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Candidate single-nucleotide polymorphisms (SNPs) were analyzed
for associations to an unselected whole genome pool of tumor
mRNA transcripts in 50 unrelated patients with breast cancer. SNPs
were selected from 203 candidate genes of the reactive oxygen
species pathway. We describe a general statistical framework for
the simultaneous analysis of gene expression data and SNP geno-
type data measured for the same cohort, which revealed signifi-
cant associations between subsets of SNPs and transcripts, shed-
ding light on the underlying biology. We identified SNPs in EGF,
IL1A, MAPK8, XPC, SOD2, and ALOX12 that are associated with the
expression patterns of a significant number of transcripts, indicat-
ing the presence of regulatory SNPs in these genes. SNPs were
found to act in trans in a total of 115 genes. SNPs in 43 of these 115
genes were found to act both in cis and in trans. Finally, subsets of
SNPs that share significantly many common associations with a set
of transcripts (biclusters) were identified. The subsets of transcripts
that are significantly associated with the same set of SNPs or to a
single SNP were shown to be functionally coherent in Gene
Ontology and pathway analyses and coexpressed in other inde-
pendent data sets, suggesting that many of the observed associ-
ations are within the same functional pathways. To our knowl-
edge, this article is the first study to correlate SNP genotype data
in the germ line with somatic gene expression data in breast
tumors. It provides the statistical framework for further genotype
expression correlation studies in cancer data sets.

genotype–phenotype interaction � locus control region � single-nucleotide

polymorphism expression association

Recent work (1–5) has demonstrated the effects of genetic
variation on mRNA expression. Given the increasing clinical

importance of microarray expression for classification of breast
tumors and the different biology it may reveal, the elucidation of its
genetic background is of considerable importance. In a recent
report Morley et al. (1) described a broad study of the genetic
determinants of normal expression variation in humans. The au-
thors used microarrays to measure the baseline expression levels of
�8,500 genes, or transcripts, in immortalized B cells from members
of Centre d’Etude du Polymorphisme Humain Utah pedigrees.
They selected 3,554 genes that varied more between individuals
than between replicates and used these as quantitative traits to be
mapped into genomic locations. They used public genotype infor-
mation to carry out linkage analysis for these expression phenotypes
in 14 Centre d’Etude du Polymorphisme Humain families. They
found high linkage signals for 984 of the transcripts [at P � 0.05,
leading to a false discovery rate (FDR) of �0.2]. Interestingly, they
identified regions that show linkage signals to many of the tran-
scripts, and they proposed that these regions can point toward
master regulators of baseline expression levels both in cis and in
trans. Regulation hotspots were notably identified on 14q32 and
20q13.

Choosing family members with Mendelian inheritance of both
single-nucleotide polymorphisms (SNPs) and mRNA expression
facilitated the data analysis in Morley et al. (1). In the current work,
we report observations from a study with a different design,
performing actual genotyping of 203 genes in 50 unrelated breast
cancer patients whose tumors have previously been analyzed by
genome-wide expression by using microarrays. Our main goal of
this study was to explore the genetic determinants of expression in
breast tumors. The candidate genes selected for genotyping were
from predefined pathways. The antineoplastic effect of both che-
motherapy and radiation therapy is exerted either by directly
attacking cellular macromolecules, including DNA, or by generat-
ing reactive oxygen species (ROS) and their by-products. Hence,
the genes selected to create the genotype profile of patients treated
with radiation therapy and chemotherapy are all involved in regu-
lating the redox level in the cells, in signaling, or in DNA damage
repair caused by ROS. We computed the association between each
genotype locus and each measured transcript and searched the
resulting associated data for statistically significant structures. De-
spite the notion that expression differences caused by genetic
instability, rearrangements, and altered methylation occur in tu-
mors during progression of the disease, significant associations were
observed above random expectation, pointing to putative regula-
tory SNPs.

Results and Discussion
In this study, we included 50 Norwegian patients with locally
advanced breast cancer where mRNA expression data on their
tumor as well as a blood sample for genotyping were available.
Description of the patients and references to the previously pub-
lished expression data are in Table 4, which is published as
supporting information on the PNAS web site. Microarray expres-
sion data were previously analyzed and were shown to lead to a
robust tumor classification with strong prognostic impact (6–8).

