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ABSTRACT

Motivation: The complex program of gene expression allows the cell

to cope with changing genetic, developmental and environmental

conditions. The accumulating large-scale measurements of gene

knockout effects and molecular interactions allow us to begin to

uncover regulatory and signaling pathways within the cell that

connect causal to affected genes on a network of physical

interactions.

Results: We present a novel framework, SPINE, for Signaling-

regulatory Pathway INferencE. The framework aims at explaining

gene expression experiments in which a gene is knocked out and as

a result multiple genes change their expression levels. To this end,

an integrated network of protein–protein and protein-DNA interac-

tions is constructed, and signaling pathways connecting the causal

gene to the affected genes are searched for in this network. The

reconstruction problem is translated into that of assigning an

activation/repression attribute with each protein so as to explain

(in expectation) a maximum number of the knockout effects

observed. We provide an integer programming formulation for the

latter problem and solve it using a commercial solver.

We validate the method by applying it to a yeast subnetwork that

is involved in mating. In cross-validation tests, SPINE obtains very

high accuracy in predicting knockout effects (99%). Next, we apply

SPINE to the entire yeast network to predict protein effects and

reconstruct signaling and regulatory pathways. Overall, we are able

to infer 861 paths with confidence and assign effects to 183 genes.

The predicted effects are found to be in high agreement with current

biological knowledge.

Availability: The algorithm and data are available at http://

cs.tau.ac.il/�roded/SPINE.html

Contact: roded@post.tau.ac.il

1 INTRODUCTION

High-throughput technologies are routinely used to map

molecular interaction within the cell. These include chromatin

immuno-precipitation experiments (Lee et al., 2002) for

measuring protein–DNA interactions, and yeast two-hybrid

assays (Fields and Song, 1989) and co-immunoprecipitation

screens (Gavin et al., 2002) for measuring protein–protein

interactions (PPIs). The resulting maps promise to shed light on

the regulatory mechanisms that allow the propagation of

certain signals within the cell. In particular, we aim at

explaining gene expression experiments in which a gene is

knocked out and as a result multiple genes change their

expression levels.
A series of works concerned the inference of functional

interactions in small signaling-regulatory networks from

perturbation experiments (Andree et al., 2005; Kholodenko

et al., 2002; Yalamanchili et al., 2006). The problem of

explaining knockout experiments using a physical network

was introduced by Yeang et al. (2004). The authors looked at a

specific setting of the problem where the objective is to infer for

each edge of the network a direction, specifying the direction in

which information flows through that interaction, and a sign,

representing the regulatory effect of the interaction (activation

or repression). The annotated network can then be used for

pathway inference, although this inference problem was not

explicitly treated by Yeang et al.
To tackle the network annotation problem, Yeang et al.

assumed that explanatory pathways should satisfy several

constraints. In particular, they should be directed from the

knockout gene to the affected gene, and the aggregate sign

along the pathway’s edges should complement the sign of the

knockout effect. They devised a probabilistic framework for

the annotation task, in which the different constraints are

translated into potential functions (for edges, paths and

knockouts), and the objective is to maximize the product of

all potentials. A follow up work (Yeang et al., 2005) devised

methods for validation and refinement of the network model.

A similar model was used by Yeang and Vingron (2006) to

integrate metabolic data with regulatory interactions and gene-

knockout data. Workman et al. (2006) used the same model to

infer the regulatory pathways that control the response to DNA

damage.
While Yeang et al. provided an elegant formulation of the

annotation problem, their solution method suffers from several

shortcomings: (i) The objective function does not distinguish

between situations in which few knockout pairs are explained

by many pathways each, and those in which many pairs are

explained by few pathways each. Clearly, the latter should be

preferable. (ii) The components in the objective function are

multiplied, although they are dependent on one another, as also

mentioned in (Yeang et al., 2004). (iii) The maximization

procedure does not guarantee reaching a global optimum.
Here, we propose a novel combinatorial model for the

inference problem. Our optimization goal is to maximize the

expected number of explained cause-effect pairs. We reformu-

late the problem as an integer programming problem and apply

a commercial solver to it. Moreover, we provide a measure of*To whom correspondence should be addressed.
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confidence in the predictions made, which quantifies the change

in the function being optimized when the prediction is flipped.

