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Abstract. The graph orientation problem calls for orienting the edges
of an undirected graph so as to maximize the number of pre-specified
source-target vertex pairs that admit a directed path from the source to
the target. Most algorithmic approaches to this problem share a com-
mon preprocessing step, in which the input graph is reduced to a tree by
repeatedly contracting its cycles. While this reduction is valid from an
algorithmic perspective, the assignment of directions to the edges of the
contracted cycles becomes arbitrary, and the connecting source-target
paths may be arbitrarily long. In the context of biological networks, the
connection of vertex pairs via shortest paths is highly motivated, leading
to the following variant: Given an undirected graph and a collection of
source-target vertex pairs, assign directions to the edges so as to maxi-
mize the number of pairs that are connected by a shortest (in the original
graph) directed path. Here we study this variant, provide strong inap-
proximability results for it and propose an approximation algorithm for
the problem, as well as for relaxations of it where the connecting paths
need only be approximately shortest.

1 Introduction

Protein-protein interactions form the skeleton of signal transduction in the cell.
While many of these interactions carry directed signaling information, current
interaction measurement technologies, such as yeast two hybrid [5] and co-
immunoprecipitation [7], reveal the presence of an interaction, but not its di-
rectionality. Identifying this directionality is fundamental to our understanding
of how these protein networks function.

To tackle the arising orientation problem, previous work has relied on infor-
mation from perturbation experiments [13], in which a gene is perturbed (cause)
and as a result other genes change their expression levels (effects). The funda-
mental assumption is that, for an effect to take place, there must be a directed

⋆ Due to space limitations, some proofs are omitted from this extended abstract. These
will appear in the full version of this paper.
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path in the network from the causal gene to the affected gene. This setting calls
for an orientation, that is, an assignment of directions to the edges of the net-
work, such that a maximum number of pairs admit a directed path from the
cause (source of response) to the affected genes (targets of the response).

Recently, large scale networks for many organisms have become available,
leading to increasing interest in orientation problems of this nature. Medve-
dovsky et al. [10], Gamzu et al. [6], and later on Elberfeld et al. [3], were the
first to study the maximum graph orientation problem (MGO), where the
objective is to direct the edges of a given (undirected) network so as to max-
imize the number of vertex pairs that are connected by directed source-target
paths, which are allowed to be of arbitrary length. They proved that MGO is
NP-hard to approximate to within a factor better than 12/13 and provided an
Ω(log log n/ log n) approximation algorithm for it. It was further shown that
MGO, as well as several natural extensions, admit efficient integer programming
formulations [10, 11].

The main caveat of these approaches is that they all employ a preprocess-
ing step in which cycles in the input graph are contracted one after the other,
ending up with a tree network. Such structural modifications do not affect the
optimization criterion, since directed connectivity can be preserved when cycles
are consistently oriented in advance, either in clockwise or counter-clockwise di-
rection. However, in practice, this preprocessing step results in a large fraction of
the edges being arbitrarily oriented and in arbitrarily long directed source-target
paths.

Other approaches to the problem concentrated on short connecting paths,
which are more plausible biologically [13]. Gitter et al. [8] focused on paths whose
length is bounded by a parameter k, showing that while the resulting problem
is NP-hard, it can still be approximated within factor O(k/2k). Vinayagam et
al. [12] developed a Bayesian learning strategy to predict the directionality of
each edge based on the shortest paths that contain it.

Problem definition and our contribution. In this paper, we study the latter
biologically-motivated setting [8], in which the directed paths connecting each
pair of source-target vertices are required to be shortest. Let G = (V,E) be an
undirected graph with a vertex set V of size n and an edge set E of size m.
Denote by δG(s, t) the length (number of edges) of a shortest path between s

and t. An orientation G⃗ of G is a directed graph on the same vertex set whose
edge set contains a single directed instance of every undirected edge, but noth-
ing more. We say that a pair of vertices (s, t) is satisfied by an orientation G⃗
when the latter contains a directed s-t path of length δG(s, t). The maximum
shortest-path orientation (MSPO) problem is defined as follows:

Input: An undirected graph G and a collection P = {(s1, t1), . . . , (sk, tk)} of
source-target vertex pairs.

Objective: Compute an orientation of G that satisfies a maximum number of
pairs.



