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Abstract 
High throughput expression profiling and 

genotyping technologies provide the means to study the 
genetic determinants of population variation in gene 
expression variation. In this paper we present a general 
statistical framework for the simultaneous analysis of 
gene expression data and SNP genotype data measured 
for the same cohort. The framework consists of methods 
to associate transcripts with SNPs affecting their 
expression, algorithms to detect subsets of transcripts 
that share significantly many associations with a subset 
of SNPs, and methods to visualize the identified 
relations. We apply our framework to SNP-expression 
data collected from 49 breast cancer patients.  Our 
results demonstrate an overabundance of transcript-
SNP associations in this data, and pinpoint SNPs that 
are potential master regulators of transcription. We 
also identify several statistically significant transcript-

subsets with common putative regulators that fall into 
well-defined functional categories.  
 
 
 
1. Introduction  

The development of high throughput techniques for 
expression profiling and genotyping enables the study 
of the genetic determinants of expression variation, both 
in humans and in other organisms. Expression levels are 
taken as quantitative phenotypes, of independent 
interest, as well as determinants or indications of end-
point clinical phenotypes. Much of our understanding of 
the genetic base of disease comes from identifying 
polymorphisms that affect protein structure or integrity. 
We know, however, that protein abundance and 
expression levels of mRNA also drive disease 
processes. It is therefore important to explore the 
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genetic base of variation in gene expression, regarded as 
a quantitative phenotype.  

Several studies that genetically analyzed expression 
phenotypes have been reported in the literature.  In  [3] 
the authors report the use of 3312 markers and genome 
wide linkage analysis to study the natural variation of 
expression in yeast. The expression levels of 570 genes 
were linked to one or more different loci, with most 
transcripts showing complex inheritance patterns. Loci 
that are linked to expression phenotypes are either cis-
acting modulators of single genes (the polymorphism 
that is linked to the transcript is in the coding sequence 
of the gene or very close to it) or trans-acting 
modulators (the polymorphism is in a different part of 
the genome) of many genes. The study reports eight 
such trans-acting loci, each potentially affecting the 
expression levels of a group of 7 to 94 genes of related 
function. In [9] Jin et al. investigated the genotypic 
contributions to transcriptional variance in Drosophila. 
They conclude that that gene expression in adult flies is 
affected most strongly by sex, less so by genotype and 
only weakly by age (for 1- and 6-week flies). They also 
find that chromosome X genotype interactions may be 
present for as much as 10% of the Drosophila 
transcriptome.  

Schadt et al [16] describe genetic analysis of gene 
expression in three species, with an emphasis on mice. 
They produced a genetically diverse population of 111 
mice by crossing two commonly used inbred strains and 
measured the expression levels of 23,574 mouse genes 
in blood samples from this population. They found that 
7,861 are differentially expressed in the two original 
strains. These were further used in studying the genetics 
of gene expression in this population, using a panel of 
more than 100 microsatellite markers. The study reports 
e-QTLs (expression quantitative trait loci): genetic 
regions (loci) that can account for variation in the levels 
of gene expression. Many e-QTLs were found at the 
same chromosomal location as the gene they 
hypothetically affect (in-cis). They also identified 
genomic regions with e-QTLs for an exceptionally large 
number of transcripts, suggesting the presence of 
regulatory elements.  

Another approach to the study of the relationship 
between genetics and expression regulation is to study 
the differential expression between genetic variants. 
Sandberg et al [15] studied genes that are differentially 
expressed between two inbred mouse strains at baseline 
and in response to seizure. They find that approximately 
1% of expressed genes are differentially expressed 
between strains in at least one region of the brain and 

that the gene expression response to seizure is 
significantly different between the two strains. 
Hedenfalk et al [6] study expression differences in 
breast tumor samples collected from patients of 
different BRCA1 and BRCA2 status to discover 
significant differences that attest to the effect of genetic 
differences on tumor expression patterns. In a related 
study [7] the authors suggest the use of differential 
expression and a class discovery process [1] to define 
more homogenous cohorts for genetic studies. A study 
of lymphoblastoid expression differences between 
carriers of ataxia telangiectasia, an autosomal recessive 
disease, and normal controls, further confirms the effect 
of genetic differences on the expression phenotype [21]. 
These results illustrate that heterozygous carriers, even 
of recessive conditions, can have a distinct phenotype.  

