolean assignments and

compute a consensus prediction.

We constructed a network of physical interactions in yeast,

containing 5,850 nodes, and 45,512 interactions (39,946 PPIs and

5,566 PDIs), using information from public data bases [16,17] and

from large scale assays [1,3,18,19]. We annotated the network using

the knockout data. Altogether, the algorithm annotated 74% of the

edges as activating or suppressing. We validate these predictions using

manual annotations of the filamentous growth pathway [10] and the

high osmolarity glycerol (HOG) pathway [11]. Figure 4 depicts the

annotation of the two pathways by our method and by SPINE.

Comparing to the literature benchmark, our algorithm obtained an

accuracy of 75% and coverage of 69% in predicting signs in the

filamentous growth pathway; and an accuracy of 72% and coverage

of 65% with respect to the HOG pathway. These results compare

favorably with those of SPINE [6], which attained accuracy levels of

44% and 100% and coverage levels of 15% and 10% for the

filamentous growth pathway and the HOG pathway, respectively.

One interesting finding of our algorithm concerns the

annotation of the interactions between the suppressor of sensor

kinase 2 (Ssk2) and Actin 1 (Act1) in the HOG pathway. While the

manual annotation of this edge [11] is undecided, the algorithm

predicted it to be stimulatory (activating). This finding is in line

with evidence that Ssk2 is required for the actin reassembly and for

the recovery from osmotic stress. While the mechanism behind this

dependency is not clear, it was previously suggested that actin is a

potential substrate of the Ssk2 kinase [20].

Conclusions
We devised two clustering methodologies for predicting

knockout effects based solely on a given network of functional

Figure 4. Annotating physical interactions with signs of activation or suppression. The filamentous growth pathway in yeast is displayed
in frame A; The high osmolarity glycerol (HOG) pathway is displayed in frame B. Literature curated interaction signs are denoted by the arrow type:
regular (activating), cut (suppressing), or none (unassigned). Node colors correspond to a specific partition of the respective genes into two groups
made by the sign-annotation algorithm. Gray nodes represent proteins that could not be assigned to a group due to a lack of data. Physical edges
connecting proteins of different groups are predicted as suppressing, and edges connecting proteins of the same group are predicted as activating.
SPINE, in contrast, assigns signs to proteins, meaning that all the out-going edges of a protein are assigned the same sign. Proteins that were
predicted by SPINE to be activators are displayed as hexagons. Proteins that were predicted by SPINE as suppressors are displayed as squares.
doi:10.1371/journal.pcbi.1000635.g004

Network-Free Inference of Knockout Effects
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interactions. The first algorithm employs a restrictive assumption

on the structure of the functional network; nevertheless, its

underlying model is sufficient for describing the majority of the

knockout effects in the large scale yeast data set that we analyzed.

In cross validation tests it was shown to provide very efficient

means for predicting held-out knockout effects, dramatically

improving upon the state-of-the-art benchmark. The second,

refined algorithm extends the two-group logic that is at the heart

of the first algorithm, aiming to partition the genes into several

groups that behave similarly with respect to the knockout data. We

show that this refined model allows capturing functional relations

within signaling pathways, which could not be explained by the

previous model, leading to superior accuracy.

Notably, since the input data contains only single-gene

perturbations, both algorithms cannot decipher combinatorial

regulation functions involving multiple inputs (as in [4]). Instead,

the algorithms treat the functional relations independently and try

to find the best way to consolidate them (i.e., maximizing the

number of relations that can be explained by the model).

Being ‘‘network-free’’ (i.e., independent of physical interaction

data) is a unique feature of our algorithms, which allows their

application to organisms on which no comprehensive interaction

data is available. To complement the analysis when a physical

network is available, we show how to use the information

embedded in a functional network to annotate the physical edges

with signs of activation or suppression. In comparison with a

previous method, our algorithm is again shown to provide a

substantial improvement in terms of coverage while attaining

comparable levels of accuracy.

In a recent paper, Ma’ayan et al. [21] studied the prevalence of

sign-consistent versus sign-inconsistent loop motifs in the yeast

physical regulatory network. Their findings suggest that sign-

consistent loops are more prevalent and that, overall, the network

is close to being sign-consistent. Our work provides further support

to this observation through the results of the local linearity tests

and the overall good performance of the sign-linear model on the

yeast data. It will be interesting to test how well do gene

perturbation maps in higher organisms conform to the simplistic

sign-linear model. As data from perturbation experiments in

human gradually accumulates [22], this is an appealing direction

for future research.

Materials and Methods

We define a functional network as a directed graph whose nodes

are genes and whose edges connect gene pairs (u, v) if knocking

out u changes the expression level of v. The sign of an edge,

denoted sign(u, v), is opposite to the effect of the respective

knockout (‘‘+’’ if knocking out u down-regulates v and ‘‘2’’ if v is

up-regulated). We define the aggregate sign of a given subgraph as

the product of the signs along its edges.