Our contribution is three-fold: (i) We relate the hardness of approximating
MSPO to that of the Independent Set problem through a combinatorial construc-
tion called the “single-pair gadget”, which may be interesting in its own right.
Consequently, we show that this problem is NP-hard to approximate within
factors O(k1−ϵ) and O(m1/3−ϵ), for any fixed ϵ > 0 (Section 2). (ii) On the
positive side, we adapt the approximation algorithm of [3], which was initially
suggested for MGO in mixed graphs, and attain a performance guarantee of

Ω(1/max{n, k}1/
√
2) (Section 3.1). (iii) Last, we show that significantly better

upper bounds can be obtained when one is willing to settle for bi-criteria ap-
proximations, where the strict requirement of connecting pairs only via shortest
paths is relaxed and, instead, approximately-shortest paths are allowed. Here,
we make use of random embeddings to compute Õ(logn)-approximate shortest
paths connecting an Ω(1/ log n) fraction of all pairs, with constant probability.
Additionally, we show that by using (1+ ϵ)-approximate shortest paths one can
satisfy an Ω̃(1/

√
k) fraction of the pairs (Section 3.2).

2 Hardness of Approximation

In this section we provide a reduction from Independent Set showing that it is
NP-hard to approximate MSPO to within factors Ω(1/k1−ϵ) and Ω(1/m1/3−ϵ) of
optimum for any fixed ϵ > 0. To this end, we first construct a single-pair gadget,
which shows that there are MSPO instances in which even optimal orientations
satisfy only one out of k source-target pairs. This construction will serve as
the main building block of our hardness reduction. The single-pair gadget is
also interesting in its own right, as it creates a strong separation between our
definition of satisfying a given pair via a shortest path and the one studied by
Medvedovsky et al. [10], in which pairs could be satisfied via any directed path,
a setting where a logarithmic fraction of all pairs can always be satisfied.

2.1 The single-pair gadget

For convenience, we describe the single-pair gadget using an edge-weighted mixed
graph, in which some of the edges are pre-directed. Later on, we show how to
remove these extra constraints. In what follows, given any integer k, we show
how to create an MSPO instance (G,P ) with k pairs, O(k2) vertices and O(k2)
edges, such that the following properties are satisfied: (1) For every pair in P
there is some orientation that satisfies it, and (2) Any orientation of G satisfies
at most one pair in P . To this end, we will argue that, in the instance described
below, there is a unique shortest path connecting any given source-target pair.
Moreover, these will be contradicting paths, in the sense that when one sets the
direction of any such path from source to target all other paths can no longer be
similarly directed (due to overlapping edges that need to be oriented in opposite
directions).

Our construction is schematically drawn in Figure 1. In detail, the graph
vertices are partitioned into k layers, V1, . . . ,Vk, where Vi contains 2k−i vertices,
{vi,1, . . . , vi,2k−i}. There are three types of edges:



– Cross edges, Ecross: For every 1 ≤ i ≤ k − 1 and i < j ≤ k, we have a pair
of directed edges (vj,i, vi,2j−i−1) and (vi,2j−i−2, vj,i+1). The weight of these
edges is 1.

– Contradiction edges, Econt: For every 1 ≤ i ≤ k − 1 and i < j ≤ k, we have
an undirected edge (vi,2j−i−2, vi,2j−i−1). The weight of these edges is 0.

– Direction edges, Edir: For every 1 ≤ i ≤ k − 1 and i < j ≤ k + 1, we have a
directed edge (vi,2j−i−1, vi,2j−i). The weight of these edges is 2.

Finally, the collection of pairs is P = {(si, ti) : 1 ≤ i ≤ k}, where si = vi,1 and
ti = vi,2k−i.
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Fig. 1. The single-pair gadget (only the first two layers are shown). Here, direction
edges are drawn as thick lines, cross edges as regular lines, and contradiction edges as
thin lines.

We begin to analyze the single-pair gadget by highlighting a couple of struc-
tural properties that will be required to establish the uniqueness of shortest
paths and the way in which they intersect. Observations 1 and 2 characterize
the unique paths that connect vertices in one vertical column of the gadget
(i.e, vi,i, . . . , vk,i) to its successive column (vi+1,i+1, . . . , vk,i+1). Somewhat in-
formally, these observations will allow us to argue that for any si-ti path, the
sequence of column entry points si = vi,1  vi2,2  · · · vii,i is non-decreasing
in its vertical distance from si, that is, i ≤ i2 ≤ · · · ≤ ii.

