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Abstract

The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of
the art methods exploit a protein-protein interaction (PPI) network for this task. They are based on the observation that
genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these
methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be
dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific
information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct
tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks
considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they
allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection.

Citation: Magger O, Waldman YY, Ruppin E, Sharan R (2012) Enhancing the Prioritization of Disease-Causing Genes through Tissue Specific Protein Interaction
Networks. PLoS Comput Biol 8(9): e1002690. doi:10.1371/journal.pcbi.1002690

Editor: Donna K. Slonim, Tufts University, United States of America

Received October 15, 2011; Accepted July 28, 2012; Published September 27, 2012

Copyright: � 2012 Magger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: OM and YYW were supported in part by a fellowship from the Edmond J. Safra Bioinformatics program at Tel Aviv University. YYW was also supported
by Eshkol Fellowship from the Israeli Ministry of Science and Technology. ER and RS were supported by a Bikura grant from the Israel Science Foundation and a
James Mcdonnel Foundation grant. RS was further supported by a research grant from the Israeli Science Foundation (grant no. 241/11). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: OdedMagger@gmail.com

Introduction

A fundamental challenge in human health is elucidating the

molecular basis of hereditary diseases. Contemporary methods for

discovering disease-causing genes usually consist of two steps: first,

genome-wide association studies identify genomic intervals that

are linked to a disease of interest. Second, the genes within these

intervals are examined for their causal relation to the disease [1–

3]. Experimentally verifying that a gene is associated with a disease

is an expensive and time-consuming process, calling for the

prioritization of candidate causal genes. A plethora of computa-

tional methods were developed to meet this challenge. These

methods are often based on system-wide data such as protein

interaction networks [4–9], gene expression [8,10–12], sequence

similarity of genes [13,14], functional similarity and annotation

[8,12,13] and more (for a review on these methods see [15,16]).

Many state of the art algorithms for the gene prioritization

problem use protein interaction or functional linkage networks

[8,17,18], exploiting the tendency of genes causing similar diseases

to lie close to one another in the network [16,19,20]. However,

these methods do not take into account the fact that the vast

majority of genetic disorders tend to manifest only in a single or a

few tissues [20–22]. Typically, the same data sets are used to

prioritize genes for a liver disease or a brain disease, even though

the molecular landscapes of a Hepatocyte and a neuron are quite

dissimilar.

In this work, we incorporate tissue-specific gene expression data

into the prioritization process and demonstrate its impact on the

prioritization results. The integration is achieved by constructing

tissue-specific protein-protein interaction (PPI) networks and

employing them in the prioritization. The rationale behind this

approach is that many disorders involve a disruption of the

‘molecular fabric’ of different, healthy tissues. From a protein

interaction network point of view, this disruption can be often

characterized as a perturbation of a gene, corresponding to node

removal, or the perturbation of an interaction between two gene

products, corresponding to an edge removal [23]. In the context of

genetic disorders, even though the underlying harmful mutation

exists in all the cells of our body, it most often wreaks havoc only in

a few tissues. This tissue selectivity is likely to emerge due to

differences in the functionality of the mutated protein within these

tissues, its tissue-specific interacting proteins, its abundance and

the abundance of its interactors. Thus, the hypothesis underlying

the current work is that a tissue specific network, which better

represents the actual disease-related tissue, is likely to yield more

accurate prioritizations of the diseases it manifests.

The concept of tissue-specific protein interactions is relatively

unexplored. Bossi and Lehner [24] analyzed human PPIs in a

tissue-specific context, showing that many housekeeping proteins

interact with highly tissue-specific proteins, which in turn implies

that housekeeping proteins may have tissue-specific roles. Emig

and Albrecht [25] expanded this analysis to identify functional

differences between tissues, showing that tissue-specific protein

interactions are often involved in transmembrane transport and

receptor activation. Lin et al [26] analyzed the topological

properties of housekeeping and tissue specific proteins within the

generic (non tissue-specific) PPI network. Waldman et al. [27]

analyzed translation efficiency in humans using PPIs. Using tissue

specific PPI networks, they showed that proteins whose genes are

translated more efficiently in a specific tissue tend to have more
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connections within this tissue as compared to other proteins in the

same tissue. Lopes et al. [28] created unweighted tissue-specific

networks for several separate PPI databases. They used these

networks to analyze host-pathogen interactions in a tissue-specific

manner. Finally, a proof-of-concept work by Jiang et al. [29]

combined five tissue-specific networks taken from Bossi and

Lehner [24] to prioritize candidate genes for type 2 Diabetes.

