
REPORT

A systems-level approach to mapping the telomere
length maintenance gene circuitry

Rafi Shachar1, Lior Ungar2, Martin Kupiec2,*, Eytan Ruppin1,* and Roded Sharan1,*

1 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel and 2 Department of Molecular Microbiology and Biotechnology, Tel Aviv University,
Ramat Aviv, Israel
* Corresponding author. M Kupiec, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Haim-Levanon, Ramat Aviv 69978, Israel.
Tel.: 6406170; Fax: 6409028; E-mail: martin@post.tau.ac.il and E Ruppin or R Sharan, School of Computer Science, Tel Aviv University, Haim-Levanon,
Ramat Aviv 69978, Israel. E-mails: ruppin@post.tau.ac.il (or) roded@post.tau.ac.il

Received 21.1.08; accepted 28.1.08

The ends of eukaryotic chromosomes are protected by telomeres, nucleoprotein structures that are
essential for chromosomal stability and integrity. Understanding how telomere length is controlled
has significant medical implications, especially in the fields of aging and cancer. Two recent
systematic genome-wide surveys measuring the telomere length of deleted mutants in the yeast
Saccharomyces cerevisiae have identified hundreds of telomere length maintenance (TLM) genes,
which span a large array of functional categories and different localizations within the cell. This
study presents a novel general method that integrates large-scale screening mutant data with
protein–protein interaction information to rigorously chart the cellular subnetwork underlying the
function investigated. Applying this method to the yeast telomere length control data, we identify
pathways that connect the TLM proteins to the telomere-processing machinery, and predict new
TLM genes and their effect on telomere length. We experimentally validate some of these
predictions, demonstrating that our method is remarkably accurate. Our results both uncover the
complex cellular network underlying TLM and validate a new method for inferring such networks.
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Introduction

Telomeres are specialized DNA–protein structures at the ends
of eukaryotic chromosomes, whose overall length is highly
regulated (Blackburn, 2000; Blackburn et al, 2000). Telomeres
are essential for chromosomal stability and integrity, as they
prevent chromosome ends from being recognized as broken
molecules. Telomere stability is conferred by a protein–DNA
structural cap that protects the chromosomal ends and is
conserved from yeast to human cells (reviewed in de Lange,
2005). Telomeric DNA is synthesized by the enzyme telomer-
ase, which is expressed at the early stages of development, but
not in most somatic cells. Telomeres shorten with replicative
age, leading eventually to cellular senescence. Replenishing
telomeres by an activated telomerase is one of the few essential
steps that a normal human fibroblast cell must take on
its route to become malignant. Thus, understanding how

telomere length is monitored has significant medical
implications, especially in the fields of aging and
cancer. Telomere size is maintained through a complex and
delicate balance between activities that negatively and
positively affect the activity of telomerase, of certain
nucleases and of still to be uncovered additional mechanisms
of telomere length maintenance (TLM) (Verdun and Karlseder,
2007).

Recently, two systematic genome-wide surveys measuring
the telomere length of deleted mutants in the yeast
Saccharomyces cerevisiae were conducted (Askree et al,
2004; Gatbonton et al, 2006). The two screens jointly identified
272 non-essential genes whose deletion mutants show
alterations in telomere length, hence termed TLM genes
(Supplementary Table I). The deletion of some of these TLM
genes results in telomeric DNA sequence that is longer than
the wild type (113 genes), whereas mutations in other genes
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result in shorter telomere length (159 genes). The identified
TLM genes span over 5% of the B4800 deletion mutants
tested in the two screens. The real number of non-essential
genes involved in TLM may even be higher, given the degree of
overlap between the results obtained by the two screens
(Materials and methods). Taking into account the potentially
large number of essential genes that could also affect telomere
length, the overall number of telomere-related genes is likely
to be fairly large, spanning a large variety of processes and
localizations. Yet, telomere length is tightly and precisely
regulated. How do so many genes interact and accurately
regulate telomere homeostasis?