Observation 1. For every 1 ≤ i ≤ k − 1 and i < j1 ≤ j2 ≤ k, there is only one
path from vj1,i to vj2,i+1. More specifically,

– If j1 = j2, this path takes the cross edge from vj1,i to vi,2j1−i−1, then a single
contradiction edge (in right-to-left direction), and finally the cross edge from
vi,2j1−i−2 to vj1,i+1. Hence, the total weight of this path is 2.

– If j1 < j2, this path takes the cross edge from vj1,i to vi,2j1−i−1, then travels
in left-to-right direction in Vi, alternating between direction and contradic-
tion edges, and finally takes the cross edge from vi,2j2−i−2 to vj2,i+1. Hence,
the total weight of this path is 2 + 2(j2 − j1).



Observation 2. For every 1 ≤ i ≤ k − 1 and i < j1 < j2 ≤ k, there are no
paths from vj2,i to vj1,i+1.

With these observations in place, let us focus on one particular si-ti path, pi,
which is schematically drawn in Figure 2 (for i = 3). This path repeatedly takes
two cross edges and one contradiction edge i−1 times until it arrives to vi,i, and
then traverses Vi in left-to-right direction to reach vi,2k−i = ti. The next lemma
shows that pi must be shortest and unique.
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Fig. 2. The path p3 connecting s3 to t3.

Lemma 1. For every 1 ≤ i ≤ k, the path pi is the unique shortest si-ti path.

Proof. By definition of pi, this path traverses 2(i − 1) cross edges and i − 1
contradiction edges prior to arriving at vi,i. Then it traverses k − i additional
pairs of direction and cross edges before reaching ti. Therefore, the total weight
of pi is exactly 2(i− 1) + 2(k − i) = 2k − 2.

Now consider some other si-ti path, p ̸= pi, and let vj,i be the entry point
of p into the ith column (whose vertices are vi,i, . . . , vk,i). Suppose j = i and
consider all the entry points of p into columns 2, . . . , i− 1. By Observation 2 all
these points must be at layer i and, hence, p identifies with pi, contradicting our
initial assumption. Thus, we may assume that j > i. By Observations 1 and 2,
it follows that p traverses 2(i− 1) cross edges and j − i direction edges prior to
arriving at vj,i. The combined weight of those edges is 2(i−1)+2(j−i) = 2j−2.
From vj,i, the path p must traverse the cross edge to vi,2j−i−1 and then k− j+1
additional direction edges before reaching ti. Consequently, the total weight of
p is (2j− 2)+1+2(k− j+1) = 2k+1, which is strictly greater than the weight
of pi, a contradiction. ⊓⊔

We conclude that for every pair (si, ti) ∈ P there exists an orientation satis-
fying this pair, in which all contradiction edges along pi are oriented from si to
ti. It remains to show that any orientation satisfies at most one pair. Suppose
to the contrary that there exists an orientation G⃗ that satisfies both (si1 , ti1)
and (si2 , ti2), for some i1 < i2, meaning in particular that both pi1 and pi2 must

agree with G⃗. However, these paths intersect in exactly one contradiction edge,
(vi1,2i2−i1−2, vi1,2i2−i1−1), where in pi1 it is orientated from left to right, while
in pi2 its direction is from right to left, a contradiction.



2.2 Reduction from Independent Set

We are now ready to make use of the single-pair gadget in order to prove the
hardness of approximating MSPO. To simplify the presentation, we first establish
this result for the more general setting in which the underlying graph is mixed
(i.e., contains both directed and undirected edges) and weighted, similar to the
construction described in Section 2.1.

Theorem 3. For any fixed ϵ > 0, it is NP-hard to approximate MSPO to within
factors Ω(1/k1−ϵ) and Ω(1/m1/2−ϵ) of optimum in mixed weighted graphs.