We validate the method by applying it to a yeast subnetwork

involved in mating. In cross-validation tests, SPINE obtains

very high accuracy in predicting knockout effects (99%). Next,

we apply SPINE to the entire yeast network to predict protein

effects and reconstruct signaling and regulatory pathways.

Overall, we are able to infer 861 paths with confidence and

assign effects to 183 genes. The predicted effects are found to be

in high agreement with current biological knowledge. Our

results compare favorably to those attained by Yeang et al.

(2004) in both the small-scale and the large-scale applications.

2 METHODS

2.1 Data description

The input data consist of a directed network of physical interactions

G ¼ ðV,EÞ and a collection X of cause-effect pairs of genes. The latter is

commonly obtained using knockout experiments in which a gene is

perturbed (cause) and the expression levels of all other genes are

monitored. Those genes that significantly change their expression levels

in response to the knockout are said to be affected by it. All other genes

are assumed to be non-affected. In the context of knockout

experiments, we refer to a cause-effect pair also as a knockout pair.

The nodes in the network represent genes and their protein products

(no distinction is made between those two). The network has two types

of edges: protein–DNA interactions and PPIs. Protein–DNA interac-

tions are naturally represented as edges directed from a transcription

factor to a regulated gene. Each PPI is represented using two oppositely

directed edges. In addition to a direction, every interaction in the

network is assigned a positive reliability value, representing the

probability that the interaction is true; and a binary sign, representing

its effect (0-activation or 1-repression). The former is computed in a

pre-processing step (see below), while the latter is to be inferred by the

model. In the following, we denote the sign and reliability of each

interaction e 2 E by sgn(e) and r(e), respectively. We denote the set of

protein–DNA interactions by ER � E. Finally, we denote by e(s, t) the

complement of the observed effect on gene t when knocking out gene

s. e(s, t) is assumed to represent the effect of s on t in wild type.

2.2 Explanatory pathways

Yeang et al. (2004) defined certain basic rules for paths that explain

knockout pairs. We use the same rules, and define a k-explanatory

of a knockout pair ðs, tÞ 2 X as an ordered set of vertices

� ¼ ðs ¼ p1, p2 . . . pkþ1 ¼ tÞ that satisfies the following conditions:

(1) � is a path: 81�i�kðpi, piþ1Þ 2 E.

(2) � is a simple path: 8i 6¼jðpi 6¼ pjÞ.

(3) The last edge in the path is a protein–DNA edge: ðpk, pkþ1Þ 2 ER.

(4) If an intermediate gene along the path has been knocked out,

then it should also exhibit an effect on the target protein:

81�i�kð9p2Vðpi, pÞ 2 XÞ ! ððpi, pkþ1Þ 2 XÞ.

For a path �, let s(�) and t(�) denote its source and target,

respectively. Let N� be an indicator variable denoting whether �

explains the pair ðsð�Þ, tð�ÞÞ. An explanatory path � is said to be

consistent if in addition:

(1) The aggregate sign of � is equal to eðsð�Þ, tð�ÞÞ. Formally:

�e2�ðsgnðeÞÞ ¼ eðsð�Þ, tð�ÞÞ, where � is the xor operator (addition

modulo 2).

(2) Every proper suffix � of � that connects another knockout pair is

consistent with respect to it.

Note that we focus here on simple paths, as a protein is likely to play

a single role in a given pathway. Further note that the consistency

requirement, imposed here on suffixes, is adequate only for sub-paths

that end with a protein–DNA edge, as the effect is observed at the

transcription level.