Previous studies aiming at addressing such questions and
inferring cellular networks based on large-scale phenotypic
data have mostly been targeted toward the identification of
gene regulation networks from large-scale perturbation data
measuring gene expression profiles (reviewed in Tegner and
Bjorkegren, 2007). Other studies have identified protein–
protein interaction (PPI) subnetworks where the phenotypically
identified proteins were statistically over-represented (Begley
et al, 2002; Calvano et al, 2005), had a specific cellular
localization (Begley et al, 2004) or had a characteristic
topological property (Said et al, 2004). Recently, Yeang et al
(2004), Yeang and Vingron (2006) and Ourfali et al (2007)
devised probabilistic models for inferring physical pathways
that explain gene expression changes in response to knockout
data. In contrast to these previous investigations, the novel
method presented here has been developed to address the
challenge of identifying a task-specific PPI subnetwork from
pertaining phenotypic gene knockout data. Its end result is the
first chart of the cellular subnetwork controlling telomere
length.

Results

Characterizing topological and functional
properties of TLM genes

We compiled a comprehensive list of 250 TLM genes (Askree
et al, 2004; Gatbonton et al, 2006) for which we had PPI
information (leaving out 22 genes with no such information,
Supplementary Table II). We defined a small group of
telomere-binding proteins, including telomerase subunits
and telomerase-interacting proteins as the ‘telomerase ma-
chinery’ (Supplementary Table IV), serving as the end point of
the various TLM-related PPI signaling pathways, which we
aim to identify. We applied a series of quantitative measures to
characterize various topological and functional properties of
the corresponding TLM protein set, and compared them with
those of random sets of the same size containing proteins
encoded by either essential or non-essential genes (Materials
and methods, Table I and Supplementary Table III). Like
Krylov et al (2003), we find that the topological and functional
properties of essential proteins are significantly different from
those of non-essential proteins. Interestingly, the properties of
the TLM proteins are distinct from those of other non-essential
genes, and lie in the mid-range between those of non-essential
and essential proteins (analogous to the results reported by
Said et al, 2004). In addition, we find that proteins within
known complexes tend to uniformly affect the telomere length

(Po0.001; see Materials and methods). This result reflects
the intuitive notion that complexes tend to function
in a coherent manner and accordingly, that the knockout of
their components would tend to lead to similar functional
effects.

Constructing the telomere length-regulating
network

We developed a framework for elucidating TLM pathways
connecting TLM genes to telomere-binding proteins (Materials
and methods). We applied our algorithm to the 250 TLM genes
of the combined data set of Askree et al (2004) and Gatbonton
et al (2006), supplemented by 23 TLM-related genes reported
in the literature, which were not identified by either screen
(Supplementary Table I). The algorithm reconstructed path-
ways for 180 TLM proteins inducing a telomere length-
regulating subnetwork (TRS) with 327 proteins (Supplemen-
tary Figure I and Supplementary Table V). On the TRS
network, 54 of the 180 TLM proteins lie in between other
TLM proteins and the telomere-binding proteins; the other 139
non-TLM proteins were required for connecting the TLM
proteins to the telomere-binding proteins. In total, 71 of the
non-TLM proteins were non-essential and 68 were essential.
We validated the reconstructed pathways by computing their
functional coherency according to the gene ontology (GO)
biological process annotation. The pathways were found
to be significantly coherent (Po4.5e�3; see Materials
and methods).

Functional characterization of TRS proteins

Mutations in TLM genes may have various effects on
telomere length. They can lead to slight, moderate or large
alterations (short or long) (Askree et al, 2004; Gatbonton et al,
2006). We used these fine phenotypic descriptions to test the
extent to which TLM proteins that occupy internal nodes
on the TRS affect telomere length. We observed that
these proteins have greater effect on telomere length
than TLM proteins occupying end nodes (hypergeometric
Po3.5e�4; Supplementary Table VI). One explanation for the
observed relation between a protein’s location on the TRS
and its functional TLM effect may be due to its distance in
the PPI network from telomere-binding proteins. To test
this hypothesis, we computed a partial correlation index
that factors out the distance (Materials and methods).
Remarkably, the results show that internal TLM proteins affect
telomere length more than other TLM proteins independently
of their distance from the telomere-binding proteins
(Po1e�4).

What hence further determines the functional effects of TLM
proteins on telomere length? Interestingly, we find that the
likelihood scores of the pathways connecting a TLM protein to
the TLM end targets (Materials and methods) correlate with
the magnitude with which the knockout of TLM proteins
affects telomere length (Spearman correlation of 0.16,
Po0.04). These results suggest that TLM proteins that have
larger effect on telomere length do play a more central role in
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TRS connectivity, and are connected to the telomerase
machinery set by pathways with higher likelihood scores.