Proof. The basis for our reduction is the Independent Set problem, which is
known to be hard to approximate to within a factor of Ω(1/n1−ϵ) on an n-vertex
graph for any fixed ϵ > 0 [9]. Given an Independent Set instance G = (V,E), we
begin by constructing a single-pair gadget for k = |V |. In this construction, every
layer Vi represents a vertex vi ∈ V . Next, for every pair of vertices vi and vj such
that (vi, vj) /∈ E, we replace the cross edges (vj,i, vi,2j−i−1) and (vi,2j−i−2, vj,i+1)
by a single directed edge (vj,i, vj,i+1) of weight 2. This modification is illustrated
in Figure 3.
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Fig. 3. An example modification for v2 and v3, where their newly added edge is drawn
as a dashed line.

Now, for an original vertex vi, let us focus once again on one particular si-ti
path, p̃i. This path is created from the unique shortest path pi in the origi-
nal single-pair gadget by replacing every ⟨cross, contradiction, cross⟩ sequence
of edges along pi with its corresponding newly-added edge, whenever this modifi-
cation has been made. By adapting the analysis given in Section 2.1, it is easy to
verify that p̃i becomes the unique shortest si-ti path. We proceed by observing
that for every pair of original vertices vi and vj , i < j, the unique shortest paths
p̃i and p̃j , respectively connecting si to ti and sj to tj , are edge-disjoint if and
only if (vi, vj) /∈ E. This follows from the way in which p̃i and p̃j were derived
from pi and pj , along with our previous observation that pi and pj intersect
in exactly one contradiction edge. This edge, (vi1,2i2−i1−2, vi1,2i2−i1−1), will be
skipped in the modified instance by p̃j if and only if (vi, vj) /∈ E.



It follows that there is a one-to-one correspondence between solutions {vi :
i ∈ I} to the Independent Set instance and sets of pairs {(si, ti) : i ∈ I} that
can be satisfied by some orientation. As the resulting MSPO instance consists
of n pairs and O(n2) edges, the hardness of approximation for Independent Set
implies bounds of Ω(1/k1−ϵ) and Ω(1/m1/2−ϵ) on the approximability of MSPO.

⊓⊔

It remains to show that the above reduction can be extended to the setting
of undirected and unweighted graphs. For the former, we will show that when
every directed edge is replaced in the single-pair gadget by an undirected edge,
shortest paths remain unchanged. The following lemmas establish the correctness
of this alteration. Due to space limitations and the rather involved nature of the
corresponding proofs, these are deferred to the full version of our paper.

Lemma 2. For every 1 ≤ i ≤ k, a shortest si-ti path in the undirected single-
pair gadget cannot traverse cross edges in a direction different than the one
defined in the mixed gadget.

Lemma 3. For every 1 ≤ i ≤ k, a shortest si-ti path in the undirected single-
pair gadget cannot traverse direction edges from right to left.

It remains to show how to remove edge weights from our construction. To
this end, we first transform the original weights in the single-pair gadget so that
these become positive integers. While cross and direction edges are associated
with weights 1 and 2, respectively, contradiction edges are associated with zero
weights. Our objective is to “scale” these values without changing the shortest
path structure on the one hand, and while avoiding the use of large values on
the other hand so as not to affect the inapproximability bound by much.

We begin by setting the weight of contradiction edges to 1/k. This implies
that for every 1 ≤ i ≤ k, the total weight of the unique shortest si-ti path pi
(see Section 2.1), which has been preserved during the reduction from mixed to
undirected graphs, is at most 2k − 2 + (k − 1)/k. This is lighter than any other
si-ti path, which has weight at least 2k + 1 according to the proof of Lemma 1.
We proceed by scaling all edge weights by a factor of k to make them integral.
Last, we replace each edge e of weight w(e) by a path consisting of w(e) unit-
weight edges. As a result, the number of vertices and edges blows up to O(k3)
instead of O(k2) as in the original gadget. Combined with our reduction from
the Independent Set problem, the next inapproximability result follows.

Theorem 4. For any fixed ϵ > 0, it is NP-hard to approximate MSPO to within
factors of Ω(1/k1−ϵ) and Ω(1/m1/3−ϵ) of optimum.

Interestingly, we can use our construction to provide similar hardness of
approximation results for the problem variant studied by Gitter at al. [8], for
which non-trivial bounds were not known before. Further details will be provided
in the full version of this paper.



