
A 1.5-Approximation Algorithm for Sorting
by Transpositions and Transreversals

Tzvika Hartman1 and Roded Sharan2

1 Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science
Rehovot 76100, Israel

tzvi.hartman@weizmann.ac.il
2 International Computer Science Institute, 1947 Center St., Berkeley, CA 94704

roded@icsi.berkeley.edu

Abstract. One of the most promising ways to determine evolutionary distance
between two organisms is to compare the order of appearance of orthologous
genes in their genomes. The resulting genome rearrangement problem calls for
finding a shortest sequence of rearrangement operations that sorts one genome
into the other. In this paper we provide a 1.5-approximation algorithm for the
problem of sorting by transpositions and transreversals, improving on a five years
old 1.75 ratio for this problem. Our algorithm is also faster than current ap-
proaches and requires O(n3/2√log n) time for n genes.

1 Introduction

When trying to determine evolutionary distance between two organisms using genomic
data, one wishes to reconstruct the sequence of evolutionary events that have occurred,
transforming one genome into the other. One of the most promising ways to trace the
evolutionary events is to compare the order of appearance of orthologous genes in two
different genomes [1, 2]. This comparison, which relies on computing global rearrange-
ment events, may provide more accurate and robust clues to the evolutionary process
than the analysis of local mutations.

In a genome rearrangement problem, the two compared genomes are represented by
permutations, where each element stands for a gene, and the goal is to find a shortest
sequence of rearrangement operations that transforms (sorts) one permutation into the
other. Previous work focused on the problem of sorting a permutation by reversal oper-
ations. This problem was shown to be NP-hard [3]. One of the most celebrated results
in this area by Hannenhalli and Pevzner shows that for signed permutations (every ele-
ment of the permutation has a sign, which represents the direction of the corresponding
gene; a reversal reverses the order of the elements it operates on and flips their signs),
the problem becomes polynomial [4]. The algorithm is based on representing a per-
mutation using a breakpoint graph (we defer a formal definition to Section 2) which
decomposes uniquely into disjoint cycles, and studying the effect of a reversal on its
cycle decomposition. There has been less progress on the problem of sorting by trans-
positions. A transposition is a rearrangement operation in which a segment is cut out of
the permutation and pasted in a different location. The complexity of sorting by trans-
positions is still open, although several 1.5-approximation algorithms are known for
it [5–7].

I. Jonassen and J. Kim (Eds.): WABI 2004, LNBI 3240, pp. 50–61, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



A 1.5-Approximation Algorithm for Sorting by Transpositions and Transreversals 51

A transreversal is a biologically motivated operation that combines a transposition
and a reversal: A segment is cut out of the permutation, reversed and pasted in another
location. In particular, a reversal is also a transreversal. Transpositions and transrever-
sals capture a large fraction of the genomic rearrangements in evolution. Gu et al. [8]
gave a 2-approximation algorithm for sorting signed permutations by transpositions
and transreversals. Lin and Xue [9] improved this ratio to 1.75 by considering a third
rearrangement operation, called revrev, which reverses two contiguous segments. Both
algorithms run in quadratic time.

In this paper we study the problem of sorting permutations by transpositions, tran-
sreversals and revrevs. The question of whether the 1.75 known ratio for this problem
can be improved, has been open for five years. One of the main difficulties in tackling
the complexity of this problem is the vast number of possible configurations that need
to be considered when analyzing general linear permutations. We make four contribu-
tions toward greatly simplifying the problem. First, we show that the sorting problem
is equivalent for linear and circular permutations (Section 2). Second, we reduce the
general problem of sorting a circular permutation to that of sorting a permutation with
a very simple structure: In its breakpoint graph representation all non-trivial cycles are
of length 3 (Section 2). Third, we characterize cycle configurations in the breakpoint
graph and show that it suffices to restrict attention to one type of configurations. Fourth,
we develop and characterize a novel cycle representation, which allows us to use results
on sorting by transpositions only, a well-studied problem, in further eliminating cycle
configurations. These characterizations and simplifications are key to our main result:
a 1.5-approximation algorithm for sorting by transpositions, transreversals and revrevs
(Section 3). Furthermore, our algorithm can be implemented in time O(n3/2

√
log n),

which improves on the quadratic running time of previous algorithms [8, 9]. For lack of
space, some proofs are shortened or omitted.