These definitions can be easily generalized to accommodate for

already known edge signs. For ease of presentation, we concentrate in

the following on the case where all edge signs are unknown. In

particular, if we denote by M� an indicator variable specifying whether

an explanatory path � is consistent, then

M� � ð�e2�sgnðeÞ ¼ eðsð�Þ, tð�ÞÞ ^ ð8
�2suffixð�ÞðN� ! M� ÞÞ ð1Þ

Yeang et al. (2004) considered in their work the inference of edge

signs only. Another possibility is to assign signs to nodes rather

than edges. In this case, all the edges emanating from a node carry

its sign. This may be less accurate but would yield many fewer

variables and hence avoid overfitting problems and computational

bottlenecks. Indeed, most proteins in current databases are classified as

either activators or repressors solely, so this relaxation seems to be in

line with current biological knowledge. In the rest of the article, we

focus on this latter variant, and use the edge variant mainly for

comparison purposes.

2.3 Optimization criterion

Intuitively, the goal of the algorithm is to infer regulatory pathways

in the network that provide a consistent explanation for the input

set of knockout pairs. In practice, the pathways are dependent

and there could be more than one pathway explaining a given pair.

Hence, rather than trying to pinpoint a single pathway per pair,

we aim at assigning signs to the interactions in the network so

that the data can be best explained. There are several definitions to

what a ‘best’ explanation is. A parsimonious definition would seek a

sign assignment so that a maximum number of pairs have at least

one consistent path. Note that an implicit assumption here is that

the effect propagates through a single pathway, and the existence

of other, possibly inconsistent pathways does not contradict

the existence of the effect. However, the parsimonious criterion ignores

the information on edge reliabilities and could, e.g. prefer solutions

in which many pairs are explained by very low probability paths.

Thus, we define our optimization problem as that of finding an

assignment that will maximize the expected number of pairs that have

at least one consistent path. We give a formal definition of this

criterion below.

Define the probability of a path as the product of the reliabilities of

its edges:

pð�Þ ¼
Y

e2�

rðeÞ ð2Þ

We say that a knockout pair (s, t) is explained or satisfied if there exists

at least one explanatory path that is consistent with it. We associate an

indicator variable Ks,t with this event.

2.3.1 Expectation calculation We wish to find a setting of the

node or edge signs that maximizes the expected number of satisfied

knockout pairs, which is given by:

Eð
P

ðs, tÞ2X Ks, tÞ ¼
P

ðs, tÞ2X EðKs, tÞ ¼

¼
P

ðs, tÞ2X pðKs, t ¼ 1Þ
ð3Þ

Given a collection � of explanatory paths for a knockout pair (s, t),

we denote by M� an indicator variable specifying whether all

paths in � are consistent with this pair. Clearly, M� � ^�2�M�.
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The probability that all the paths exist, p(�), is equal to the probability

that all the edges in � exist. Denoting the latter set of edges by E�

we have:

pð�Þ ¼
Y

e2E�

rðeÞ ð4Þ

For a knockout pair ðs, tÞ 2 X, denote by � the collection of

explanatory paths for it, with j�j ¼ n. To compute the probability

that at least one of the paths exist, we must take into account the

dependencies among them due to edge intersections. Let Pi
� denote the

collection of all sets S � � of cardinality i. Using the inclusion–

exclusion principle, the probability that at least one of the paths in � is

consistent is:

pðKs, t ¼ 1Þ ¼
X

1�i�n

ð�1Þi�1
X

�2Pi
�

pð�ÞM� ð5Þ

As mentioned earlier, in the objective function proposed by Yeang

et al. the components are multiplied, although they are dependent on

one another. Here, path dependencies are explicitly treated by the

model Equation (5). Notably, there are two additional differences, not

mentioned above, between our model and that of Yeang et al.: (i) no

requirement is placed in Yeang et al. (2004) on the consistency of

suffixes of an explanatory path. (ii) SPINE models PPI edges as

potentially bi-directional, while in Yeang et al. (2004) they are forced to

have a single direction. As we shall see below, in practice, most of the

edges attain a single direction also under our model.