SNP Mining and Genotype Results. The candidate genes for SNP
analysis were selected from �4,000 MEDLINE entries and differ-
ent databases (Online Mendelian Inheritance in Man and Human
Genome Organization) to create the genotype profile of all genes
involved in the regulation of the redox level in the cells, ROS-
mediated signaling, and repair of DNA damage caused by ROS
(Fig. 1). A total of 1,030 SNPs was selected by the SNP data mining
approach described in Edvardsen et al. (9). Briefly, each of the
candidate genes extracted from PubMed recourses was matched
with the official Human Genome Organization gene name, and
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information about sequence variation was obtained. The annota-
tion of each SNP was followed in several databases, and data on its
frequency in the Caucasian population were obtained. Approxi-
mately 4,000 SNPs could be identified in the initial 233 candidate
genes by computer annotation (Fig. 1A). SNP selection was per-
formed based on putative gene function and SNP frequencies. We
performed actual genotyping of 1,030 of these SNPs in 213 genes
on chromosomes 1–X. Of these, 725 (�69%) were successfully
genotyped in the first round. One hundred four (�14.3%) of the
725 genotyped SNPs were with frequency of �5%. An additional
38 SNPs were not in Hardy–Weinberg equilibrium (�5%), leaving
583 SNPs for association studies. We studied the tumor genome-
wide expression effect of these 583 SNPs that reside in 203 of the
selected genes (1–19 SNPs per gene).

Statistical Analysis of SNP–mRNA Expression Associations. Three
complementary analyses [ANOVA, quantitative mutual informa-
tion score (QMIS), and leave-one-out cross-validation (LOOCV)]
(10–12) were used to analyze the data and to demonstrate possible
parametric and nonparametric approaches to assess SNP–transcript
association. We computed an association matrix whose entries
represent the P values of association for every SNP�transcript pair
(11). Let N and M denote the number of SNPs and transcripts,
respectively. For each pair (s, t) of SNP and transcript, we computed
an association score and a corresponding P value, Pst, using one of
the three methods described (see Materials and Methods). The
resulting N-by-M matrix P is called the association matrix. Given a
significance threshold 0 � P � 1, we state that s is associated with

t if Pst � P. SNPs whose corresponding rows have significantly many
entries with low P values are potential regulators of expression
levels. Subsets of SNPs and subsets of transcripts that belong to
biclusters were identified by a method adapted from Tanay et al.
(13) (Fig. 1B).

Significant Associations. SNP expression associations with the best
P values (P � 0.001) detected by both ANOVA and QMIS revealed
regulatory SNPs in trans in 115 genes, such as AKT1, AKT2,
CALM3, CDC25B, DPYD, FOS, IER3, IGF1R, IGF2, IGF2R, IL8,
IL10, IL10RA, NFKB1, PRKCA, PPP3CA, PPP2R4, GCLM,
TGFBR3, PPP1R2, and others (see the full list in Table 5, which is
published as supporting information on the PNAS web site, includ-
ing P values for all SNP–transcript pairs, where 10�6 was the lowest).
For example, the presence of the variant G or C allele for SNPs in
PPP1R2 and TGFBR3, respectively, led to an increased expression
of QDPR and FANCA, even more pronounced in the homozygous
variant genotype (Fig. 4, which is published as supporting infor-
mation on the PNAS web site). Of the 115 genes, 43 genes harbored
SNPs associated with mRNA expression both in cis, i.e., to the
expression of their own gene, and in trans by both QMIS and
ANOVA when requiring P � 0.001 in both methods (highlighted
in Table 1; P values for each association are in Tables 5 and 6, which
are published as supporting information on the PNAS web site). For
example, SNPs that significantly associated with the expression of
their own genes were found in GSTM3, XPC (two SNPs), GSTA4,
GSTP1, ABCC1 (two SNPs), TYMS (four SNPs), CALM3, and
MAPK1 (see the full list in Table 6). When we broadened the search