Of note, the lack of tissue specific PPI networks stands in

marked difference from the existence of many tissue- and cell-

specific variants of other types of biological networks, such as

regulatory networks [30–32], functional linkage networks [33,34]

and metabolic networks [35–37].

The current study is the first large-scale study that aims to

enhance the accuracy of existing network-based gene prioritization

algorithms by taking into account tissue-specific information. This

is achieved by constructing tissue specific PPI networks and

utilizing them for gene prioritization instead of the standard,

generic PPI network. First, we examine the hypothesis that a gene

is likely to be expressed in a healthy tissue for its mutation to

clinically manifest in that tissue. Indeed, a large majority (71–83%)

of the known disease-causing genes are significantly expressed in

the corresponding disease-associated tissue. However, not all

disease-associated genes are significantly expressed in the tissues

where the disease is manifested. Interestingly, as shown below, we

find that most of the remaining genes either have a low expression

level across all tissues, or are involved in mediating a response to

external stimulus or being involved in multi-cellular developmental

processes, and as such are not expected to have high expression

under steady-state conditions in the adult tissue.

Focusing on the cases where the disease-related gene is

expressed in the associated tissue, we show that integrating tissue

specific expression information into a gene prioritization scheme

markedly improves its prediction accuracy. Specifically, we

generate tissue-specific PPI networks for 60 healthy human tissues

using gene expression data from those tissues [38]. We then apply

the same candidate prioritization algorithm for both the original

and the tissue-specific PPI networks, and compare the perfor-

mance of each in a cross-validation setting. We find that the tissue-

specific variant of the algorithm yields higher area under the

receiver-operator characteristics (ROC) curve (AUC) and gives the

correct gene a higher ranking than the original variant more often

than not. Finally, we extend our method to infer new disease-tissue

associations.

Results

Tissue-specific expression of disease causing genes
We constructed literature-based gene-disease and disease-tissue

association sets. To this end, we retrieved a set of known gene-

disease associations from GeneCards [4,39]. Disease-tissue asso-

ciations were based on an association matrix generated compu-

tationally by Lage et al. [40]. This matrix provides disease-tissue

association scores based on the co-occurrence of disease-related

and tissue-related terms in PubMed abstracts. These scores are

normalized per disease and presented as percentages (See

Methods).

For each disease, we assigned the tissue that had the maximal
association score (MAS) with that disease, and filtered diseases

whose MAS was below a predefined threshold. For most of the

following analyses, we used two thresholds: MAS.8% was the

cutoff used by Lage et al., estimated by them to provide 80%

assignment accuracy. Filtering by this threshold produced a set of

920 disease-gene associations, spanning 729 diseases and 632

genes. The second threshold, MAS.40%, was estimated by Lage

et al to provide ,90% accuracy. This threshold yielded 349

associations spanning 290 diseases and 269 genes. In both cases,

genes whose related disease could not be associated with a specific

tissue were removed from the analysis.

Next, we constructed binary tissue-specific gene expression

profiles for 60 healthy tissues based on the Novartis Research

Foundation Gene Expression Database (GNF) [38] (Methods).

Out of 9998 proteins composing the generic (not tissue-specific)

network, the number of proteins expressed in each tissue varied

between 1322 (13%) to 7113 (71%; mean = 4500.8, standard

deviation = 1399.3; Supp. Table S1).

For each gene-disease association, we checked whether the

causal gene is expressed in the tissue assigned to the disease.