In a recent report Morley et al [13] describe a broad 
study of the genetic determinants of normal expression 
variation in humans. The authors used microarrays to 
measure the baseline expression levels of roughly 8500 
genes, or transcripts, in immortalized B cells from 
members of CEPH Utah pedigrees [21]. They selected 
3554 genes that varied more between individuals than 
between replicates and used these as quantitative traits, 
to be mapped into genomic locations. They used public 
genotype information to carry out linkage analysis for 
these expression phenotypes in 14 CEPH families. They 
found high linkage signals for 984 of the transcripts (at 
p<0.05, leading to an FDR of about 0.2). Interestingly, 
they identified regions that show linkage signals to 
many of the transcripts, and proposed that these can 
point towards master regulators of baseline expression 
levels. 

In this paper we address the methodology of 
interpreting genetic linkage and association data for 
expression level phenotypes. We focus on the case of 
association studies involving single nucleotide 
polymorphisms (SNPs). It is possible to modify the 
methods to address other types of polymorphisms or of 
genetic analysis, such as linkage studies in pedigrees 
and LOD scores. The first step in analyzing SNP and 
gene expression data consists of computing the 
association graph G =(S,T,E), a bipartite graph where S 
represents SNP loci (or genomic loci in general), T 
represents the transcripts measured in the expression 
profiling study and E is a set of edges that represent the 
genetic association. An edge e = (s,t) ∈ E can be 
labeled by the p-value (or other score) of the observed 
association between s and t or it can be binary, when 
using a threshold to determine edges and non-edges. An 
alternative mathematical representation of the graph is 

 2



 
   

the association matrix P. The entries Pst, again, 
represent the level of association between the genotypes 
measured at SNP locus s and the expression levels of a 
gene or transcript t. Studying properties of the 
association graph enables the identification of 
meaningful biological signals, similar to the ones 
described in some of the literature cited above. We 
describe methods and results related to the following 
structures in G: 

• Overall overabundance of associated pairs: We 
assess the overall significance of the observed 
association between genotypes and expression 
phenotypes by comparing it to a null model. 

• Potential master regulators: We seek vertices in S 
that have significantly high (or heavy, in the case of 
p-value labeled edges) degrees. Such structures 
represent the effect of this locus on many 
transcripts and suggest the presence of a regulation 
element.  When several SNPs reside in the same 
gene these are lumped together for this analysis. 
We further study the transcripts that are potentially 
regulated by a gene or associated to a SNP locus, 
e.g., seeking functional enrichment. 

• Biclusters: A bicluster is a subgraph of G. We 
adapt the methods of Tanay et al ([19]) to find 
significantly dense biclusters, in which the 
participating SNPs share significantly many 
common associations with the participating 
transcripts. When several SNP loci, especially 
when not in LD, associate with the same transcript, 
this may be evidence of this expression phenotype 
being a complex trait, affected by several genetic 
events. When the same set of loci commonly 
associate with a large number of transcripts we 
have cross-confirmation of the individual 
associations as well as a possible multi-locus effect 
on a pathway or a biological process. 

• To further validate and better understand vertices 
of high degree and dense biclusters we test the sets 
of participating transcripts for functional 
enrichment. 
 

We exemplify our methods by applying them to 
SNP-expression data collected from 49 breast cancer 
patients [11]. The data consist of 578 SNPs in selected 
genes from the reactive oxygen species (ROS) 
biochemical and signaling pathways, and expression 
levels of 3351 transcripts, in tumor biopsies ([17], [18]). 

We identified SNPs that are associated to a significantly 
large number of transcripts, such as PPKCA which was 
found to be associated with 85 transcripts at p<0.001.  
Several significant biclusters were found in the data, 
one of them consisting of 4 SNPs (in IL1B, IER3 and 
NOX3, which are related to stress response) and 82 
transcripts. The GO term “cytosolic small ribosomal 
subunit” was significantly over-represented in this set of 
transcripts (Bonferroni corrected p-value 0.002) 
together with other related GO terms.  