2.4 Algorithmic approach

We tackle the optimization problem using an integer program

reformulation of it, to which we apply the commercial CPLEXTM

solver. Below, we give the integer programming formulation and the

full SPINE algorithm. A diagram that describes the SPINE’s input,

main phases and output, appears in Figure 1.

2.4.1 Integer programming formulation We reformulate the

network annotation problem as an integer linear program. The

objective function is simply
P

ðs, tÞ2X pðKs, t ¼ 1Þ. The constraints are of

two types:

(1) Path constraints: determining the consistency of explanatory

paths.

(2) Knockout pair constraints: determining the expectation value of

knockout pairs.

To obtain a linear program, we convert the Boolean equations

defining the variables of the model, as well as the objective function,

into linear forms.

Denote by q� the longest suffix of � which is an explanatory path.

Thus, we express M� linearly using two constraints as follows:

(1) Consistent path sign:

M� �
X

e2�

sgnðeÞ � 2d� þ 1� eðsð�Þ, tð�ÞÞ � 1 ð6Þ

where 0 � d� � d
j�j
2 e is a dummy variable, used to express the

parity of the repressor signs.

(2) Consistent suffix:

M� �Mq� � 0 ð7Þ

Note that this constraint is used only in case there is indeed a

suffix which is an explanatory path.

As for Equation (5), the challenge is to expressM�, an indicator for a

set of paths, in a linear form. This can be done using the following

constraint:

0 �
X

�2�

2M� � 2j�jM� � 2j�j � 1 ð8Þ

2.4.2 Confidence assignment SPINE tries to optimize the

expected number of explained knockout pairs. For a given instance

of the problem, let Omax denote the optimum value of the objective

function. Clearly, there may be more than one configuration of protein

signs that attains this value. Hence, for each protein v, we provide

a confidence value Cv measuring how confident we are in its sign

assignment. This value is calculated by running SPINE on a modified

instance, in which the sign of the protein is flipped, and recording

the difference between the new value of the objective function and Omax.

We declare v to be confident if Cv > �, for a pre-specified �� 0.

We consider a knockout pair to be confidently explained if there

is a consistent explanatory path for it whose proteins are all confident.

Yeang et al. (2004) did not define a confidence measure.

However, they distinguished between variable assignments that

uniquely maximize the objective function, and those that do not. In

their model, once all the unique assignments (e.g. of signs) have been

determined, one variable is fixed arbitrarily, and the inference

procedure is iteratively applied until all the variables are determined.

Hence, in contrast to SPINE, some of the inferred assignments may

be arbitrary.

Fig. 1. The SPINE computational pipeline. Top: the input, consisting

of a PPI network, a protein–DNA network and gene-expression data

from knockout experiments. Middle: the main analysis stages. Bottom:

the output, consisting of inferred signs for proteins/interactions and

consistent explanatory pathways induced by them.
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2.5 A speedup heuristic

To deal with large integer programs, we infer the model variables using

multi-level runs. At each level 1 � l � k, we start from the confident

variables inferred on previous levels, and search for a setting of the

remaining variables of the model that maximizes the expected number

of explained knockout pairs using explanatory paths of length � l. This

heuristic is based on the assumption that short, confident pathways are

more likely than long ones.

We use �¼ 0 and consider only confident predictions, as non-

confident predictions can be arbitrarily flipped without changing the

overall value of the objective function. The full SPINE algorithm is

summarized in Figure 2. Note that this algorithm solves both the node-

and the edge-variant of the problem.

2.6 A toy example

Figure 3a gives an example of a simple input network. The nodes

fA,B,C,D,E,F,Gg represent proteins, the solid edges represent

protein–DNA interactions (for convenience, no PPIs are used) and

the dashed edges represent knockout pairs along with the required

knockout effect. The reliability of each edge appears to its side.

The explanatory paths in this example (with their probabilities in

parentheses) are:

� �1 ¼ A ! B ! C ! D (0.9).