Fig. 1. Data mining and analysis workflow. (A) A total of 583 SNPs in 203 candidate genes from the ROS metabolizing and signaling pathway were selected
from an initial pool of 4,000 SNPs in 233 genes. These 583 selected SNPs were analyzed for associations to 3,351 mRNA transcripts from a whole-genome
expression analysis, filtered for signal quality (ratio of spot intensity over background exceeding 1.5 in at least 80% of the experiments in each dye channel).
A subset of SNPs and a subset of transcripts that belong to biclusters were identified. (B) A heat map of �log10 (P value) of SNP–transcript associations, with range
from 0 to �log10(9.5E-005) � 4.02. Bright yellow indicates significant associations. Rows and columns are reordered to highlight biclusters, subsets of SNPs, and
transcripts that share significantly many common significant associations (one example is highlighted with a red oval). (C) GO analysis was used to study the
overrepresentation of GO functional classes in these sets of mRNA transcripts. The size of the corresponding node of the GO tree is proportional to the significance
of the overrepresentation of the term. [B and C are reproduced with permission from ref. 21 (Copyright 2005, IEEE).]
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for in cis interactions with mRNA coded 4 Mbp upstream and
downstream of an SNP, 107 significant associations were found at
P � 0.025 (Table 6; some exemplified in Fig. 5, which is published
as supporting information on the PNAS web site). Some of the
SNPs regulating in cis form are in strong linkage disequilibrium
(LD).

For SNP–transcript pairs with strong associations supported on
many samples we expected both QMIS and ANOVA P values to be
small but not necessarily in the same range. For SNPs with small
number of samples with a given genotype, we can see disagreement
between the scores. ANOVA and QMIS P values were calculated
based on different assumptions about the distributions of genotypes
and expression values for each SNP association pair; these assump-
tions may not necessarily hold for a small number of samples.
Therefore, restricting our analysis to SNP–transcript pairs signifi-
cant with respect to both scores is an additional way to eliminate
false positives. Table 2 shows the number of SNP–transcript pairs
for various P value cutoffs and sizes of corresponding overlaps. The
last column shows the expected overlap between randomly selected
subsets of corresponding sizes. Note that the actual overlap in
SNP–transcript pairs is much larger than was expected in a random
case.

LOOCV analysis revealed cases in which the expression of only
one transcript was sufficient to correctly classify the cases according
to their genotypes. For example, the expression of TFF1 [trefoil
factor 1 (breast cancer, estrogen-inducible sequence)] on 21q22.3
was sufficient to correctly predict all of the genotypes for an SNP
(rs 2228001) in the XPC gene on 3p25, with a success rate of 0.9, and
addition of other genes did not improve the classification. Similarly,
the expression of YARS2 on 12p11.21 was sufficient to predict alone

the grouping according to the genotype in rs881878 of EGF on 4q25
(Table 7, which is published as supporting information on the PNAS
web site).

We identified SNPs in EGF, IL1A, MAPK8, XPC, SOD2, and
ALOX12 genes whose associations to gene expression are sig-
nificant under all three methods, namely ANOVA and QMIS
with P �0.001 and classification success of LOOCV analysis
�90%, indicating the presence of regulatory SNPs in these
genes.