Experimental testing of predicted TLM proteins

The TRS includes, in addition to TLM proteins, non-essential
proteins that are not known to be in the TLM set (NTLM
proteins) as well as essential proteins. While the genome-wide
screens were comprehensive, it is possible that NTLM proteins
do affect TLM, but were not included among the TLMs either
because they were absent from the deletion collection, gave
inconclusive results or affected telomere length in a subtle way
that was difficult to observe. We hence re-evaluated the telomere
length screens of Askree et al (2004) for 20 strains deleted for
NTLM genes (see Materials and methods). In total, 14 out of 20
mutants deleted for NTLM genes exhibited defects in telomere
length (9 were short and 5 exhibited elongated telomeres). On
the basis of the TRS, for 11 of these mutants we could predict the
expected phenotype (Materials and methods). In 8 out of the 11
cases, the observed telomere length matched the prediction. In
two additional cases, no telomere length defect was observed
(sml1D and tor1D), and in one case (vrp1D), long telomeres
were seen instead of the predicted short phenotype (Table II).

A similar analysis was carried out for 12 temperature-
sensitive mutants of essential genes within the TRS, which
were not included in the original screens (see Materials and
methods). All mutants were grown at 301C, a semi-permissive
temperature, and telomere length was measured (Table II and
Figure 1). In total, 8 out of the 12 strains analyzed exhibited
telomere length defects. In six out of seven cases in which a
prediction could be made regarding telomere length, the
expected phenotype was observed. The only exception was
mak21-1, which exhibited very short telomeres instead of the
expected long telomere phenotype (Figure 1).

Table I Topological and functional characteristics of the TLM proteins

Features Mean value (s.d.)a

Essential proteins Non-essential proteins TLM proteins

Global network characteristicb

Degree 35 (27) 11.8 (29.3) 18.6 (23.7)
Expected degree 18.5 (29) 7 (27) 11.2 (16.2)
Compactness 301 (5.4) 359 (7.7) 322

Network-based characteristics relating proteins to the telomerase machinery setc

Path length 2.25 (0.6) 2.57 (0.6) 2.4 (0.6)
Path probability 0.87 (0.25) 0.65 (0.35) 0.77 (0.3)
Betweenness centrality 36.5 (4.9) 9.9 (3) 30

Functional characteristicsd

Complex-based monochromaticity 81%e

Propensity for gene loss (PGL) 0.08 (0.1) 0.15 (0.12) 0.12 (0.11)

aBoldfaced values indicate that the reported value is significantly different compared to the respective value for the TLM protein set. For the complete table, including
P-values see Supplementary Table III.
bDegree and expected degree measure protein node degrees, either unweighted or weighted by the reliabilities of the incident edges. Compactness measures the size of
the minimal connected component, which includes a given protein set (Materials and methods).
cPath length and path probability are the minimal edge distance and the probability of the most reliable path between a source protein and the target telomere-binding
proteins, respectively. Given a source protein set and a target protein set, the betweenness centrality measures the relative number of pathways from the source proteins
to the target proteins that pass through a given node (Materials and methods).
dMonochromaticity measures the coherency in which protein complex members affect telomere length (Materials and methods). PGL (Krylov et al, 2003) measures the
propensity for gene loss of a given protein (evolutionary conservation of a protein).
eThe mean monochromaticity rate for randomized coloring permutations was 0.29 (s.d.=0.1), Po0.001.

Table II Experimental testing of predicted TLM proteins

Mutant allele Observed telomere
phenotype

Predicted telomere
phenotypea

Non-essential genes
vps41D Short Short
pcl6D Short Short
vps53D Short Short
sif2D Short Short
vps20D Short Short
vps27D Short Short
vps21D Short Short
fzo1D Long Long
pub1D Long NA
mrpl3D Short NA
pir1D Long NA
tfp1D Short NA
tif2D Long NA
vrp1D Long Short
msh2D Wild type NA
hpr5/srs2D Wild type NA
sgs1D Wild type NA
sml1D Wild type Short
slt2D Wild type NA
tor1D Wild type Short