2 Preliminaries

A signed permutation π = [π1 . . . πn] on n(π) ≡ n elements is a permutation in
which each element is labelled by a sign of plus or minus. A segment of π is a con-
secutive sequence of elements πi, . . . , πk (k ≥ i). We focus on four rearrangement
operations. A reversal ρ is an operation that reverses the order of the elements in a seg-
ment and flips their signs. If the segment is πi, . . . , πj−1 then ρ · π = [π1, . . . , πi−1,
−πj−1, . . . ,−πi, πj , . . . , πn]. Two segments πi, . . . , πk and πj , . . . , πl are contigu-
ous if j = k + 1 or i = l + 1. A transposition τ exchanges two contiguous (dis-
joint) segments. If the segments are A = πi, . . . , πj−1 and B = πj , . . . , πk−1 then
τ · π = [π1, . . . , πi−1 , πj , . . . , πk−1 , πi, . . . , πj−1 , πk, . . . , πn] (note that
the end segments can be empty if i = 1 or k = n + 1). A transreversal τρA,B is a
transposition that exchanges segments A and B and also reverses A. , i.e., τρA,B · π =
[π1, . . . , πi−1 , πj , . . . , πk−1 ,−πj−1, . . . ,−πi , πk, . . . , πn], and τρB,A · π =
[π1, . . . , πi−1 , . . . ,−πk−1 , . . . ,−πj , πi, . . . , πj−1 , πk, . . . , πn]. A revrev op-
eration reverses each of the two segments (without transposing them). Thus, ρρ · π =
[π1, . . . , πi−1, − πj−1, . . . ,−πi, − πk−1, . . . ,−πj, πk, . . . , πn].

The problem of finding a shortest sequence of transposition, transreversal and revrev
operations that transforms a permutation into the identity permutation is called sorting



52 Tzvika Hartman and Roded Sharan

by transpositions and transreversals1. The distance of a permutation π, denoted by
d(π), is the length of the shortest sorting sequence.

Linear vs. Circular Permutations. Key to our approximation algorithm is a reduction
from the problem of sorting linear permutations to that of sorting circular permutations
(indices are cyclic), on which the analysis is simpler. An operation is said to operate on
the segments that are affected by it and on the elements in those segments. We say that
two operations µ and µ′ are equivalent if they have the same effect, i.e., µ · π = µ′ · π
for all π. The following lemma is the basis for the reduction, and is used to prove the
subsequent theorem on the equivalence of the sorting problem for linear and circular
permutations, similarly to [7].

Lemma 1 Let x be an element of a circular permutation π, and let µ be an operation
that operates on x. Then there exists an equivalent operation µ′ that does not operate
on x.

Proof. For reversals, this result was proven by Meidanis et al. [10] and for transposi-
tions by Hartman [7]. For transreversals and revrevs, the claim relies on the observation
that a chromosome is equivalent to its reflection, i.e., the reversed sequence of elements
with their signs flipped [10] (see the upper part of Figure 1). Consider a permutation
with three segments: A, B and C. W.l.o.g. x ∈ A. Then a transreversal that operates
on segments A and B and reverses B (resp. A) is equivalent to a revrev that operates
on A and C (B and C), since the result is a reflection of the permutation (as illustrated
in Figure 1). Similarly, a revrev that operates on A and B (or C) is equivalent to a
transreversal that operates on B and C.

Fig. 1. The equivalence of operations on circular permutations.

1 We do not include revrevs in the problem name, as we provide in the next section a reduction
of the problem that allows us to mimic revrevs using transreversals.



A 1.5-Approximation Algorithm for Sorting by Transpositions and Transreversals 53

Theorem 2 The problem of sorting linear permutations by transpositions and transre-
versals is linearly equivalent to the problem of sorting circular permutations by trans-
positions and transreversals.