Statistical Overabundance of Significant Associations. We applied
FDR analysis (14) to compare the actual association matrix to
random data. FDR measures the ratio of expected and observed
numbers of SNP–transcript association pairs with a given score or
better. The number of associations in the data were determined by
counting the number of entries in the association matrix less than
or equal to a given threshold. For QMIS, 769 SNP–transcript
association pairs with P � 1.0E-04 were observed. In random data
one may expect to find only 150 such pairs, as inferred from QMIS
P value and the size of the association matrix, which represents an
FDR of 0.2 (Fig. 2). Note that one SNP can show significant
association to more than one transcript. The graphical presentation
of the distributions of observed and expected numbers of SNP–
transcript pairs with a certain P value or lower for QMIS is shown
in Fig. 2. Right shows the corresponding FDR. For the ANOVA
scores (Fig. 2 Left), 571 SNP–transcript association pairs with P �
1.0E-04 were observed, yielding a FDR of 0.6 as estimated from
permuted data (Fig. 6A, which is published as supporting infor-
mation on the PNAS web site) (15). The level of significance (P �
1.0E-04) may not seem to be stringent enough for this type of study
with a huge burden of multiple tests. To address this issue and to
assess the true significance of the results, we performed an over-
abundance analysis and estimated the distribution of ANOVA P
values using simulations. To assess the baseline false-positive rate,
50 random SNPs in different genes were selected, and genotype
data were permuted 100 times. For P � 1.0E-05, FDR � 0.55, and
for P � 1.0E-04, FDR � 0.7. The observed and expected ANOVA
P values are shown in Fig. 6B, and it can be seen that they are very
similar to the results shown in Fig. 6A.

Master Regulators. SNP loci with an exceptionally large set of
significantly associated transcripts are putative regulators of many
transcripts. They potentially affect the expression levels or the mode
of operation of transcription factors or of noncoding RNA-
mediated regulation, directly or indirectly. Thus, these SNPs affect
the transcription or degradation rates and hence the expression
levels of many transcripts. SNPs that had exceptionally dense rows
in the association matrix, P, belong to the genes PRKCA, CALM3,
CYP2C19, IGF1R, IGF2R, and XDH. An exact definition of row
density is given in ref. 15. For some of the putative master-
regulating genes (IGF2R and CALM3) associations both in cis and
in trans were detected (Table 1).

Functional Grouping of Regulated Transcript, Pathway, and Gene
Ontology (GO) Analysis. The trans interactions observed here suggest
both ‘‘positional’’ and ‘‘functional’’ explanations. The positional
scenario may involve either LD or epigenetic events such as
common domains of relaxed chromatin structure along the chro-
mosomes (16). The functional scenario may involve interactions of
the kind between receptors and their ligands, transcription factors,
and genes under their control, the genes for which do not have to
reside in vicinity to each other. Of that kind, we observed a strong
association between SNPs in several growth factors and the expres-
sion of their receptors like EGF�EGFR, IL1�IL1R, and TGFB2�
TGFBR1–3. In fact, in this study we used the genotypes from a given
predefined pathway (the ROS metabolizing and signaling pathway)
enriched for GO terms like ATP binding, phosphate metabolism,
phosphorylation, and tyrosine kinase activity to search for associ-

Table 1. Genes where SND-expression associations were
observed in both cis and trans

Gene Cytoband Gene Cytoband

GSTM3 1p13.3 PPP2R4 9q34
DPYD 1p22 BCCIP 10q26.1
GCLM 1p22.1 PPP1R1A 12q13.13
IL10 1q31-q32 LIG4 13q33-q34
EPHX1 1q42.1 NFKBIA 14q13
XDH 2p23-p22 TGFB3 14q24
RAF1, XPC 3p25 GPX2 14q24.1
PPP1R2 3q29 ABCC1 16p13.1
SOD3 4p16.3-q21 HMOX2 16p13.3
UGT2A1 4q13 NQO1 16q22.1
IL8 4q13-q21 COX10 17p12-17p11.2
PPP3CA 4q21-q24 ALOX12 17p13.1
GSTA4 6p12.1 PIN1 19p13
BAK1, IER3 6p21.3 ICAM5, XRCC1 19p13.2
NOX3 6q25.1-q26 CALM3 19q13.2-q13.3
SOD2 6q25.3 POLD1 19q13.3
IGF2R 6q26 PCNA 20pter-p12
PPP1R9A 7q21.3 IL10RB 21q22.1-q22.2
EPHX2 8p21-p12 TXNRD2 22q11.21
PDGFRL 8p22-p21.3 PRKCABP 22q13.1

Table 2. Number of SNP–transcript pairs for various P value
cutoffs and sizes of corresponding overlap