3 Approximation Algorithms

In this section we provide an approximation algorithm for MSPO whose perfor-
mance guarantee is sub-linear in either the number of vertices of the underlying
graph or in the number of input pairs. In light of the hardness results estab-
lished in Section 2, we cannot expect to come significantly closer to the optimal
number of satisfied pairs, and the only possible avenue for improvement is de-
creasing the exponent we attain. However, a detailed inspection of Theorem 4
and its proof reveals that these do not exclude the possibility of obtaining better
performance guarantees when one is willing to relax the strict requirement of
satisfying pairs only via shortest paths and, instead, make use of approximately
shortest paths. We explore this option as well, and show how to improve our
previously-mentioned algorithm by utilizing such paths.

3.1 Exact shortest paths

To tackle MSPO, we adapt the approximation algorithm of Elberfeld et al. [3],
which was initially suggested for MGO in mixed graphs. In that setting, pairs
could be satisfied via any connecting path, regardless of its length, whereas in
the current setting, connecting paths are required to be shortest.

Let (G,P ) be an MSPO instance. For every (si, ti) ∈ P , choose arbitrarily
a shortest path pi between them. Let P = {pi : (si, ti) ∈ P}. The algorithm is
iterative. At any point in time, we will be holding a partial orientation Gℓ of G
and a subset Pℓ ⊆ P of shortest paths, where these sets are indexed according
to the step number that has just been completed. Initially G0 = G and P0 = P.
Now, as long as none of the termination conditions described below is met, we
proceed as follows:

1. Let p̂ = (s, . . . , t) be a minimum-length path in Pℓ.
2. Orient p̂ in the direction from s to t to obtain Gℓ+1.
3. To prevent the edges in p̂ from being re-oriented in subsequent iterations,

discard from Pℓ the path p̂ as well as any path that overlaps (in edges) with
it, obtaining Pℓ+1.

There are two conditions that will cause the greedy iterations to terminate.
For now, we state both conditions in terms of two parameters, α ≥ 0 and β ≥ 0,
whose values will be optimized later on.

1. |Pℓ| ≤ nα. In this case, we orient an arbitrary path from Pℓ.
2. There exists a vertex v such that at least |Pℓ|β paths in Pℓ go through v. Let

P ′
ℓ be this sub-collection of paths and let P ′ be the collection of corresponding

pairs. We show in the full version of this paper that one can satisfy at least
1/4 of these pairs.

Under both termination conditions, we complete the orientation by directing
the remaining edges in an arbitrary manner. With some modifications through
their analysis, the arguments of Elberfeld et al. [3] essentially give rise to the
next claim.



Lemma 4. When the algorithm terminates due to condition 1, the number of
satisfied pairs is Ω(k/nmax{1−α(1−2β),α}). Termination due to condition 2 leads
to Ω(k/max{n1−α(1−2β), k1−β}) satisfied pairs.

To obtain the best-possible performance guarantee, we pick values for α and
β so as to minimize the maximum of all exponents mentioned above. To this
end, the optimal values are α∗ =

√
1/2 and β∗ = 1 −

√
1/2, in which case the

maximal exponent becomes
√
1/2 ≈ 0.707.

Theorem 5. MSPO can be approximated to within factor Ω(1/max{n, k}1/
√
2).

3.2 Approximate shortest paths

In order to improve on the performance guarantee attained in Theorem 5, we
proceed by providing bi-criteria approximation algorithms for MSPO. Here, we
relax the strict requirement of satisfying pairs only via shortest paths and, in-
stead, allow approximately-shortest paths.

The precise setting we consider is as follows: For σ ≥ 1, we say that a given
orientation G⃗ σ-satisfies the pair (si, ti) when it contains a directed si-ti path
of length at most σ times that of a shortest path, i.e., δG⃗(si, ti) ≤ σ · δG(si, ti).
For α ≤ 1 and σ ≥ 1, we say that a given algorithm guarantees an (α, σ)-
approximation when, for any instance of the problem, it computes an orientation
that σ-satisfies at least α·OPT pairs. Here, OPT stands for the maximal number
of pairs that can be 1-satisfied by any orientation.

An (Ω(1/ log n), Õ(logn))-approximation via embedding. With a slight adapta-
tion of the metric embeddings terminology to our particular setting, the basic
idea in this approach is to compute a random spanning tree T ⊆ G, sampled
from a distribution T over a set of spanning trees in a way that pairwise dis-
tances do not get “stretched” by much in expectation. This line of work [2, 4] has
evolved into a near-optimal bound due to Abraham, Bartal, and Neiman [1], who
showed how to sample a random spanning tree such that the expected stretch is
Õ(logn) uniformly over all vertex pairs, that is,

max
(u,v)∈V×V

ET∼T

[
δT (u, v)

δG(u, v)

]
≤ ψ(n) = O(logn log log n(log log logn)3) .