Proof. We show only one direction. Given a linear n-permutation, circularize it by
adding an additional element πn+1 = x and closing the circle. Denote the new circular
permutation by πc. By Lemma 1, any operation on πc can be mimicked by an operation
that does not involve the segment that includes x. Hence, there is an optimal sequence
of operations that sorts πc such that none of them operates on segments that include x.
The same sequence can be viewed as a sequence of operations on the linear permuta-
tion π, by ignoring x. This implies that d(π) ≤ d(πc). On the other hand, any sequence
of operations on π is also a sequence of operations on πc, so d(πc) ≤ d(π). Hence,
d(π) = d(πc). Moreover, an optimal sequence for πc implies an optimal sequence for
π.

We observe that for circular permutations revrevs and transreversals are equivalent
operations. Thus, for circular permutations we can restrict attention to transpositions
and transreversals, which are more biologically motivated operations. Moreover, com-
bined with Theorem 2, this observation implies that one can reduce the problem of sort-
ing a linear permutation by transpositions, transreversals and revrevs to that of sorting
a circular permutation by transpositions and transreversals only.

The Breakpoint Graph. We follow the construction of Bafna and Pevzner for repre-
senting signed permutations [11]. First, a permutation π on n elements is transformed
into a permutation f(π) = π′ = (π′

1 . . . π′
2n) on 2n elements, by replacing each pos-

itive element i by two elements 2i − 1, 2i (in this order), and each negative element
by 2i, 2i − 1. On the extended permutation f(π), only operations that cut before odd
positions are allowed. This ensures that every operation on f(π) can be mimicked by
an operation on π. The breakpoint graph G(π) is an edge-colored graph on 2n vertices
{1, 2, . . . , 2n}. For every 1 ≤ i ≤ n, π′

2i is joined to π′
2i+1 by a black edge (denoted

by bi), and 2i is joined to 2i + 1 by a gray edge. Here and in the rest of the paper we
identify, in both indices and elements, 2n + 1 and 1.

It is convenient to draw the breakpoint graph on a circle, such that black edges are
on the circumference and gray edges are chords (see Figure 2). Since the degree of each
vertex is exactly 2, the graph uniquely decomposes into cycles. A k-cycle is a cycle with
k black edges, and it is odd if k is odd. k is called the length of the cycle. The number
of odd cycles in G(π) is denoted by codd(π). Gu et al. [8] have shown that for all linear
permutations π and operations µ, it holds that codd(µ · π) ≤ codd(π) + 2. Their result
holds also for circular permutations and can be used to prove the following lower bound
on d(π):

Theorem 3 ([8]) For all permutations π, d(π) ≥ (n(π) − codd(π))/2.

Transformation into 3-Permutations. Our goal in this section is to transform the input
permutation into a permutation with simple structure, to which we can apply our algo-
rithm and mimic its steps on the original permutation. A permutation is called simple if
its breakpoint graph contains only k-cycles, where k ≤ 3. It is called a 3-permutation



54 Tzvika Hartman and Roded Sharan

Fig. 2. The circular breakpoint graph of the permutation π = (1 − 4 6 − 5 2 − 7 − 3), for
which f(π) = (1 2 8 7 11 12 10 9 3 4 14 13 6 5). Black edges are represented as thick lines on
the circumference, and gray edges are chords.

if it contains only 1-cycles and 3-cycles. A transformation from π to π̂ is called safe if
n(π) − codd(π) = n(π̂) − codd(π̂), i.e., if it maintains the lower bound of Theorem 3.
Next, we show how to transform an arbitrary permutation into a 3-permutation using
safe transformations (that is, maintaining the lower bound, but not the exact distance).
Our starting point is the standard safe transformation into simple permutations (cf. [7]).
Hence, it suffices to show how to convert 2-cycles into 3-cycles using safe transforma-
tions.

Let C be a 2-cycle and let b = (π′
2i, π

′
2i+1) be one of its black edges. A (C, b)-

padding extends the original permutation π by adding a new element πi + 1, and re-
naming all elements j > πi + 1 by j + 1 (the renaming is done on the absolute values
of the elements and then their signs are reintroduced, e.g., -3 is renamed to -4). The
new element πi + 1 has the same sign as πi, and is located after (resp. before) πi if
it is positive (negative). Finally, the sign of πi is flipped. The effect on the breakpoint
graph is that C is transformed into a 3-cycle (see Figure 3 for an example). Overall, the
permutation after the padding has an additional element and one more odd cycle.