� �2 ¼ B ! C ! D (1).

� �3 ¼ A ! G ! D (0.45).

� �4 ¼ A ! E ! F (0.8).

The knockout pair indicators are:

KA,D � ðM�1
_M�3

Þ

KB,D � M�2

KA,F � M�4

Using Equation (3), we get the total expectation:

Eð
X

ðs, tÞ2X

Ks, tÞ ¼
X

ðs, tÞ2X

pðKs, t ¼ 1Þ ¼

¼ pðKA,D ¼ 1Þ þ pðKB,D ¼ 1Þ þ pðKA,F ¼ 1Þ ¼

¼ pð�1ÞM�1
þ pð�3ÞM�3

� pðf�1,�3gÞMf�1,�3g

þ pð�2ÞM�2
þ pð�4ÞM�4

When looking for an assignment of signs to edges, there are many

possible configurations that satisfy all those paths. In all those

configurations A ! B must have a positive sign, since both knockout

pairs (A,D) and (B,D) have the same effect. All the other edges remain

unsigned, since there is more than one possibility to set their signs.

Hence, there is a single confident edge in this variant, and no consistent

path is confidently inferred (Fig. 3b).

In contrast, in the node-based variant, many more variables are

determined (Fig. 3c). Indeed, A will be signed positive for the same

argument as above. Thus, E has to be signed negative, and G has to be

signed positive. The only unsigned nodes in this example are B and C:

signing both of them as either positive or negative will make �2 a

consistent path.

3 RESULTS

We tested SPINE both in a small-scale and a large-scale setting

on a yeast (Saccharomyces cerevisiae) data set. First, we applied

SPINE to part of a yeast subnetwork involved in mating in

order to test the different variants of the algorithm and for

purposes of comparison to a previous analysis made in Yeang

et al. (2004). Next, we applied SPINE to genome-wide yeast

data and evaluated its prediction performance.

3.1 Data acquisition

We constructed an integrated yeast network of 15 147 protein–

protein and 5568 protein–DNA interactions, spanning a total

of 5313 genes/proteins.

Fig. 2. The SPINE algorithm. Top: the main procedure; middle: pre-

processing and optimization; bottom: confidence computation.

Fig. 3. A toy example. Nodes represent proteins and edges represent

protein–DNA interactions. Knockout pairs are denoted by dashed

lines, with the desired effect denoted by the arrow type: regular

(positive) or cut (negative). Edges whose sign has been inferred by the

algorithm are bold and colored red and those that were not inferred are

non-bold and colored blue. (a) The input network, including edge

reliabilities. (b) The inferred confident network in the edge variant.

(c) The inferred confident network in the node variant.
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PPIs were taken from DIP (Salwinski et al., 2004, April 2005

download) and were assigned confidence scores using a

previously described logistic regression method (Shlomi et al.,

2006). Each PPI was represented by two oppositely directed

edges. Protein–DNA (directed) interactions were taken

from (Macisaac et al., 2006) and were assigned a confidence

of 0.96 based on the false positive rate estimations in

(Lee et al., 2002).
Gene expression data were taken from (Hughes et al., 2000)

and included genome-wide gene expression measurements in

yeast under 210 different single-gene knockouts. A previous

analysis by Yeang et al. (2004) yielded a collection X of 24 457

pairs of a knocked out gene and an affected gene, all with

P-value � 0:02.

3.2 Yeast mating subnetwork

Yeang et al. (2004) have defined a yeast subnetwork involved

in mating, which consists of 33 protein–DNA interactions, and

25 PPIs, covering a set of 149 knockout pairs. Applying our

algorithm to this network with path length bound of 5

(as in Yeang et al., 2004) resulted in inferring consistent

explanatory paths for all 103 reachable knockout pairs.
To evaluate the performance of our algorithm, we tested it in

a cross-validation setting on this network, and compared our

results to those attained by Yeang et al. (2004). For purposes of

comparison, we first used the edge variant of our algorithm

with the same evaluation criterion used in Yeang et al. (2004).