The purpose of this paper is to present and 
demonstrate analysis tools that can be used in 
identifying significant relationships between genetic 
variation and differential expression. To fully 
understand the biological meaning of significant 
structures more experiments or analysis need to 
designed and performed.   
 
2. Computational methods and statistical 
modeling 
 
2.1. Computing the SNP-transcript association 

matrix 
 

Let N and M denote the number of SNPs and 
transcripts, respectively. For each pair (s,t) of SNP and 
transcript, we compute an association score and a 
corresponding p-value Pst using one of the methods 
described below. The resulting matrix P is called the 
association matrix. Given a threshold p, we say that s is 
associated with t if Pst< p.  

Quantitative mutual information score. For a 
SNP locus s and an expression vector q of transcript t, 
let G be a partition of samples induced by the genotypic 
values at locus s. For a threshold p, let Cp be a partition 
of samples defined by the q<p and q≥p. The mutual 
information score (MIS) is the difference between the 
entropy of the partition Cp and the conditional entropy 
of Cp given G: MIS(Cp, G) = H(Cp) – H(Cp |G), where 
H is the entropy function. We define the quantitative 
mutual information score (QMIS) to be the maximum 
possible MIS, i.e.,  

QMIS(C,G) = maxmin(q) ≤p≤max(q)MIS(Cp,,G). A p-
value for the mutual information score can be computed 
exactly by an exhaustive approach [19]. These p-values 
comprise the entries of the association matrix P.  

ANOVA analysis. For each SNP locus and each 
transcript, we also computed one-way ANOVA p-value 
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for the expression vector and grouping of the samples 
based on SNP locus genotypes [14]. These p-values 
comprised the entries of the association matrix P.  

To assess the statistical significance of our findings, 
we compared our analysis results to those obtained on 
random data sets. Those were generated by randomly 
permuting the expression data, while leaving the 
genotype data intact. More precisely, in each instance of 
the random data samples were randomly assigned to 
expression vectors. This randomization process ensures 
that we keep the structure of dependencies between SNP 
loci that exist in the original data, as well as between 
expression vectors. These permuted data were used in 
assessing overabundance of significant SNP-transcripts 
association pairs as well as in the assessing the 
significance of more complex structures. 

The two methods described above demonstrate 
possible parametric and non-parametric approaches to 
assess SNP-transcript association. ANOVA analysis 
assumes normal distribution of underlying 
measurements that may be not true in expression data in 
general, but ANOVA analysis is computationally 
efficient. QMIS does not make any distribution 
assumptions, but its p-value computation is rather slow, 
which limits its use in some of the applications.   

  
2.2. Bicluster identification 2.4. Visualization of biclusters 

  
A bicluster is a submatrix of the association matrix, 

that is, a subset of SNPs and transcripts. In graph terms, 
a bicluster is a subgraph of the association graph. The 
goal of the bicluster analysis is to identify significantly 
dense biclusters, in which the participating SNPs share 
significantly many common associations with the 
participating transcripts.  

We developed a method for visualizing a set of 
possibly overlapping biclusters by permuting the rows 
and columns of the association matrix so that rows and 
columns that belong to the same bicluster are ordered 
close to one another. To describe the algorithm we first 
note that the problem of determining whether there exist 
permutations, for which all biclusters appear 
consecutively in their rows and columns, can be reduced 
to two consecutive ones problems, one in each 
dimension of the matrix. Even in the case of an 
imperfect solution (i.e., the consecutive property cannot 
be maintained) we shall assume that the two dimensions 
of the matrix are independent, and will optimize them 
separately.  