P value

No. of pairs
Overlap of ANOVA

and QMIS

ANOVA QMIS Observed Expected

1.00 � 10�6 41 7 0 0.0
1.00 � 10�5 121 79 13 0.0
0.0001 506 769 182 0.2
0.001 2,691 8,667 2,827 12.0
0.01 19,771 97,028 47,408 990.4
0.1 181,708 1,015,752 786,482 95,292.7
1 1,936,878 1,930,520 1,936,878 1,936,878
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ations from an unselected pool of whole-genome mRNA tran-
scripts. If we inversely examine the GO terms of the mRNA that we
find associated with these SNPs (Table 8, which is published as
supporting information on the PNAS web site), we often find the
same GO terms as for the candidate genes (Fig. 7, which is
published as supporting information on the PNAS web site),
suggesting that the observed associations are within the same
functional pathway.

A Common Set of SNPs Associated with a Common Set of Transcripts
(Biclusters). A bicluster is a submatrix of the association matrix, that
is, a subset of SNPs and transcripts. The goal of the bicluster analysis
is to identify significantly dense biclusters, in which the participating
SNPs share significantly many common associations with the par-
ticipating transcripts (Fig. 1B, yellow rectangles). When several SNP
loci, especially when not in LD, associate with the same transcript
or group of transcripts, this may be evidence of this expression
phenotype being a complex trait, affected by several genetic events.
Several significant biclusters were found in the data, one of them
consisting of four SNPs (in IL1B, IER3, and NOX3, all related to
stress response) and 82 transcripts (see the full list in Table 8). The
GO term ‘‘cytosolic small ribosomal subunit’’ was significantly
overrepresented in this set of transcripts (Bonferroni corrected P �
0.002) together with other related GO terms (Fig. 1C). When the
same set of loci commonly associate with a large number of
transcripts, we have cross-confirmation of the individual associa-
tions as well as a possible multilocus effect on a pathway or a
biological process.

Common Blocks of Regulatory SNPs. We identified associations of
SNPs spanning over several genes like the transcription factors
NFKB1, EGF, and FGF2 spanning 20.3 Mb of 4q24–26 as well as
a cluster of genes on 11q13: CCND1, CCS, and GSTP1 associated
with a large number of transcripts. These clusters of SNPs were
found to be in strong LD (data not shown). When multiple SNPs
in the same gene were studied for associations to groups of
transcripts, the latter were found often to share a common pathway
(Table 9, which is published as supporting information on the PNAS
web site). In agreement with Morley et al. (1), who reported 14q32
as a master regulator locus, we found 12 SNPs in that locus
containing cancer-related genes like AKT1, MAPK3, CDC42BPB,
TNFAIP2, and TRAF3 associated with the expression of 38 genes
at P � 0.01.

Genomic Clusters of Associated Transcripts. Some of the transcripts
associated with the same SNP or set of SNPs tended to cluster to
common chromosomal regions, as observed in the Centre d’Etude
du Polymorphisme Humain families (1). For instance, IL8-
associated transcripts KPNA2, FALZ, HN1, and SLC9A3 reside on
17q23-q25; MAPK8-associated transcripts RARRES and SIAT4C
reside on 11q23-q23.3, etc. If we plot the P values as a measure of

the association between different SNPs and the associated tran-
scripts across all chromosomes we observe a nonrandom distribu-
tion, as exemplified in Fig. 8, which is published as supporting
information on the PNAS web site, for a stretch of 25 Mb on 17p21.
This observation suggests that even in trans interactions are not at
random but with transcripts that tend to cluster together on other
chromosomes.