Here, ET∼T [·] denotes expectation with respect to the random choice of T , and
ψ(n) is our notation for the precise upper bound on the maximal expected
stretch. In what follows, we argue that this result can be exploited to obtain
logarithmic error bounds in both the number of satisfied pairs and in the extent
to which distances are stretched.

Theorem 6. There is a randomized algorithm that Õ(logn)-satisfies Ω(k/ log n)
pairs, with constant probability.



Proof. We begin by computing a random spanning tree T using the embed-
ding method of Abraham et al. [1]. With respect to this tree, let Psmall ⊆ P
be the collection of pairs whose shortest path distances have not been signif-
icantly stretched beyond a factor of ψ(n), which will be formally defined as
Psmall = {(si, ti) ∈ P : δT (si, ti) ≤ 2ψ(n) · δG(si, ti)}. Since ET∼T [δT (si, ti)] ≤
ψ(n) · δG(si, ti) for every pair (si, ti) ∈ P , by Markov’s inequality, each of these
pairs is indeed a member of Psmall with probability at least 1/2. For this reason,
E[|Psmall|] ≥ k/2, which implies that |Psmall| ≥ k/4 with probability at least 1/3,
since

k

2
≤ E [|Psmall|]

= Pr

[
|Psmall| ≥

k

4

]
· E

[
|Psmall|

∣∣∣∣|Psmall| ≥
k

4

]
+ Pr

[
|Psmall| <

k

4

]
· E

[
|Psmall|

∣∣∣|Psmall| <
k

4

]
≤ Pr

[
|Psmall| ≥

k

4

]
· k +

(
1− Pr

[
|Psmall| ≥

k

4

])
· k
4
.

Thus, with constant probably we obtain a spanning tree for which |Psmall|, i.e.,
the number of pairs in P with stretch smaller than 2ψ(n) = Õ(log n), contains a
constant fraction of the pairs in P . Since we formed a tree instance, the maximum
tree orientation algorithm of Medvedovsky et al. [10] can be used to compute an
orientation that satisfies Ω(1/ log n) · |Psmall| = Ω(k/ logn) pairs. ⊓⊔

An (Ω̃(1/
√
k), 1 + ϵ)-approximation. Even though our embedding-based algo-

rithm improves on the one described in Section 3.1 by orders of magnitude, at
least as far as the number of satisfied pairs is concerned, it uses paths that may
be Ω̃(logn)-fold longer than needed. In the remainder of this section, we pro-
pose another direction for improvement, in which pairs are guaranteed to be
(1 + ϵ)-satisfied, for any required degree of accuracy ϵ > 0. As it turns out, by
resorting to ϵ-approximate paths, it is possible to satisfy Ω̃(1/k1/2) pairs, rather

than Ω(1/max{n, k}1/
√
2) as in the exact case.

Prior to formally describing our algorithm, it is worth pointing out that when
a constant fraction of the pairs (si, ti) ∈ P are connected via very short paths,
or more precisely, when δG(si, ti) ≤ 1/ϵ, the setting in question becomes very
simple. In this case, a random orientation where the direction of each edge is
picked at random, with equal probabilities for both options (independently of
other edges), 1-satisfies each pair with probability at least 2−1/ϵ. Therefore, the
expected fraction of pairs that are satisfied is Ω(2−1/ϵ). For this reason, we focus
attention only on pairs for which δG(si, ti) > 1/ϵ, and assume from this point
on that all other pairs have already been discarded from P .

Let β = β(n, k, ϵ) be a parameter whose value will be optimized later on. As
in the greedy algorithm, we use pi to denote some shortest si-ti path, arbitrarily
picked in advance, and define P = {pi : (si, ti) ∈ P}. Moreover, for a path p ∈ P,



let Ip(P) be the set of paths in P that intersect p, i.e, share at least one common
edge. With these definitions in place, our algorithm works in two phases:

1. As long as there exists a path p ∈ P, say from s to t, such that |Ip(P)| < β:
(a) Orient p in the direction from s to t.
(b) Discard from P the path p as well as all paths in Ip(P).