Let S be the set of SNPs and let T be the set of 
transcripts. To find biclusters in the association matrix 
P, we first transform P into a weighted bipartite graph 
G=(S,T,E) as follows:  For a given threshold p (e.g., 
0.05) and any pair (s,t) of SNP-transcript, we define (s,t) 
to be an edge of weight +1 if Pst<p and to be a non-edge 
of weight –1 otherwise. We now apply the biclustering 
algorithm of Tanay et al. [19] to this graph, looking for 
the heaviest biclusters, where the weight of a bicluster is 
defined as the sum of the weights of its edges and non-
edges. Briefly, the algorithm starts from small biclusters 
(complete bipartite subgraphs), serving as seeds, and 
expands them in a greedy fashion. The bicliques can be 
found efficiently using a hashing technique described in 
Tanay et al. [19]. Each such seed is expanded 
iteratively, adding or removing a SNP or a transcript 
that contributes the most to the weight of the resulting 
bicluster, as long as this contribution increases the 
overall weight of the bicluster. The resulting biclusters 
correspond to dense subgraphs of the association graph, 
with edge density exceeding 0.5 due to the particular 
choice of edge weights. 

For a given dimension d (rows or columns), our 
goal is to optimize over all biclusters the sum of their 
spreads, where the spread of a bicluster along 
dimension d is defined as the standard deviation of the 
locations of its elements along this dimension. We 
designed a greedy heuristic to this optimization problem 
that starts with a random permutation and iteratively 
tries to decrease its sum of spreads by exchanging pairs 
of elements. 

 

2.5. Analysis of functional enrichment 

 
Gene sets that were associated to one or more SNPs 

were subjected to analysis of their functional 
enrichment based on their Gene Ontology (GO) 
annotations. GO annotations for all genes were obtained 
using publicly available Biomolecule Naming Service 
(BNS) [10], http://openbns.sourceforge.net/, a high-

  

2.3. Assessment of statistical significance  
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speed directory service developed at Agilent 
Laboratories, which can resolve between alias and 
official gene symbols, and links to publicly available 
databases. We say that gene g is linked to a GO term t, 
if t annotates g or is an ancestor of some GO annotation 
for g. For each GO term t, we tested whether t is 
overrepresented in the given set of genes using   
hypergeometric distribution [5], [12].  

 

3. Results 
 

We analyzed SNP-expression data collected in the 
study of the effects of single nucleotide polymorphisms 
on genome-wide expression in tumors from breast 
cancer patients [11].  This data consisted of 696 SNPs in 
selected genes from the reactive oxygen species (ROS) 
biochemical and signaling pathways, and 8000 
transcripts whose expression was measures in genome-
wide study of tumor biopsies [17], [18], http://genome-
www.stanford.edu/breast_cancer. 696 SNPs were 
divided among 203 genes distributed along all 
chromosomes with a wide spread of 1 to 19 SNPs per 
gene. Gene expression levels were measured on arrays 
manufactured at the Stanford Microarray Core Facility. 
Prior to the analysis, the expression data was filtered for 
signal quality; namely, we retained only transcripts 
whose ratio of feature intensity over background 
exceeded 1.5 in at least 80 % of the experiments in each 
dye channel. 3351 transcripts passed this array signal 
filter. The analysis was also restricted to 578 SNPs that 
had different genotypes among studied individuals. SNP 
and expression data was available for 49 breast cancer 
patients. 

 

3.1. Overabundance analysis of the association 
matrix 

 
We used the framework for computing associations 

between SNPs and genes to test whether the number of 
associations detected in real data is larger than the 
random expectation. This overabundance analysis was 
performed using two measures: false discovery rate 
(FDR) [2] and binomial surprise rate [1]. FDR measures 
the ratio of expected and observed numbers of SNP-
transcript association pairs with a given score or better. 
Binomial surprise rate as defined in [1] measures the 
probability of seeing larger or equal number of pairs 
with a given score or better when uniformly drawing 

random permutations of genotype data and assuming 
transcript independence. The number of associations in 
both cases was determined by counting the number of 
entries in the association matrix less than or equal to a 
given threshold. The results of this analysis are depicted 
in Figure 1 and Figure 2. For QMIS, 769 SNP-transcript 
association pairs with p-values ≤ 1.0e-04 were observed 
with FDR of 0.2 and binomial surprise of 9349.  In 
random data you may expect to find only 150 such 
pairs. In this case the expected number of pairs is 
calculated based on QMIS p-value and size of the 
association matrix. 