Coherent Expression Patterns. We also studied the pairwise corre-
lations of the expression levels of transcripts associated with the
same SNP at P � 0.01 or a set of SNPs for the same gene (Fig. 3).
For many such sets of transcripts, the average pairwise correlation
values were significantly higher than the random expectation.
Correlations were computed as described in Materials and Methods,
and the observed values were compared to a distribution obtained
by randomly drawing 100 transcript sets of the same size. The
observed correlation z scores for associated sets of transcripts,
together with properties of the null distributions, are shown in Fig.
3A and Table 3. Furthermore, we performed the same analysis
using an independent breast cancer expression data set (Fig. 3B)
(17). For several sets of transcripts, the z scores of transcript-to-
transcript correlation, as computed from the independent data,
were highly significant (Fig. 3 and Table 3), strongly validating the
observed associations in our data set. Sets with high z scores in both
data sets include the set of transcripts associated with SNPs in
ABCB1, BAK, AKT2, and ABCC1 genes. ABCB1 (MDR1) is
strongly related to drug resistance in cancer as well as in other
conditions. The set of transcripts associated with genetic variants of
ABCB1 (Table 10, which is published as supporting information on
the PNAS web site) as observed in this study and validated by
coherent expression patterns in van’t Veer et al.’s data (17),
included an overrepresentation (P � 3E-07) of genes from the
Kyoto Encyclopedia of Genes and Genomes human proteasome
pathway such as PSMA1, PSMA5, and PSMC6, which might hold
the key to better understanding the mechanisms of drug resistance.

Conclusion
To our knowledge, this is the first study to correlate SNP genotype
data in the germ line with somatic gene expression data in breast
tumors. This article provides the statistical framework for further
genotype expression correlation studies to cancer data sets. In
summary, three different statistical approaches (QMIS, ANOVA,
and LOOCV) were used to assess genetic association between SNPs
in genes from ROS pathways to mRNA expression levels. For SNPs
in EGF, IL1A, MAPK8, XPC, SOD2, and ALOX12, we found the
strongest evidence of association according to all three methods. In
addition, SNPs significantly associated with exceptionally large sets
of transcripts were identified by QMIS and ANOVA in genes such
as PRKCA, CALM3, CYP2C19, IGF1R, IGF2R, and XDH. To
further understand and validate the existence of such large sets of
transcripts associated with SNPs in trans, we (i) identified groups of

Fig. 2. Overabundance analysis for QMIS-based associations. Left shows a comparison of distributions of observed and expected numbers of SNP–transcript
pairs with a certain P value or lower. [Reproduced with permission from ref. 21 (Copyright 2005, IEEE).] Inset shows the same restricted to P values between 1.0E-06
and 1.0E-04. Right shows the corresponding FDR. P values were computed exactly under a null model of uniform distribution of SNP genotype patterns of the
same mixture.
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SNPs that together are associated with a common set of transcripts
(biclusters), (ii) searched for significant overrepresentation of path-
way and GO terms suggesting common biological function of these
associated transcripts, and (iii) provided evidence for a coherent
expression of the associated transcripts in the present data set and
in an independent expression data set (17). In total, 769 SNP–
transcript association pairs with P � 1.0E-04 were observed,
compared with only 150 expected in a random data set.

SNP signals associated with gene expression were observed in
lymphoblastoid cell lines from healthy individuals (1, 5), and in the
present study, SNPs in blood DNA from breast cancer patients were
associated with expression in the tumor tissue. We may expect
different, stronger signals in our study, admitting the existence of
strong SNPs or expression susceptibility pattern associated with
breast cancer per se. Factors that may influence mRNA expression
in a tumor-like somatic mutations, genomic instability, different
steady states of expression as a result of external insult (drug), and
tissue and cell specificity may obscure the SNP association. Such
factors may partly be the reason for the relatively high FDR. A
comparable FDR level to that reported in the study of Morley et al.

(1) was observed for the QMIS analysis (0.2). In our study, we
describe additional analyses, including bicluster analysis, functional
enrichment, and the expression coherence analysis. We also study
more complex structures in the association matrix. These yield more
statistically significant findings, as reported. The high FDR across
the whole range of P values did not allow us to define the P value
cutoff for further analysis, and we used a nominal cutoff of 0.001 for
presenting potentially interesting association pairs in Table 5 and a
cutoff of 0.01 for bicluster and functional enrichment analysis.
Indeed, we recognized important regulators of whole pathways
such as NFKB1, EGF, and FGF2 among the genes in which SNPs
have impact on mRNA expression of several genes. Some of the
associations we report here are further validated by analyzing an
independent breast cancer data set. Still more profound functional
studies are necessary to prove the causal relationship and to grant
these SNPs ‘‘regulators’’ status.