In detail, at each iteration one or five knockout pairs were

hidden, and each was considered to be successfully predicted if

all explanatory paths for it were consistent with its true effect.

The results are shown in Table 1.
Evidently, the results are very similar to those of Yeang et al.

(2004) with SPINE providing a slightly higher accuracy, both in

the leave-one-out and leave-5-out tests. Notably, some of the

knockout pairs remain undecided in the SPINE application

since no explanatory path for them is predicted confidently.

For SPINE, the only incorrect prediction was for knockout

pair (FUS3, PRY2), which is the only knockout pair involving

FUS3. The only explanatory path from FUS3 to PRY2 is

FUS3 ! STE12 ! PRY2; both interactions were signed as

positive, yielding a positive path, in contrast to the needed

knockout effect. Interestingly, the interaction FUS3 ! STE12

is known to be positive, as FUS3 is known to activate STE12.

Next, we wished to test the effect of maximizing the expected

number of satisfied knockout pairs, rather than simply their

number. In these tests, we used a more relaxed criterion for

computing prediction accuracy: a knockout pair was consid-

ered to be predicted successfully if the expected number of

explanatory paths that are consistent with its true effect

exceeded the expected number of the non-consistent ones

(if the numbers are equal, we consider the pair as undecided).

Using this criterion seems more natural under our model and

indeed improved the accuracy for the node variant, although

the results for the edge variant remained the same (data not

shown). We tested the maximization criteria in both the edge-

and node-variant. As shown in Table 2, maximizing the mere

number of satisfied pairs resulted in markedly smaller numbers

of confident sign variables, in both variants, although both

criteria attained similar accuracy levels.
By comparing the cross-validation results for SPINE’s edge

and node variants, it is evident that the latter attains similar

accuracy levels although it has significantly less variables to be

optimized and, hence, is less prone to overfitting.

Finally, we conducted a noisy cross-validation test. In each

trial, the sign of one knockout pair was flipped, and the sign of

a second knockout pair was hidden and inferred. The results

show that the model is robust to these perturbations and the

accuracy is maintained at very high levels (Table 2).

3.3 Genome-wide application

Next, we applied our method to the genome-wide data. Due to

the size of the network, and following Yeang et al. (2004), we

restricted the computation to paths of length at most 3. Out of

231 proteins participating in such paths, 183 protein signs were

confidently inferred. Among 974 knockout pairs that had

explanatory paths, 861 were confidently explained using the

inferred signs. The contribution of each level in SPINE’s

execution is shown in Table 3. The amount of explained

knockout pairs and inferred proteins increases in each level,

and this demonstrates the importance of looking at paths rather

than considering direct edges only. In comparison, when using

only protein–DNA interactions the explanatory power of the

model is markedly decreased: only 188 knockout pairs are

confidently explained and only 30 protein signs are inferred.
In order to validate our predictions, we gathered information

on activator and repressor proteins from four different sources:

GO (Ashburner et al., 2000, December 2006 download)—

molecular functions ‘transcriptional activator activity’ and

‘transcriptional repressor activity’; KEGG (Kanehisa and

Goto, 2000), Guelzim et al. (2002) and Myers and Kornberg

(2000). We excluded 19 genes that appeared as both activators

and repressors in the different sources. The results are

summarized in Table 4, showing a significant overlap between

the model’s prediction and the known signs. Examining the

predictions made in each level of the algorithm we observe

that most predictions, and also most errors, are made in level

3: 24/27 activators and 8/15 repressors are correctly predicted.