Essential genes
rfa1-t11 Short Short
cdc45-27 and
cdc45-1

Short Short

pol30-59 Long NA
mak21-1 Short Long
cdc33-1 Wild type NA
smc3-1 Wild type NA
rad3-2 Wild type NA
cdc48-1 Wild type NA
pre7-1 Short Short
kae1-1 Short Short
kre33-1 Short Short
rpc10-1 Short Short

aNA, not applicable.
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Biological significance of the TRS network
Our approach to reconstruction of the TRS was based on the
assumption that if a protein affects telomere length then it
must be connected by some pathway to the telomerase
machinery. The pathways uncovered are signaling-regulatory
pathways that may contain protein complexes. Expectedly,
the TRS network shows branches that are enriched
both for specific biological processes and for specific
complexes. Deletion of genes in these branches results
in uniform telomere length effects. For example, mutations
in any of the genes composing the vacuolar transport and in
the degradation of membrane proteins (ESCRT complexes)
result in short telomeres (Rog et al, 2005). The yeast vacuole is
the functional analog of the mammalian lysosome, the major
site of degradation of both exogenous and endogenous
macromolecules. This branch co-locates with two other
branches, one containing the COMPASS (Set1C) complex,
which methylates histone H3 on lysine 4 and is required for
transcriptional silencing near telomeres (Krogan et al, 2002)
and another one composed of the Bre1 and Rad6 proteins,
which ubiquitinate histones H2B (Wood et al, 2003). Interest-
ingly, the activity by Rad6/Bre1 on histone H2B depends on
the prior activity of COMPASS on histone H3 (Dover et al,
2002) (Figure 2A). The convergence of these three pathways
by their interaction with histones, and the uniformity of
the phenotype, suggests that the vacuolar pathway
affects telomere length through histone modification. It is
possible that the activity of one or more histone-modifying

enzymes is regulated by degradation or modification in the
vacuole.

However, not all branches affect telomere length uniformly.
For example, components of three related RNA polymerase
regulators, the mediator, the Paf1 complex and the Tho
complex, cluster in the TRS; however, they affect telomere
length in different ways: whereas mutations in components of
the Paf1 complex lead to short telomeres, mutations in some
components of the RNA polymerase holoenzyme or mediator
produce mostly elongated telomeres (with the exception of
srb5 mutations that lead to short telomeres). Similarly, most
proteins in the THO complex shorten telomeres, but hpr1
mutants show longer than normal telomeres (Figure 2B).
These results suggest that these large complexes do not act as a
single monolithic unit, and that deletion of different regions
may change regulation in subtle, and still unclear, ways.

The TRS model may also predict the interaction of seemingly
unrelated proteins. During the course of this work, it was
found that the Bud32, Cgi121, Gon7 and Kae1 form a complex,
which acts on transcription and affects telomere length
homeostasis (Downey et al, 2006; Kisseleva-Romanova et al,
2006). The genes encoding three of the four proteins in this
complex were identified as TLM proteins (Figure 2C); the
fourth (Kae1) is encoded by an essential gene. We have
validated that mutations in this gene also cause telomere
shortening (Figure 1 and Table II). The KEOPS complex in the
TRS is linked to Est1, a protein known to bind the RNA moiety
of telomerase, and may help activate it via Kre33, a protein of

W
ild

 t
yp

e

m
ak

21
-1

p
o

l3
0-

52

W
ild

 t
yp

e

rf
a1

-t
11

W
ild

 t
yp

e

cd
c4

5-
1

cd
c4

5-
27

M

2044 bp

779 bp

cd
c3

3-
1

cd
c4

8-
1

ka
e1

-1

Yor1

Rps16B Rps14A

Mak21

Tif1

Eap1

Cdc33

Bud32

Cgi121

Gon7
Kae1

Rpl17B

Cdc48

Shp1

Pol30

Pol32
Rad5

Msh2

Rad27
Mlp2

Cdc45

Rfa1

Mrc1
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unknown function. Our model predicts that Kre33 may play a
role in mediating the access of KEOPS to the telomere
machinery (Figure 2C).

This study presents a reconstruction of the TRS network
from the combined data sets of two knockout genome-wide
assays of TLM in the yeast, utilizing the pertaining PPI data. To
this end, we have developed a new probabilistic approach to
identify cellular signaling pathways based on large-scale
phenotypic data. Connecting TLM proteins with the telomer-
ase machinery proteins has required the inclusion of inter-
mediate proteins with no experimentally observed telomere
length phenotypes in the TRS. The pathways identified were
then further investigated and validated in both a large-scale
computational manner and in a smaller scale experimental
manner. The pathways identified were shown to be function-
ally coherent. Remarkably, we found that the likelihood of a
pathway correlates with the magnitude of its effect on telomere

length. Moreover, TLM proteins that have a larger effect on
telomere length play a more central role in connecting TLM
proteins to the target telomere-binding proteins. Finally, the
method for phenotypic data analysis and network identifica-
tion presented here is general and is likely to have many
applications in the identification of protein networks under-
lying numerous cellular functions, and in more complex
organisms.