Interestingly, we found that a considerable fraction of the causal

genes were not expressed in their assigned tissue, ranging between

29% and 17% from MAS.8% to MAS.60%, respectively

(Figure 1). Importantly, this fraction is significantly smaller than

that expected by chance (38.25% lowly-expressed genes are

expected on average across all MAS thresholds, p,1E25;

Methods).

To better understand why disease-causing genes might be lowly

expressed in their associated tissues, we studied in detail the 76

lowly-expressed disease-causing genes under a MAS threshold of

40%. First, we analyzed the functional annotations of those genes.

Notably, 44 (58%) of the genes were found to be involved in

multicellular development processes (GO:0007275, FDR E-value:

1.8E211), where 36 of those were directly involved in organ

development (GO:0048513, FDR E-value: 7.1E212). Hence,

mutations in these genes might disrupt their early embryonic

activity leading to pathologies in adult tissues regardless of their

expression in these mature tissues. In addition, 17 (22%) of the

genes were involved in cellular response to stimulus (GO:

0051716, FDR E-value: 1.8E24) and, therefore, may not be

expressed under normal conditions.

We also found that disease-causing genes that were lowly

expressed in the tissue associated to the disease tended to be

expressed in fewer tissues than expected (12.1 tissues on average

compared to 17.5 at random, p,1E25; Methods). In addition,

Author Summary

Identifying the genes causing genetic disease is a key
challenge in human health, and a crucial step on the road
for developing novel diagnostics and treatments. Modern
discovery methods involve genome-wide association
studies that reveal regions of the genome where the
causal gene is likely to reside, and then prioritizing the
candidate genes within these regions and experimentally
examining the most promising candidates’ potential
influence on the disease. Many computational methods
were developed to automatically prioritize candidate
genes. Some of the most successful methods use a
biological network of interacting genes or proteins as an
input. However, these networks – and subsequently, these
methods – do not take into account the differences
between tissues. In other words, a heart disease is
analyzed using the same network as a skin disease. We
constructed tissue-specific protein interaction networks
and explored their effect on an existing prioritization
algorithm by comparing the algorithm’s performance on
the tissue-specific networks and the generic network. We
find that integrating tissue-specific data indeed leads to
better prioritization. We also used the prioritization results
of different tissues in order to suggest new disease-tissue
associations.

Network-Based Tissue-Specific Gene Prioritization
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these genes exhibited lower mRNA levels across all tissues than the

expected levels (150.4 versus 224.8 Affymetrix average difference

(AD) units expected by chance, p,1E25, see Methods). We

believe that these observations may partly explain the phenom-

enon of low-expression of genes in the pertaining disease tissues, as

further elaborated upon in the Discussion section. Henceforth, we

focused on the majority of disease-causing genes where the gene is

indeed expressed in its associated tissue (denoted ‘the expressed

disease genes association set’).

Constructing tissue-specific protein-protein interaction
networks

We considered two methods for converting the generic PPI

network into a tissue-specific network using a given tissue-specific

expression profile. These methods are summarized in Figure 2 and

discussed below.

A naı̈ve method, titled ‘‘Node Removal’’ (NR), was used

previously by Bossi and Lehner [24], Waldman et al [27] and

Lopes et al [28]. By this method, a tissue-specific PPI network is

generated by removing from the network proteins that are not

expressed in the relevant tissue. Notably, such a scheme

dramatically changes the connectivity of the network: while a

generic PPI networks tends to have a single giant connected

component containing most of the network’s nodes [41], the NR

network is shattered into a relatively small giant component and

many small connected components. While the generic human

network is composed of 91 connected components with the giant

component covering 98% of the network (9796 proteins), the

resulting tissue-specific networks have 545 connected components

on average, with the average size of the giant component being

3907 proteins. The other components are very small – a few

surpass 4 proteins, and none surpass 10.