2. Once the condition in phase 1 is no longer satisfied, let p be the shortest
among all paths in P, connecting s to t.
(a) Partition the path p into at most 1/ϵ edge-disjoint subpaths, each of

length at most ⌈ϵ · δG(s, t)⌉ ≤ 2ϵ · δG(s, t), where this inequality holds
since δG(s, t) ≥ 1/ϵ.

(b) Identify a subpath p̃ for which |Ip̃(P)| ≥ (ϵ/2) · |Ip(P)| ≥ ϵβ/2, and let
r be some arbitrary vertex in p̃.

(c) Construct an r-rooted shortest-path tree T in the subgraph that results
from unifying p̃ and all paths in Ip̃(P). At this point in time, we have just
created an instance of the maximum tree orientation problem, where the
underlying tree is T and the collection of pairs are those corresponding
to the paths in Ip̃(P). Hence, we can use the algorithm of [10] to compute
an orientation that satisfies Ω(1/ log n) · |Ip̃(P)| = Ω(ϵβ/ log n) pairs.

Obviously, all pairs that were connected in phase 1 are 1-satisfied, since these
connections are due to exact shortest paths. For this reason, it remains to show
that every connection in phase 2 uses a (1 + ϵ)-approximate shortest path. This
follows from the next claim, where we derive an upper bound on the factor by
which pairwise distances can grow in T (for the relevant subset of pairs).

Lemma 5. For every path pi ∈ Ip̃(P) connecting si to ti,

δT (si, ti) ≤ (1 + 4ϵ) · δG(si, ti) .

Proof. Consider some path pi ∈ Ip̃(P), and let ysi be its first vertex (in the
direction from si to ti) that also belongs to the subpath p̃. Similarly, let yti be
the last vertex in pi that still resides in p̃. Since T is an r-rooted shortest path
tree in the union of p̃ and all paths in Ip̃(P), and since the entire length of p̃ is
at most 2ϵ · δG(s, t) and δG(s, t) ≤ δG(si, ti), we must have{

δT (r, si) ≤ δG(r, ysi) + δG(ysi , si) ≤ 2ϵ · δG(si, ti) + δG(ysi , si)

δT (r, ti) ≤ δG(r, yti) + δG(yti , ti) ≤ 2ϵ · δG(si, ti) + δG(yti , ti)

These inequalities can now be used to prove the desired claim, since:

δT (si, ti) ≤ δT (si, r) + δT (r, ti)

≤ (2ϵ · δG(si, ti) + δG(ysi , si)) + (2ϵ · δG(si, ti) + δG(yti , ti))

≤ (δG(si, ysi) + δG(ysi , yti) + δG(yti , ti)) + 4ϵ · δG(si, ti)
= δG(si, ti) + 4ϵ · δG(si, ti)
≤ (1 + 4ϵ) · δG(si, ti) .

⊓⊔



We conclude the description of the algorithm by showing how to optimize the
value of β = β(n, k, ϵ) such that it balances between the worst-case performances
of phases 1 and 2.

Theorem 7. For any fixed ϵ > 0, there is a deterministic algorithm that (1+ϵ)-
satisfies a fraction of Ω(1/

√
(k log n)/ϵ) of the pairs.

Proof. Let D be the number of paths that were eliminated from P in phase 1.
By the condition to terminate this phase, at least D/β of these paths must have
been oriented so that the corresponding pairs are satisfied. In addition, as shown
above, the number of (1+ ϵ)-satisfied pairs in phase 2 is Ω(ϵβ/ log n). Therefore,
the overall number of (1 + ϵ)-satisfied pairs is at least

D

β
+Ω

(
ϵβ

log n

)
=

1

β
·D +Ω

(
ϵβ

(|P | −D) log n

)
· (|P | −D)

= Ω

(
min

{
1

β
,

ϵβ

(|P | −D) log n

})
· |P |

= Ω

(
min

{
1

β
,

ϵβ

k log n

})
· k .

To obtain the best-possible performance guarantee, we pick a value for β so
as to maximize min{ 1

β ,
ϵβ

k log n}. The latter term attains its maximal value at

β∗ =
√
(k log n)/ϵ. ⊓⊔
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