Materials and methods

Data acquisition

We collected and integrated PPI data from DIP (Salwinski et al, 2004;
April 2005 download) and from two recent assays (Gavin et al, 2006;
Krogan et al, 2006). The combined data set comprises over 39 936
interactions involving 5414 proteins. To assign confidence scores to
these interactions, we used the logistic-regression-based scheme
employed in Sharan et al (2005b). Briefly, true-positive and true-
negative interactions were used to train a logistic regression model,
which assigns each interaction a reliability score based on the
experimental evidence for this interaction, including the type of
experiments in which the interaction was observed, and the number of
observations in each experimental type.

The TLM gene set was created by merging two genome-wide screens
measuring the effect of deletion mutants on telomere length (Askree
et al, 2004; Gatbonton et al, 2006). The unified set contained 272 non-
essential telomere length-affecting genes. For the purpose of pathway
identification, we complemented the combined data set with 23 genes
from the literature reaching a total of 295 genes. In total, 6 of the
additional 23 genes were essential genes. Of the 295 genes in the
merged data set, 273 encode proteins from the PPI network.

Estimating the total number of TLM genes

Assuming that the two screens are independent and that false-negative
results occur at random, the expected number of TLM proteins was
estimated as follows: denote by nA and nB the number of genes that
were identified by screens A and B, respectively, and by nAB the
number of genes identified by both A and B. Let n denote the unknown
number of TLM proteins. Then n can be derived from the equation
nAB/n¼nA/n �nB/n. In our case, 171 genes were identified by Askree
et al (2004), 152 by Gatbonton et al (2006) and 51 genes were identified
in both screens. These numbers yield an estimated number of 510 TLM
genes, implying that indeed, many TLM genes are yet to be discovered.

Network measures

Computation of shortest paths was conducted using the breadth first
search algorithm. Most probable paths were computed using the
classical Dijkstra algorithm, where interaction probabilities were
transformed to their absolute log value.

The betweenness centrality index quantifies the importance of a
vertex in a graph to the connectivity of other vertices (Freeman, 1977;
Brandes, 2001). Denote by s(u) the number of shortest paths
connecting TLM protein u and the telomere-binding proteins. Denote
by s(u,n) the number of shortest paths passing through n and
connecting TLM protein u with the telomere-binding proteins. The
relative betweenness of protein n with respect to the set T of TLM
proteins is

CrðnÞ ¼
X
u2T

sðu;nÞ
sðuÞ

The betweeness centrality of the entire TLM set was computed as the
number of TLM proteins with non-zero betweeness centrality score.

We defined the compactness of a protein set as the minimal number
of additional protein nodes that are required to make it connected (i.e.
admit a path between every two proteins in the set). The compactness
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computation gives rise to a node-weighted Steiner tree problem, which
can be efficiently approximated (Klein and Ravi, 1995).

Statistical significance testing

P-values were computed empirically based on 10 000 randomized
protein sets containing equal number of proteins as the TLM protein
set. The randomized sets were uniformly selected from the set of
proteins in the PPI network.

Monochromaticity testing

We ‘colored’ proteins according to the effects that their respective
mutants exhibit on telomere length (short or long). We defined the
monochromaticity rate of a collection of known protein complexes
from the MIPS database (Mewes et al, 2006) as the fraction of
complexes with at least two TLM proteins that are colored uniformly.
Statistical significance was computed by comparing the observed rate
to the rate obtained in 10 000 randomized colorings of the complex
members, preserving the number of ‘long’ and ‘short’ proteins.

Pathway identification

We filtered the original PPI network to remove low confidence
interactions (with probability o0.5) and nonspecific protein
interactors (with more than 100 interactions), yielding a network with
5324 vertices and 12 521 edges.

Our algorithm enumerates all paths in the PPI network that
are at most five edges long, originating at telomere-binding proteins
and ending at the identified TLM proteins. Each discovered path is
assigned a score. Finally, the algorithm returns for each TLM protein
the highest scoring path; these are then were combined to form a
network.