Lemma 4 Every simple permutation π can be transformed into a 3-permutation π̂ by
safe paddings. Moreover, every sorting of π̂ mimics a sorting of π with the same number
of operations.

Proof. Let π be a simple permutation that contains a 2-cycle C and let b ∈ C. Let π be
the permutation obtained by applying a (C, b)-padding on π. Clearly, n(π) = n(π)+1,
and codd(π) = codd(π) + 1, so the padding is safe. This process can be repeated until
a 3-permutation π̂ is eventually obtained. Since π̂ is obtained from π by padding new
elements, every operation of π̂ can be mimicked on π by ignoring the padded elements.

In the rest of the paper, we shall restrict attention to circular 3-permutations and
often refer to the 3-cycles in our breakpoint graph simply as cycles. In Section 3 we
show how to sort a 3-permutation using at most 1.5l operations, where l is the lower
bound of Theorem 3. By Theorem 2 and Lemma 4 this implies a 1.5-approximation
algorithm for sorting arbitrary circular and linear permutations.



A 1.5-Approximation Algorithm for Sorting by Transpositions and Transreversals 55

Fig. 3. (a) The breakpoint graph of the permutation π = (1,−3,−4, 2,−5). (b) The graph of
(1,−3,−5, 4, 2,−6), which is obtained by a (C, b)-padding.

Cycle Types. An operation that cuts some black edges is said to act on these edges. It
is called a k-operation if it increases the number of odd cycles by k. An odd cycle is
called oriented if there is a 2-operation that acts on three of its black edges; otherwise,
it is unoriented. A configuration of cycles is a subgraph of the breakpoint graph that
contains one or more cycles. There are four possible configurations of single 3-cycles,
which are shown in Figure 4(a-d). It is easy to verify that cycles a and b are unoriented,
whereas c and d are oriented. A black edge is called twisted if its two adjacent gray
edges cross each other as chords in the circular breakpoint graph. A cycle is k-twisted
if k of its black edges are twisted. For example, in Figure 4 cycle a is 0-twisted and c is
2-twisted.

Observation 5 A 3-cycle is oriented iff it is 2- or 3-twisted.

Fig. 4. Configurations of 3-cycles. (a-b) Unoriented 3-cycles. (c-d) Oriented 3-cycles. (e) A pair
of intersecting 3-cycles. (f) A pair of interleaving 3-cycles.

Let b = (i1, i2) and b′ = (j1, j2) be two black edges in the breakpoint graph such
that i1,i2,j1 and j2 occur in this order along the circle. Then b1 and b2 induce two
disjoint arcs on the circle, one between i2 and j1 and the other between j2 and i1. Two
pairs of black edges are called intersecting if they alternate in their order of occurrence
along the circle. A pair of black edges intersects with cycle C, if it intersects with a pair
of black edges that belong to C. Cycles C and D intersect if there is a pair of black
edges in C that intersect with D (see Figure 4e). Two cycles are interleaving if their
black edges alternate in their order of occurrence along the circle (see Figure 4f). A
1-twisted pair is a pair of 1-twisted cycles, whose twists are consecutive on the circle
in a configuration that consists of these two cycles only. A pair of black edges is said to
be coupled if they are connected by a gray edge and when reading the edges along the
circle they are read in the same direction. (For example, the top edges in Figure 4b are
coupled, and so are all pairs of edges in Figure 4a).

The following lemma will be useful in the sequel:



56 Tzvika Hartman and Roded Sharan

Lemma 6 ([8]) Let (b1, b2) be a pair of coupled black edges. Then there exists a cycle
C that intersects with (b1, b2).

3 The Algorithm

A (0, 2, 2)-sequence is a sequence of three operations, of which the first is a 0-operation
and the next two are 2-operations. Since a 2-operation is the best possible in one step,
a series of (0, 2, 2)-sequences guarantees a 1.5 approximation ratio. A 1-twisted cycle
is called closed (w.r.t. a configuration) if its two coupled edges intersect with some
other cycle in the configuration. A configuration is closed if at least one of its 1-twisted
cycles is closed; otherwise it is called open. In the following we shall consider only
closed configurations, since an open configuration implies the existence of a closed one
(by Lemma 6). For each possible closed configuration we shall prove the existence of a
(0, 2, 2)-sequence of operations. First, we deal with interleaving cycle pairs.