Materials and Methods
Genotype and Haplotype Analyses. Genotyping was performed as
described in Edvardsen et al. (9). LD estimation for the SNPs shown
to be associated with transcripts in cis and exemplified in Fig. 5 was
performed by using HAPLOVIEW. HAPLOVIEW estimates the maxi-
mum-likelihood values of the four gamete frequencies, from which
the D� , logarithm of odds, and r2 calculations are derived (18).
Conformance with Hardy–Weinberg equilibrium is computed by
using the Fisher exact test.

Statistical and Bioinformatics Analyses. ANOVA. For each SNP locus
and each transcript, we computed the one-way ANOVA P value for
the expression vector and grouping of the samples based on SNP
locus genotypes (10). The null hypothesis here is that expression
level distributions are the same, regardless of the genotype class.
QMIS. For an SNP locus s and an expression vector q of transcript
t, let G be a partition of samples induced by the genotype values at
locus s. For an expression level threshold p, let Cp be a partition of
samples defined by the q � p and q � p. The mutual information
score (MIS) is the difference between the entropy of the partition
Cp and the conditional entropy of Cp given G: MIS(Cp, G) �
H(Cp) � H(Cp�G), where H is the entropy function. Define the
QMIS to be the maximum possible MIS, i.e., QMIS(C, G) �
maxmin(q)�p�max(q)MIS(Cp, G). An exact P value for the mutual
information score can be computed exactly by an efficient exhaus-
tive approach (11). The null hypothesis here is that genotype values
have the same distribution, regardless of expression levels. A total
of 578 � 3,351 � 1,936,878 association tests were performed for
each ANOVA and QMIS analysis.

Fig. 3. Pairwise expression correlation of transcripts associated with the same
SNP gene in two data sets. (A) Observed and expected correlation z scores for
transcript subsets associated with SNPs in each candidate SNP gene. Expected
distribution of z scores is computed as the correlation of n randomly selected
transcripts foreachof transcript setof size n. Foreach n, 100 randomsubsetswere
drawn. Error bars correspond to 1 SD. (B) z scores for the expression correlation
of the corresponding subsets of transcripts in another breast cancer data set (17).
Sets of transcripts associated with SNPs in ABCB1, BAK1, AKT2, and ABCC1 genes
have expression correlation z scores in both data sets. Note that transcript sets are
not ordered in the same way in both plots.

Table 3. Pairwise correlations of the expression levels of n
transcripts (number given in ‘‘Size’’) associated with an SNP
or set of SNPs in a gene (P < 0.01)

Genes Size
z

score

Size, van’t
Veer

et al.’s
data (17)

z score,
van’t Veer

et al.’s
data (17)

Transcripts associated with CALM3 169 27.04 119 2.439
Transcripts associated with CDC42BPB 52 25.66 15 �1.084
Transcripts associated with GPX4 81 19.05 15 �0.002
Transcripts associated with COX10 65 18.93 5 �0.580
Transcripts associated with ABCB1 77 18.76 54 14.215
Transcripts associated with BAK1 43 15.53 31 13.376
Transcripts associated with GSTM3 39 13.91 3 0.250
Transcripts associated with MAPK9 37 12.94 8 0.032
Transcripts associated with AKT2 47 12.82 26 4.119
Transcripts associated with TXNRD2 36 12.77 35 1.652
Transcripts associated with II10RA 40 12.30 24 0.095
Transcripts associated with IL10RB 26 12.18 6 �1.532
Transcripts associated with PPP1R15A 50 10.13 6 �1.473
Transcripts associated with ABCC1 75 10.07 55 5.465
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LOOCV. LOOCV was used to further confirm strong associations.
For a given SNP in the data set, we used its genotypes to group
samples. For each grouping we ran LOOCV analysis, trying to
predict from the expression data which genotype group each
sample belongs to (similar to the methods described in ref. 12).
Thus, we performed 583 LOOCV runs and selected cases that
had classification success �90%, further restricted to SNPs with
at least six cases in each of the three genotype groups.