Table 1. Cross-validation results for the yeast mating subnetwork

Method Left

out

Number

of Trials

Correct Incorrect Undecided Accuracy

Yeang et al. 1 103 97.1% 2.9% 0% 97%

SPINE—edge

variant

1 103 98% 1% 1% 99%

Yeang et al. 5 200 96.5% 3.5% 0% 96.5%

SPINE—edge

variant

5 200 96.9% 0.4% 2.7% 99%

A hidden knockout pair is considered to be successfully predicted if all

explanatory paths for it are consistent with its true effect. The accuracy

represents the percentage of correct predictions among predictions made. In the

leave-five-out cross-validation, the rates were computed as in Yeang et al. (2004)

by dividing the number of correct, incorrect or undecided held-out pairs by the

total number of held-out pairs in all trials.
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The confidence measure can vary from one inferred sign to

another. Thus, we checked the accuracy of our predictions

when using varying thresholds of the confidence measure for

determining the set of predicted signs. The inferred signs were

grouped into bins, such as each bin contains the inferred signs

above a certain confidence threshold. The results clearly show

that increasing the confidence threshold also increases the

accuracy of the predictions (Fig. 4).

Next, we wished to compare our prediction performance to

that of Yeang et al. (2005). As we could not readily apply the

latter method to our network, nor to the intersection of our

network and that in Yeang et al. (2005), we used the results of

applying their method to the genome-wide network that

appears in Yeang et al. (2005). We note that the two networks

differ in �20% of their constituent interactions, although their

sizes are about the same; thus, the comparison presented below

should be interpreted with caution as the difference in networks

may bias the results.
Recall that the method of Yeang et al. infers edge signs. To

infer node signs, we applied a majority rule to the set of edge

signs incident to each node (nodes for which no majority

existed remained undecided). The statistics of these predictions

are shown in Table 4. It can be seen that the overall

performance of the algorithms is similar with respect to

activator predictions, but SPINE attains higher accuracy in

repressor predictions while the results of Yeang et al. are not

significant. To further evaluate the results of both algorithms,

we computed their precision and recall. Precision is the percent

of correct predictions out of all predictions (for both activators

and repressors); recall is the percent of correct predictions out

of all known signs. The precision and recall for SPINE were

75% and 24%, respectively. The method of Yeang et al. yielded

lower rates in both measures with 68% precision and

20% recall.

Table 2. Performance in cross-validation on the yeast mating subnetwork

Method variant Maximization

criterion

Left out Correct Incorrect Undecided Accuracy

Edge variant Expectation 1 98% 1% 1% 99%

Edge variant Number 1 47.6% 0% 52.4% 100%

Node variant Expectation 1 89.3% 10.7% 0% 89.3%

Node variant Number 1 60.2% 9.7% 30.1% 86.1%

Edge variant Expectation 1 (noisy) 93.5% 3.9% 2.6% 96%

Node variant Expectation 1 (noisy) 88.3% 11.7% 0% 88.3%

A hidden knockout pair is considered to be successfully predicted if the expected number of explanatory paths with consistent signs is higher than the expected number of

explanatory pathways with non-consistent signs. The accuracy represents the percentage of correct predictions among all predictions made.

Table 3. Cumulative contributions of different path lengths (levels) to

the inference process

Level Number of Explained knockouts Number of Inferred signs

1 107 14

2 183 30

3 861 183

Table 4. Results of the comparison to known regulators, for both

Yeang et al. and SPINE

Type Number

of Known

Number of

Predicted

Number

of Correct

Significance

Yeang et al. -

Activators

119 31 28 0.002

Yeang et al. -

Repressors

57 22 8 0.4

SPINE - Activators 120 37 32 0.003

SPINE - Repressors 60 22 12 0.02

Shown are the number of known activators and repressors that appear in the

network, the number of sign predictions on this known set, the number of correct

predictions and a hypergeometric P-value. The latter was computed separately for

the activator and repressor predictions.

Fig. 4. The prediction accuracy as a function of the confidence

threshold. The cumulative number of proteins in each bin appears

on the x-axis, and the accuracy percentage appears on the

y-axis. The confidence bins cover the threshold range between 0.01

and 34.56.
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In contrast to Yeang et al. SPINE does not constrain the

directions of the PPIs. Interestingly, most (312 out of 340) PPIs

appeared in one direction only in the inferred consistent

pathways.