To simplify pathways visualization and analysis, we reduced
the resulting network to a tree rooted at the telomere-binding
proteins. This was carried out by computing the most probable
paths in the reduced network from telomere-binding proteins to
each TLM protein using the Dijkstra algorithm, and merging the
obtained paths.

A probabilistic model for TLM pathways

Following the approach developed by Sharan et al (2005a), we
computed the likelihood of a path to connect a TLM protein and a
telomere-binding protein. The likelihood score of a path, L(p), has two
components: an edge-based score and a vertex-based score, which we
describe below. To normalize for the length of a path, we multiplied the
score by a penalty factor, favoring short paths over long ones. The final
score of a path of length l was: W(p)¼L(p) � e�cl, where c is a free
parameter.

The edge-based score of a path measures the fit of a path to a path
model versus the likelihood that it arises at random. The path model
assumes that each pair of consecutive proteins along the path interacts.
The null model assumes that the PPI network was randomly chosen
from the collection of all networks with the same degree sequence.
This induces a probability that a pair of vertices interacts, which
depends on their degrees. The likelihood ratio is computed as in
Sharan et al 2005a), taking into account the reliability of each
interaction.

The vertex-based score is again a likelihood ratio score. The path
model, Mp, assumes that each vertex on the path corresponds to a TLM
protein. The null model, Mn, assumes that each protein on the path,
except the two ends, is a random selection from the network’s vertices.
Denote by Tv the event that protein v is a TLM protein and by Fv that it
is not. Denote by Ov the experimental evidence on the telomeric
phenotype of protein v. For a path p¼(p1,y,pk), using the law of
complete probability we get

PðOp1; :::;OpkjMpÞ ¼
Y
pi2p

PðOpijMpÞ ¼
Y
pi2p

PðOpijTpiÞ

Similarly, we derive the probability of observing p according to the
null model

PðOp1; :::;OpkjMnÞ ¼
Y
pi2p

PðOpijMnÞ¼
Y
pi2p

PðOpiÞ

The vertex-based score of p is thus

LVðpÞ ¼
X
pi2p

log
PðOpijTpiÞ

PðOpiÞ
¼

X
pi2p

log
PðTpijOpiÞ

PðTpiÞ

where the last equality follows from Bayes theorem.
It remains to estimate the probabilities P(Tv) and P(Tv7Ov). Using

the available biological experimental observations, we estimated the
probability that protein v is a TLM: 1 if it was identified in a small-scale
study. On the basis of estimation of the false detection rate (Askree
et al, 2004), this probability was set to 0.9 for proteins that were
detected in a single screen. Following the assumption that the two
genome-wide screens are independent, this probability was set to 0.99
for proteins that were identified in both genome-wide screens. Given
the overlap between the two screens, we estimated the probability
that an NTLM protein was falsely classified by the two screens as
0.05. Using this last result and given the frequency of essential
proteins identified in the pertaining small-scale studies, we estimated
the probability that an essential protein is a TLM as 0.13. Finally,
based on these probability estimations we could estimate the prior
probability P(Tv).

Setting the length penalty parameter

To select a value for the length penalty parameter c, we performed a
search over a range of non-negative real numbers. For each value of c,
we executed the pathway reconstruction algorithm twice: once applied
to the TLM proteins identified by Askree et al (2004) and a second time
applied to the TLM proteins identified by Gatbonton et al (2006). Next,
we computed the hypergeometric enrichment of the TLM proteins
from one data set within the set of vertices on pathways inferred from
the other data set. We chose the value c that minimized the product of
the two enrichment P-values.

GO enrichment analysis

Functional coherency values of pathways were computed as in Shlomi
et al (2006) based on GO process annotations for their proteins. These
values were compared to those attained by random pathways of the
same length. Random paths were generated such that their one end
was a randomly selected telomere-binding protein and they had an
equal path length distribution as the identified pathways. To determine
if the annotation enrichment distributions of two path sets were
significantly different, we used the non-parametric Wilcoxon test.