Properties of the Association Matrix. We studied the association
matrix P, searching for the following structures:

Y Overall overabundance of associated pairs: we assessed the
overall significance of the observed association between geno-
types and expression phenotypes by comparing it to a null model.

Y Potential master regulators: we seek rows and columns in P that
have significantly many entries with strong P values. Such struc-
tures represent the effect of this locus on many transcripts and
suggest the presence of a regulation element. When several SNPs
reside in the same gene, these are combined for this analysis. We
further study the transcripts that are potentially regulated by a
gene or associated with an SNP locus using expression correla-
tion and external information as described below.

Y Biclusters: a bicluster is a submatrix of P. We adapt the methods
of Tanay et al. (13) to find significantly dense biclusters, in which
the participating SNPs share significantly many common asso-
ciations with the participating transcripts (see Fig. 1B). When
several SNP loci, especially when not in LD, associate with the
same transcript, this may be evidence of this expression pheno-
type being a complex trait, affected by several genetic events.
When the same set of loci commonly associate with a large
number of transcripts, we have cross-confirmation of the indi-
vidual associations as well as a possible multilocus effect on a
pathway or a biological process.

GO and Pathway Analysis. GO annotations for all transcripts were
obtained by using publicly available Biomolecule Naming Service
(http:��openbns.sourceforge.net), a high-speed directory service
that resolves between alias and official gene symbols and links to
publicly available databases. We state that a transcript g is linked to
a GO term t if t annotates g or is an ancestor of some GO annotation
for g. For each GO term t and a list of transcripts L we test the
hypothesis that the term t is overrepresented in L against the null
hypothesis that distribution of terms is random. This term to
transcript–list association is determined by using the hypergeomet-
ric distribution [for example, see Benjamini et al. (14)]. Namely, for
each term t and list of transcripts L the P value is given by:

P	t, L
 � 1 �

�
y�0

k �n
y� �N � n

K � y�
�N

K�
,

where N equals the total number of unique GO annotated tran-
scripts represented in the data set, n equals the total number of
unique GO annotated transcripts represented in L, K equals the
total number of transcripts linked to the GO term t, and k equals
the number of entries in transcript list L linked to the GO term t.

A similar analysis was performed by using pathway information
as follows. A pathway database containing 360 curated pathways
from various sources such as Kyoto Encyclopedia of Genes and
Genomes, BioCarta, and Signaling Pathway Database was used to
search for overrepresentation of members of an expanded pathway.
Overabundance was assessed by using the hypergeometric distri-
bution similar to the algorithm described above.

Analysis of Correlations of Sets of Associated Transcripts. The pair-
wise correlations between expression of transcripts associated with
SNPs in one gene was computed. For each set of SNPs in a gene
we considered sets of transcripts associated with an SNP in this gene
with P � 0.01. For each set of transcripts, we computed Pearson
correlation between each pair of transcripts in the set, and we report
the deviation of average correlation in the set from the expected
expressed as the z score. We then compared the distribution of
these z scores to the expected distribution, computed based on
correlations in random sets of transcripts of the same size. The z
score was computed as follows: Let Cij be the correlation of
transcripts i and j from the set S. Let C0 be the average transcript-
to-transcript correlation across the entire data set, and let �0 be the
corresponding standard deviation. For a set of transcripts S with n
elements, there are N � n(n � 1)�2 transcript pairs. Then:

z �
�Cij � NC0

�N�
.

Assessment of Statistical Significance. To assess the statistical sig-
nificance of our findings, we used the FDR analysis to compare the
results to those obtained on random data sets (19). Those were
generated by randomly permuting the expression data while leaving
the genotype data intact. This randomization process ensures that
we keep the structure of dependencies between SNP loci that exist
in the original data, as well as between expression vectors. These
permuted data were used in assessing overabundance of significant
SNP–transcript association pairs as well as in assessing the signif-
icance of more complex structures. We used 50 simulations to
compute the ANOVA FDR. Genomic intervals on the chromo-
somes enriched for transcripts with a high average of statistically
significant associations for each SNP were estimated as described by
Lipson et al. (20).
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