Physical models of sign-linear functional networks
Let G~(V , E) be a connected, directed network of physical

interactions. We denote by GS the network G annotated with signs

S(e) [ fz, {g, e [ E on its edges. The undirected form of GS is an

undirected graph of the same topology as G whose edges are

annotated according to S. In case there are contradicting signs:

S(u, v)~{, S(v, u)~z, then the undirected form of GS is not

defined. We say that an annotated network GS is sign-consistent if its

undirected form is defined and does not contain cycles with a

negative aggregate sign.

Let F be a functional network defined on a subset of the nodes

in the physical network G. An edge (u, v) in F is explained by the

annotated network GS if and only if there exists a path in GS from

u to v such that its aggregate sign is equal to the sign of the

knockout relation sign(u, v). Similarly, we say that GS can generate

the relation (u, v). We say that F can be explained by G if there

exists a Boolean assignment S such that GS can explain all the

knockout effects in F . Similarly, we say that GS can generate F if it

explains all the edges in F .

The following two lemmas motivate our sign-linear algorithm;

their proofs appear in Text S1.

Lemma 1. A sign-consistent annotated physical network can only

generate sign-linear functional networks.

Lemma 2. If F is sign-linear then for every connected physical network

G defined on a super set of the nodes in F , there exists an assignment S such

that GS is sign-consistent and explains F .

The sign-linear algorithm
The sign-linear algorithm is based on finding a Boolean

assignment k(v) [ fz, {g for every gene v in the functional

network that maximizes the number of knockout pairs (u, v) such

that k(u)k(v)~sign(u, v). This maximization problem is also

known as MAX-E2-LIN2, and can be reformulated in a set of

linear equation in the space Z2. An approximation algorithm to

MAX-E2-LIN2 was previously presented [23], however, for

reasons of simplicity and scalability we chose to use a greedy

approach. The latter starts from a random Boolean assignment

and proceeds by choosing a gene at random and changing its

assignment if it improves the result (i.e., if it increases the number

of explained pairs). The algorithm terminates when it reaches a

local maximum, and no more modifications can be made. We

predict the sign of a hidden knockout effect (u, v) as k(u)k(v). We

repeat this randomized procedure 100 times and report the

percentage of runs that predicted up- or down-regulation.

Notably, the algorithm is only applicable to pairs of genes that

lie in the same connected component of the (undirected) functional

network.

The sign-clustering algorithm
To obtain general partitions into more than two groups we use a

hierarchical clustering procedure. For a given pair (u, v), let Auv be

the set of genes whose knockout affected both u and v, and let Euv

denote the set of genes that are affected by the knockout of u and

by the knockout of v (this set is not empty only if the data set

includes a knockout of u and a knockout of v). Let Ac
uv(Auv be the

set of genes whose knockout affected u and v in a similar manner.

Similarly, let Ec
uv(Euv comprise of genes who responded similarly

to the knockouts of u and v. The pairwise similarity score that

we use for the clustering procedure is calculated using a bino-

mial cumulative distribution function p(u, v)~
Pk

i~0

n
i
pi(1{p)n{i

where n~jAuvjzjEuvj is the number of trials, and k~
n{(jAc

uvjzjEc
uvj) is the number of ‘‘failures’’ (namely, the number

of times u and v behaved differently). The resulting score is the

probability of observing up to k failures in n independent trials.

The probability of a failure in any given trial is set to

p~2:ppos(1{ppos), where ppos is the frequency of ‘‘+’’ relations

in the functional network.

We use a standard complete-linkage hierarchical clustering

procedure. We define the groups by finding inner nodes in the

hierarchy whose score is lower than the a-priori probability for

functional similarity (1{p) and the score of their ancestors in the

hierarchy is larger than 1{p. We predict the sign of a hidden

knockout effect (u, v) according to the groups M(u) and M(v) to

which u and v were mapped. If in the majority of the cases

knocking out members of M(u) decreases members of M(v), then
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(u, v) is predicted as down-regulation and vice versa. Due to its

greedy nature, the order in which the genes are processed by the

clustering procedure can affect the resulting clusters. Therefore,

we repeat the procedure using 100 random orderings, and report

for each pair the percentage of runs in which its relation was

predicted to be up- or down-regulation.

Supporting Information

Text S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1000635.s001 (0.20 MB PDF)

Figure S1 Distribution of the sizes of clusters constructed by the

sign-clustering algorithm.

Found at: doi:10.1371/journal.pcbi.1000635.s002 (0.05 MB JPG)

Figure S2 The number of predictable knockout pairs as a

function of the decision cutoff

Found at: doi:10.1371/journal.pcbi.1000635.s003 (0.06 MB JPG)
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