Figure 5 shows an example subnetwork inferred by the

model, including both molecular and functional data. The

explanatory pathways that appear in the subnetwork go

through GAL4. GAL4 is a known activator. It is a DNA-

binding transcription factor required for the activation of the

GAL genes in response to galactose. Other components in this

subnetwork are MED2, GAL11, SRB4, SRB5 and SRB6,

which are mediators that function as a bridge between the

regulatory proteins and the basal polymerase II transcription

machinery (Myers and Kornberg, 2000).
SPINE found a confident optimal solution, Soptimal, in which

GAL4 is a confident activator, i.e. signing GAL4 as repressor

reduces the expected number of explained knockout pairs. We

checked the effect of signing GAL4 as a repressor, by running

SPINE again, while fixing GAL4 as a repressor. Once reached

an optimum, we searched for a solution with the same optimal

value, but with minimum changes compared to solution

Soptimal. As shown in Figure 5a, all the explanatory pathways

that go through GAL4 are consistent when it is an activator,

whereas when GAL4 is a repressor some of those pathways

become non-consistent. Some genes, such as, e.g. HAP5,

remain with the same sign even when GAL4 is a repressor,

due to their importance in the different pathways, including

pathways that does not appear in the network. However, some

genes do change their sign, such as, e.g. SUA7. Figure 5b shows

the decrease in the expectation of knockout pairs connected in

the network.

4 CONCLUSIONS

This article addresses the problem of inferring signaling-

regulatory pathways explaining cause-effect experiments.

We have translated the reconstruction problem into that of

assigning an activation/repression attribute with each protein

so as to explain (in expectation) a maximum number of the

knockout effects observed. We provided an integer program-

ming formulation for the latter problem and solved it using

a commercial solver. The resulting framework, SPINE, was

tested on both small- and large-scale networks, and provided

highly accurate results, comparing favorably to a previous

approach by Yeang et al. (2004).

There are several important contributions of the current

work: (i) a basic optimization criterion and a biologically

motivated scheme to solve it in practice via multi-level runs;

(ii) a confidence measure for the signs inferred by the model

and (iii) a general approach for assigning both edge and node

signs, providing a balance between the flexibility of the

assignment and its confidence.
While our algorithm provides a valuable framework for

analyzing gene expression data in the context of a physical

network, several of its limitations should be acknowledged.

First, the algorithm is computationally intensive due to the

resulting large integer programs. A practical approach to

analyze larger networks could be to limit the accuracy of the

solver. Second, it could be beneficial to integrate into the

framework information on protein complexes (Gavin et al.,

2006; Hollunder et al., 2005), which could be perhaps viewed as

unified single nodes in the context of the current analysis.

Finally, our algorithm does not consider the strength of the

knockout effect (and the associated P-value). A refined

optimization criterion that combines this information could

improve the accuracy of the predictions.

We have tested our method on cause-effect data gathered

from gene knockout experiments. Although gene knockouts are

routine in model organisms such as yeast, they are more

technically involved in mammalian species such as mouse. For

these higher eukaryotes, other ways of genetically perturbing

the cell are gaining in practice, such as RNA interference and

Fig. 5. A GAL4-centered subnetwork. (a) GAL4 is correctly identified as an activator and all the depicted explanatory pathways are consistent.

(b) A sign assignment in which GAL4 is forced to be a repressor, which is as close as possible to that chosen in (a). It yields several non-consistent

pathways, implying a decrease in expectation. The decrease in the expectation percentage for each changed knockout pair appears on its edge.
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eQTL analysis. In addition, although DNA microarrays are
currently the most widespread technology for measuring global
changes in cellular state, a variety of other measurement
systems, such as mass spectrometry for monitoring protein

abundance, protein post-translational modification or small
molecule abundance, are gaining in popularity. The general
formulation of our model allows its application to those types

of cause-effect data as well.
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