Lemma 7 Let π be a permutation that contains two unoriented, interleaving cycles C
and D that do not form a 1-twisted pair. Then π admits a (0, 2, 2)-sequence.

Proof. If both cycles are 0-twisted then a (0, 2, 2)-sequence of transpositions is given
in [7]. Suppose that C is 0-twisted and D 1-twisted (resp. both are 1-twisted and their
twists are not consecutive on the circle). Let a, b and c be the three arcs that are induced
by the black edges of C, and let a be the arc that contains the twist of D. First apply a 0-
transposition that acts on the black edges of C. This makes D 2-twisted, so it is possible
to eliminate it using a 2-transreversal. The latter operation makes C 2-twisted (resp. 3-
twisted). A 2-transreversal (2-transposition) on C completes the (0, 2, 2)-sequence.

In order to deal with intersecting cycles we borrow some of the theory developed
in [7] for unsigned permutations. As we show below, some of this theory carries also
to our case with some modifications. A useful tool that we will require is the signed
canonical labelling2 of a cycle which we present next.

For a given cycle (of any length), consider the labelling obtained by picking an
arbitrary black edge of a cycle, labelling it 1, and labelling the rest of the cycle’s edges
according to their order of occurrence along the circle. The signed canonical labelling
of a cycle is the signed permutation obtained by starting with the edge labelled 1 and
reading the labels in the order they appear along the cycle, where the signs stand for
the direction in which the edge is read: An edge that is visited in the same direction
as the edge labelled 1 is positive, and otherwise it is negative (see, e.g., Figure 5).
This definition captures the notion of twists in 3-cycles; indeed, a 0-twisted 3-cycle
has labelling (1, 2, 3), 3-twisted has labelling (1, 3, 2), etc. Note that a cycle may have
more than one possible canonical labelling. A canonical labelling of a 5-cycle is called
oriented if it starts with 1, b, a or 1,−a,−b or 1,−b, a or 1, b,−a, where 1 < a < b.
The motivation for this definition comes from the following observation:

Observation 8 A 5-cycle is oriented iff it has an oriented canonical labelling.

2 A generalization of the notion of canonical labelling in [6].



A 1.5-Approximation Algorithm for Sorting by Transpositions and Transreversals 57

Fig. 5. A 5-cycle with signed canonical labelling (1,−4 − 3 − 2, 5).

Lemma 9 Let C be a 5-cycle that admits a 2-transposition. Then any 5-cycle with the
same canonical labelling up to a reversal of one element is also oriented. If in addition
the canonical labelling of C is (1, 4, 2, 3, 5) then a 5-cycle with the same canonical
labelling up to a reversal of two consecutive elements is also oriented.

The above lemma is the basis for handling the case of two intersecting 0-twisted
cycles, which we present next:

Lemma 10 Let π be a permutation that contains a closed configuration in which there
are two intersecting 0-twisted cycles C and D. Then π admits a (0, 2, 2)-sequence.

Proof. Since C and D are intersecting, C has a pair of coupled edges that do not inter-
sect with D. By Lemma 6 there exists a cycle E that intersects with this pair of edges.
The case in which E is 0-twisted was treated in [7]. If E is 1-twisted there are two cases
to consider:

1. D and E are non-intersecting. Our starting point is the (0, 2, 2)-sequences for con-
figurations of three 0-twisted cycles given in Figure 6, where two of the cycles
are non-intersecting, and the third one intersects both. In our case, one of the non-
intersecting cycles corresponds to E and is 1-twisted. Depending on the location
of the twist in E, it is always possible to apply the first two transpositions shown
in Figure 6 to the closed configuration. (The first transposition is applied to the
edges shown in the figure, if all are non-twisted, or to a symmetric set of edges). By
Lemma 9, the resulting 5-cycle is oriented, which completes the (0, 2, 2)-sequence.

2. D and E are intersecting. Consider the (0, 2, 2)-sequences for three mutually inter-
secting 0-twisted cycles given in Figure 7. In our case E is 1-twisted. If all three
edges d, e1 and e2 that are cut by the first transposition are non-twisted, then we
apply the first two transpositions as in Figure 7. By Lemma 9, the resulting 5-cycle,
F , is oriented. The same holds for any set of symmetric edges that are non-twisted.
The only closed configurations in which no such symmetric set is possible is when
some arc induced by a pair of black edges of C contains a single twist. There are
three such configurations, for which a (0, 2, 2)-sequence is described in Figure 8.