 

 
Figure 1 Overabundance analysis for QMIS-based 
associations. The top plot shows comparison of 
distributions of observed and expected numbers of 
SNP-transcript pairs with a certain p-value or 
better. The bottom plot shows the corresponding –
log10(binomial surprise), see text and [1]. Small 
insert plots show the same results restricted to p-
values between 1.0e-06 and 1.0e-04.  
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Figure 2 Comparison of numbers of ANOVA-based 
association pairs in original and permuted data. 
The permuted data represents averages over 50 
permuted data sets. 

A  

B  

C   

Figure 3 Examples of SNP-transcript associations. 
A. Difference between expression values in QDPR 

transcripts in samples with different genotypes at 
SNP 861098 (located within the gene PPP1R2). 
This association receives an ANOVA p-value of 
2.1e-07. B. Difference between expression values 
of the FANCA transcript in samples with different 
genotypes at SNP 913059 (in the gene TGFBR3); 
this association has an ANOVA p-value of 3.7e-06. 
C. Difference between expression values of the 
NAP1L2 transcript in samples with different 
genotypes at SNP 1889740 (in the gene ARNT); 
the association has an ANOVA p-value of 1.02e-
06.  

 

For ANOVA scores, 571 SNP-transcript association 
pairs with p-values ≤ 1.0e-04 were observed with FDR 
of 0.6 based on expected number of pairs estimated 
from permuted data.  Figure 3 shows several examples 
of SNP-transcript pairs with significant associations. 
Each graph shows a box-plot of expression data grouped 
by sample genotypes for each SNP. The boxes have 
lines at the lower quartile, median, and upper quartile 
values.  The whiskers are lines extending from each end 
of the boxes to show the extent of the rest of the data.  
Outliers are data with values beyond the ends of the 
whiskers. For SNPs in PPP1R2 and TGFBR3, the 
presence of G or C alleles increases expression of 
QDPR and FANCA respectively. AA genotype in ARNT 
is associated with increased expression of the NAP1L2 
transcript. 
 
3.2. Master regulators 
 

Figure 4 depicts the differences between the total 
edge weights observed at the high end of the actual data 
and the corresponding results, averaged over 50 sets of 
simulated data (see Methods for simulation 
methodology). The total edge weight of SNP locus s is 
computed as sum –log(Psg) over all transcripts g such 
that Psg<0.001. SNP loci that have a set of edges with 
an exceptionally heavy weight are putative regulators of 
many transcripts. They potentially affect the expression 
levels or the mode of operation of transcription factors 
or of RNA binding proteins, directly or indirectly. Thus, 
these SNPs affect the transcription or degradation rates 
and hence expression levels of many transcripts. SNPs 
that had the highest weight belong to the genes PRKCA, 
CYP2C19, IFG1R, IGF2R and XDN. 

To further understand the association of SNPs to 
sets of transcripts we are interested in common 
properties of the described above sets of transcripts. To 
this end we performed GO enrichment analysis of these 
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sets as described in the Methods. We considered sets of 
transcripts associated to SNPs that belong to the same 
gene, and looked for overrepresented GO terms in these 
sets. Several examples of our findings: 70 transcripts 
associated with gene GCLM contained all 5 transcripts 
that belong to term “fibrillar collagen” (Bonferroni 
corrected p-value 0.0002). 90 transcripts associated with 
gene PPP3CA contained 6 out of 12 transcripts that 
belong to term “antigen processing” and “antigen 
presentation” (Bonferroni corrected p-value of 0.002 
and 0.005 respectively). Transcripts associated with 
genes IL1B, IER3 and NOX3 included all 3 members of 
the term “cytosolic small ribosomal subunit” 
(Bonferroni corrected p-value of 0.008 and 0.004) as 
well as members of other groups related to ribosome 
functions Figure 6. As IL1B, IER3 and NOX3 are part of 
the stress response system our findings are consistent 
with stress response activation of protein synthesis and 
how it may be affected by genetic variants in these 3 
genes.  