Spearman partial rank correlation coefficient

The Spearman partial rank correlation coefficient between two
random variables A and X, given the fact that both A and X are
correlated to random variable Y, denotes the correlation between
A and X, when Y is kept constant. It is calculated as follows

rAX;Y ¼ rAX � rXYrAYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � r2

XYÞð1 � r2
AY

p
Þ

Here, rAX, rXY and rAY represent the Spearman correlation coefficients
between A and X, X and Y, and A and Y, respectively. The significance
level is given by

DAX;Y ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 4

p
ln

1 þ rAX;Y

1 � rAX;Y

� �

DAX,Y has a normal distribution with zero mean and variance one.
N represents the size of the data set.
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Telomere length measurement

Telomeric Southern blots were used to measure telomere length as
described in Askree et al (2004). PCR fragments containing telomeric
sequences and a genomic region that hybridizes to two bands
(2044 and 779 bp) were used as probes.

Telomere length effect prediction and validation

The telomere length effect of a protein was predicted to be short or long
if the telomere length phenotype of the proteins immediately upstream
to it was the same as for those downstream to it, in the pertaining TRS
branch on which the protein lies. Otherwise, a prediction based on the
monochromatic assumption could not have been made and it was
classified as not applicable.

The list of NTLM and essential genes validated was chosen in a
two-step process: first, we exhaustively identified all non-essential,
non-TLM genes and all essential genes in the TRS. In the second step,
we narrowed down this list to include (a) all the non-essentials for
which we had already carried out a screening test previously and for
which DNA was available, 20 such cases overall and (b) the essential
genes for which we had temperature-sensitive strains in our lab
collection and could be further tested (12 overall).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Acknowledgements
MK’s research was supported by grants from the Israel Science
Foundation (FIRST and Convergent Technologies) and the Israel
Cancer Research Fund. ER and RS were supported by a France–Israel
grant from the Israeli Ministry of Science and Technology and by the
Converging Technologies Program of the Israel Science Foundation
(grant no. 1748/07).

References

Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C,
Krauskopf A, Kupiec M, McEachern MJ (2004) A genome-wide
screen for Saccharomyces cerevisiae deletion mutants that affect
telomere length. Proc Natl Acad Sci USA 101: 8658–8663

Begley TJ, Rosenbach AS, Ideker T, Samson LD (2002) Damage
recovery pathways in Saccharomyces cerevisiae revealed by
genomic phenotyping and interactome mapping. Mol Cancer
Res 1: 103–112

Begley TJ, Rosenbach AS, Ideker T, Samson LD (2004) Hot spots for
modulating toxicity identified by genomic phenotyping and
localization mapping. Mol Cell 16: 117–125

Blackburn EH (2000) Telomere states and cell fates. Nature 408: 53–56
Blackburn EH, Chan S, Chang J, Fulton TB, Krauskopf A, McEachern

M, Prescott J, Roy J, Smith C, Wang H (2000) Molecular
manifestations and molecular determinants of telomere capping.
Cold Spring Harb Symp Quant Biol 65: 253–263

Brandes U (2001) A faster algorithm for betweenness centrality. J Math
Sociol 25: 163–177

Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ,
Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C,
Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF
(2005) A network-based analysis of systemic inflammation in
humans. Nature 437: 1032–1037

de Lange T (2005) Shelterin: the protein complex that shapes and
safeguards human telomeres. Genes Dev 19: 2100–2110

Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston
M, Shilatifard A (2002) Methylation of histone H3 by COMPASS

requires ubiquitination of histone H2B by Rad6. J Biol Chem 277:
28368–28371

Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S,
Guillard S, Partington M, Zubko MK, Krogan NJ, Emili A,
Greenblatt JF, Harrington L, Lydall D, Durocher D (2006) A
genome-wide screen identifies the evolutionarily conserved KEOPS
complex as a telomere regulator. Cell 124: 1155–1168

Freeman L (1977) A set of measures of centrality based on
betweenness. Sociometry 40: 35–41

Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, Kruglyak L,
Simon JA, Bedalov A (2006) Telomere length as a quantitative trait:
genome-wide survey and genetic mapping of telomere length-
control genes in yeast. PLoS Genet 2: e35

Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M,
Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A,
Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M,
Michon AM, Schelder M, Schirle M, Remor M et al (2006)
Proteome survey reveals modularity of the yeast cell machinery.
Nature 440: 631–636

Kisseleva-Romanova E, Lopreiato R, Baudin-Baillieu A, Rousselle JC,
Ilan L, Hofmann K, Namane A, Mann C, Libri D (2006) Yeast
homolog of a cancer-testis antigen defines a new transcription
complex. EMBO J 25: 3576–3585

Klein P, Ravi R (1995) A nearly best-possible approximation
algorithm for node-weighted Steiner trees. J Algorithms 19:
104–115

Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S,
Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M,
Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A,
Beattie B et al (2006) Global landscape of protein complexes in the
yeast Saccharomyces cerevisiae. Nature 440: 637–643

Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, Johnston
M, Shilatifard A (2002) COMPASS, a histone H3 (lysine 4)
methyltransferase required for telomeric silencing of gene
expression. J Biol Chem 277: 10753–10755

Krylov DM, Wolf YI, Rogozin IB, Koonin EV (2003) Gene loss, protein
sequence divergence, gene dispensability, expression level, and
interactivity are correlated in eukaryotic evolution. Genome Res 13:
2229–2235

Mewes HW, Frishman D, Mayer KF, Munsterkotter M, Noubibou O,
Pagel P, Rattei T, Oesterheld M, Ruepp A, Stumpflen V (2006) MIPS:
analysis and annotation of proteins from whole genomes in 2005.
Nucleic Acids Res 34: D169–D172

Ourfali O, Shlomi T, Ideker T, Ruppin E, Sharan R (2007) SPINE:
a framework for signaling-regulatory pathway inference from
cause–effect experiments. Bioinformatics 23: i359–i366

Rog O, Smolikov S, Krauskopf A, Kupiec M (2005) The yeast
VPS genes affect telomere length regulation. Curr Genet 47:
18–28

Said MR, Begley TJ, Oppenheim AV, Lauffenburger DA, Samson LD
(2004) Global network analysis of phenotypic effects: protein
networks and toxicity modulation in Saccharomyces cerevisiae.
Proc Natl Acad Sci USA 101: 18006–18011

Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D
(2004) The database of interacting proteins: 2004 update. Nucleic
Acids Res 32: D449–D451

Sharan R, Ideker T, Kelley B, Shamir R, Karp RM (2005a)
Identification of protein complexes by comparative analysis
of yeast and bacterial protein interaction data. J Comput Biol 12:
835–846

Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P,
Sittler T, Karp RM, Ideker T (2005b) Conserved patterns of
protein interaction in multiple species. Proc Natl Acad Sci USA
102: 1974–1979

Shlomi T, Segal D, Ruppin E, Sharan R (2006) QPath: a method
for querying pathways in a protein–protein interaction network.
BMC Bioinformatics 7: 199

Tegner J, Bjorkegren J (2007) Perturbations to uncover gene networks.
Trends Genet 23: 34–41

Telomere length maintenance gene circuitry mapping
R Shachar et al

& 2008 EMBO and Nature Publishing Group Molecular Systems Biology 2008 7

www.nature.com/msb


Verdun RE, Karlseder J (2007) Replication and protection of telomeres.
Nature 447: 924–931

Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA,
Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M,
Shilatifard A (2003) Bre1, an E3 ubiquitin ligase required for
recruitment and substrate selection of Rad6 at a promoter. Mol Cell
11: 267–274

Yeang CH, Ideker T, Jaakkola T (2004) Physical network models.
J Comput Biol 11: 243–262

Yeang CH, Vingron M (2006) A joint model of regulatory and metabolic
networks. BMC Bioinformatics 7: 332

Molecular Systems Biology is an open-access journal
published by European Molecular Biology Organiza-

tion and Nature Publishing Group.
This article is licensed under a Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0 Licence.

Telomere length maintenance gene circuitry mapping
R Shachar et al

8 Molecular Systems Biology 2008 & 2008 EMBO and Nature Publishing Group


	A systems-level approach to mapping the telomere length maintenance gene circuitry
	Introduction
	Results
	Characterizing topological and functional properties of TLM genes
	Constructing the telomere length-regulating network
	Functional characterization of TRS proteins
	Experimental testing of predicted TLM proteins
	Biological significance of the TRS network

	Materials and methods
	Data acquisition
	Estimating the total number of TLM genes
	Network measures
	Statistical significance testing
	Monochromaticity testing
	Pathway identification
	A probabilistic model for TLM pathways
	Setting the length penalty parameter
	GO enrichment analysis
	Spearman partial rank correlation coefficient
	Telomere length measurement
	Telomere length effect prediction and validation
	Supplementary information

	Figure 1 Telomere Southern blot of mutants in NTLM and essential proteins in the TRS.
	Figure 2 Pathways predicted by the TRS model.
	Table I Topological and functional characteristics of the TLM proteins
	Table II Experimental testing of predicted TLM proteins
	Acknowledgements
	References