Next, we deal with closed configurations that include two intersecting, 1-twisted
cycles. We need the following observation:

Observation 11 Let π be a permutation that contains a 2-twisted cycle C and a 1-
twisted cycle D, such that C and D are intersecting and there is a single non-twist of D
in the arc induced by the two twists of C. Then π admits two consecutive 2-operations.



58 Tzvika Hartman and Roded Sharan

Fig. 6. (0, 2, 2)-sequences for three 0-twisted cycles, where two of the cycles are non-intersecting,
and a third one intersects both (taken from [7]). At each step the transposition acts on the three
black edges marked by a star. For simplicity, every 1-cycle is shown only when it is formed and
not in subsequent graphs.

Fig. 7. Three mutually intersecting 0-twisted cycles (taken from [7]). A dashed line represents a
path.

Proof. Applying a 2-transreversal on C eliminates it, while making D 2-twisted.

Lemma 12 Let π be a permutation that contains a closed configuration with two inter-
secting, 1-twisted cycles. Then π admits a (0, 2, 2)-sequence.

Proof. There are six possible cases, shown in Figure 9. For cases (a-d), we first apply a
0-reversal that acts on the black edges that are marked by a star. This makes the other
cycle 2-twisted, and two additional 2-operations follow from Observation 11. For cases
(e-f) we observe that by Lemma 6 there is another cycle that has a black edge in the arc
denoted x, and a black edge in one of the other 5 arcs. We apply a 0-reversal that acts
on these two edges. If the resulting configuration contains two 2-twisted cycles then
the permutation can be shown to admit two 2-operations. Otherwise, two 2-operations
follow from Observation 11.

The following lemma deals with a closed configuration which involves two inter-
secting cycles, one of which is 0-twisted and the other 1-twisted. The subsequent lemma
deals with 1-twisted pairs of interleaving cycles. The proofs of both lemmas can be
found at http://www.icsi.berkeley.edu/∼roded/transrev.pdf.



A 1.5-Approximation Algorithm for Sorting by Transpositions and Transreversals 59

Fig. 8. (0, 2, 2)-sequences for some cycle configurations that contain two intersecting 0-twisted
cycles. First we apply a 0-transreversal on the three marked edges, such that the segment between
the two x’s is reversed, resulting in an oriented 3-cycle and a 5-cycle. Next, we eliminate the
3-cycle and are left with an oriented 5-cycle, which allows us to complete the (0, 2, 2)-sequence.

Fig. 9. Closed configurations of two intersecting 1-twisted 3-cycles.

Lemma 13 Let π be a permutation that contains a 0-twisted cycle, which intersects
with the coupled edges of a 1-twisted cycle. Then π admits a (0, 2, 2)-sequence.

Lemma 14 Let π be a permutation that contains k ≥ 2 mutually interleaving 1-twisted
cycles, such that all their twists are consecutive on the circle and k is maximal with this
property. Then π admits a (0, 2, 2)-sequence.

We are now ready to state our main result:

Theorem 15 There is a 1.5-approximation algorithm for sorting by transpositions and
transreversals, which runs in O(n3/2

√
log n) time.

Proof. Our algorithm is described in Figure 10. The sequence of operations gener-
ated by the algorithm contains only 2-operations and (0, 2, 2)-sequences of operations.
Therefore, every sequence of three operations increases the number of odd cycles by
at least 4 out of 6 possible in 3 steps (as implied from the lower bound of Theorem 3).
Hence, the approximation ratio is 1.5.

We sketch the proof of the running time. Steps 1 and 3 can be done in linear time.
The number of iterations in Step 2) is linear. Note that identifying pairs of interleaving
and intersecting cycles can be done by applying the following query a constant number
of times: Given a gray edge find an arbitrary gray edge that intersects it. Thus, the
most time-consuming tasks in each iteration are the application of operations to the
permutation, and the above query. These two tasks can be performed in O(

√
n log n)

time using the data structure of Kaplan and Verbin [12], as we show next.