 
Figure 4 Comparison of vertex weights in original 
and permuted data. For each SNP locus s, total 
edge weight was computed as sum –log (Psg) over 
all transcripts g such that Psg<0.001. 50 instances 
of randomized expression data were used in the 
calculation of weighted vertex degree in permuted 
plot. 

 

3.3. Bicluster analysis 
 
 

In addition to the overabundance analyses 
described above, we conducted several bicluster 
analyses of the association matrix, searching for these 
more complex structures in the data. First, we analyzed 
the association graph obtained from a QMIS-based 

association matrix using a p-value threshold of 0.02. 
Our algorithm identified 28 biclusters in the graph 
whose size (product of number of SNPs and number of 
transcripts) exceeded 32. We analyzed the gene set 
contained in each bicluster for functional enrichment. 
One of the biclusters had 4 SNPs in genes IL1B, IER3 
and NOX3 and 82 transcripts. The GO term “cytosolic 
small ribosomal subunit” was significantly 
overrepresented in this set of transcripts (Bonferroni 
corrected p-value of 0.002) together with other related 
GO terms.  Figure 6 shows the part of the GO cellular 
component hierarchy connecting the term “cytosolic 
small ribosomal subunit” to the root of the hierarchy. 
Node sizes are proportional to the significance of the 
corresponding GO terms. Figure 7 shows a visualization 
of the biclusters that were identified in the QMIS 
analysis.  

We also analyzed an ANOVA-based association 
matrix with a threshold of 0.01, which corresponds to 
the best 1% of scores observed in the data. In total, we 
identified 54 biclusters of size exceeding 32. Since 
ANOVA scores are efficient to compute, we were able 
to simulate association matrices for random data (see 
Methods) and evaluate the significance of the biclusters 
detected. To this end, we associated with each bicluster 
B a weight W (B) that measures the extent to which the 
SNPs in the bicluster are associated with the genes in 
the bicluster. W(B) is defined to be the sum over all 
pairs of SNP s and gene g in the bicluster of  (m-

log(Psg)), where ∑=
gs

sgP
NM ,

log1m .  
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Figure 6 Part of the cellular component hierarchy 
connecting overrepresented terms in the set of 
transcripts associated with SNPs in genes IL1B, 
IER3 and NOX3 to the root of the hierarchy. Each 
node correspond to GO term, sizes of the nodes 
are proportional to term significance. 

 

  

Figure 5 Comparison of bicluster sizes and 
bicluster weights in original and permuted data. 
Biclusters in original and permuted data were 
identified using the corresponding association 
matrices computed using ANOVA p-values≤0.01. 
Results for the permuted data represent averages 
over 50 random data sets.  

The significance of a bicluster is then estimated as 
the probability of observing a bicluster with score W(B) 
or better in the permuted data. For 22 of the 54 
biclusters identified in the ANOVA-based association 
matrix, the probability of observing a bicluster of this 
weight in permuted data was less than 0.01.  Figure 5 
shows a comparison of bicluster sizes and weights in the 
original and permuted data.  

Figure 7 Visualization of the association matrix 
computed using the QMIS-based analysis. Top plot 
shows a subset of SNPs and a subset of 
transcripts in their original order in the data. Each 
SNP and transcript shown belongs to one of the 
biclusters. Bottom plot shows the same subset of 
SNPs and transcripts reordered to highlight 
biclusters identified in the data. 

 

 
4. Conclusions 
 
We have presented a framework for the integrated 
analysis of genotype and expression data. The analysis 
relies on the computation of an association matrix 
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whose entries represent the extent to which each SNP is 
correlated with each transcript. We devised methods for 
the overabundance analysis of the entire matrix and 
each of its rows or columns. We also adapted methods 
for identifying high-scoring biclusters in this matrix, 
representing a set of SNPs that share significantly many 
associations. We applied our framework to analyze 
SNP-expression data from breast cancer patients, 
discovering novel gene sets that may be associated with 
the disease. Possible extensions to our method include 
(1) improved weighting schemes to the entries of the 
association matrix; (2) a more refined bicluster analysis 
that does not require the discretization of the association 
data; and (3) methods for further evaluating the 
identified gene sets, e.g., by using additional expression 
data from independent sources. 
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