60 Tzvika Hartman and Roded Sharan

Algorithm Sort (π)

1. Transform π into a 3-permutation π̂ (Lemma 4).
2. While G(π̂) contains a 3-cycle C do:

(a) If C is oriented, apply a 2-operation.
(b) Otherwise, find a cycle D that intersects with a coupled pair of C.
(c) If C and D interleave, apply a (0, 2, 2)-sequence (Lemmas 7, 14).
(d) Else if C or D are 1-twisted, apply a (0, 2, 2)-sequence (Lemmas 12, 13).
(e) Otherwise, apply a (0, 2, 2)-sequence (Lemma 10).

3. Mimic the sorting of π using the sorting of π̂ (Lemma 4).

Fig. 10. Algorithm Sort. After Step 2(a) we assume that all cycles involved in the configuration
of C are unoriented. Obviously, if an oriented cycle is involved, then a 2-operation can be applied
on it.

For simplicity, we describe the data structure for linear permutations. Consider the
breakpoint graph of a linear permutation with n elements. Each gray edge is represented

by a pair of vertices, called mates. The permutation is partitioned into Θ(
√

n
log n ) blocks

of Θ(
√

n log n) vertices each. A splay tree [13] is attached to each block, in which
the vertices of the block are maintained according to the order of their mates in the
permutation. In [12] it is shown that a reversal can be applied in time O(

√
n log n).

Hence, transpositions (resp. transreversals) can be easily implemented using two (three)
reversals in the same time bound. As for queries, we denote the pair of vertices by v1

and v2. We may assume that v1 and v2 are first elements in their blocks [12], so we need
not consider parts of blocks. We scan all blocks that are between v1 and v2, and ask if
the mate of the leftmost vertex in the block appears in the permutation before v1, or the
mate of the rightmost vertex element appears after v2. If there is a block that satisfies
the condition, then we found an intersecting pair; otherwise, there is no such pair.

Acknowledgments

We would like to thank Ron Shamir for many invaluable discussions, and Elad Verbin
for discussions on the data structure. TH was supported in part by an Israel Science
foundation grant 309/02 (PI: Ron Shamir) and by ISF grant IS265/02. RS was supported
in part by NSF ITR grant CCR-0121555.

References

1. Palmer, J.D., Herbon, L.A.: Tricircular mitochondrial genomes of Brassica and Raphanus:
reversal of repeat configurations by inversion. Nucleic Acids Research 14 (1986) 9755–9764

2. Hoot, S.B., Palmer, J.D.: Structural rearrangements, including parallel inversions, within the
chloroplast genome of Anemone and related genera. J. Molecular Evooution 38 (1994) 274–
281

3. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM
Journal on Discrete Mathematics 12 (1999) 91–110



A 1.5-Approximation Algorithm for Sorting by Transpositions and Transreversals 61

4. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for
sorting signed permutations by reversals. Journal of the ACM 46 (1999) 1–27

5. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete Mathematics
11 (1998) 224–240

6. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow (1999)
7. Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Proc.

14th Annual Symposium on Combinaotrial Pattern Matching (CPM ’03), Springer (2003)
156–169

8. Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome rearrange-
ments by reversals and transpositions. Theoretical Computer Science 210(2) (1999) 327–339

9. Lin, G.H., Xue, G.: Signed genome rearrangements by reversals and transpositions: Models
and approximations. In: Proc. COCOON ’99, Lecture Notes in Computer Science. Volume
1627., Berlin Heidelberg, Springer-Verlag (1999) 71–80

10. Meidanis, J., Walter, M.E., Dias, Z.: Reversal distance of signed circular chromosomes.
manuscript (2000)

11. Bafna, V., Pevzner, P.A.: Genome rearragements and sorting by reversals. SIAM Journal on
Computing 25 (1996) 272–289

12. Kaplan, H., Verbin, E.: Effficient data structures and a new randomized approach for sort-
ing signed permutations by reversals. In: Proc. 14th Annual Symposium on Combinaotrial
Pattern Matching (CPM ’03), Springer (2003) 170–185

13. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. Assoc. Comput. Mach. 32
(1985) 652–686


	1 Introduction
	2 Preliminaries
	3 The Algorithm
	References