The number of interactions also drops, from 41049 in the

generic network to 14257.21 on average (Range: 2026[4.9%]–

27571[67.1%], standard deviation: 6195.4). The amount of

expressed proteins and retained interactions in the network have

a strong positive correlation (Pearson: p = 0.9939). Moreover,

there’s also a similarly strong positive correlation between the

amount of expressed proteins and average interactions per

expressed protein at the tissue (Pearson: p = 0.9803), suggesting

that the power-law distribution of interactions is retained. See

Supp. Table S1 for the detailed properties of the tissue-specific

Node Removal networks.

The second tissue-specific network reconstruction method,

novel to this work, is titled ‘Edge Reweight’ (ERW). By this

method, we do not alter the topology of the generic network, but

rather modify the edge weights to reflect the probability that the

corresponding interactions take place at the specific tissue. In brief,

the original confidence score of an edge is multiplied by a penalty

factor, rw, for each interacting protein that is not expressed in the

tissue (see Methods for full details). Note that when rw = 0, the

ERW network becomes the NR network; conversely, when rw = 1,

the ERW network is identical to the original PPI network. Thus,

varying values of rw allow us to control just how tissue specific the

network is.

The NR and ERW (with rw = 0.1) PPI networks are publicly

available as supporting material (Datasets S1, S2, S3).

Predicting causal genes using tissue-specific Protein
interaction networks

In order to prioritize candidate disease genes, we used the

PRINCE prioritization algorithm, which we have previously

shown to compare favorably to other state-of-the-art algorithms

[4,17]. For completeness, we include a brief description of

PRINCE below; for a detailed description see [4].

PRINCE receives a weighted PPI network, a disease-disease

phenotypic similarity network and a disease-gene association set as

inputs. Given a query disease, PRINCE assigns a prior score to

genes associated with known diseases that are phenotypically

similar to the query. This score is then propagated through a PPI

network in an iterative process, culminating in a smooth scoring

function where the score of a node tends to be similar to the scores

of its neighboring nodes.

In more detail, let q be the query disease and denote by F(v) the

prioritization score to be computed for gene v. Let Y(v) be the

prior score for gene v (with respect to q), defined as

Y (v)~disease similarity(q,d) if v is associated with a disease d,

and Y (v)~0 if no disease is associated with v. If v is known to be

associated with multiple diseases, then disease that is most similar

to q is chosen.

F(v) is calculated as a linear combination of Y(v) and the scores

of v’s neighboring nodes:

F (v)~a
X

u[N(v)

F (u):w(u,v)

" #
z(1{a):Y (v)

Where N(v) is the set of nodes adjacent to v in the network, w(u,v) is

the confidence of the interaction between u and v, and a[½0,1� is a

parameter controlling the relative importance of the network vs.

the prior information.

We applied PRINCE to score disease-causing genes using both

the original PPI network and the tissue-specific networks built with

the NR and ERW strategies, and used a leave-one-out cross

validation to assess the performance of PRINCE given each

network as input, in terms of AUC (Methods). For ERW, we used

the MAS.40% association set as a benchmark to identify the

optimal rw parameter, by constructing multiple TS-ERW (Tissue-

Specific Edge ReWeight) networks with varying values of rw and

comparing their AUCs (Figure S1 and Methods). By Figure S1,

the performance has a single peak situated at the lower end of rw’s

range: rw = 0.1 for the entire disease-gene association set, and

rw = 0.001 for the expressed disease genes association set. In the

following results presentation we will concentrate on these two

choices of the rw parameter, as well as on rw = 0.5 which is situated

Figure 1. The fraction of disease genes expressed in the
disease’s assigned tissue correlates with MAS Threshold. The
fraction of disease-causing genes expressed in the tissue of their
pertaining disease, compared to the random expectation (obtained
through a permutation test; Methods), for different MAS thresholds. The
error bars represent the minimal and maximal fraction of expressed
genes observed at random (over 10,000 permutations) for each MAS
threshold. Total number of associations is (from lower to higher MAS):
920, 812, 583, 349 and 167.
doi:10.1371/journal.pcbi.1002690.g001

Network-Based Tissue-Specific Gene Prioritization
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in mid-range and thus represents a moderately tissue-specific

network. As explained above, we focused the performance

evaluation on the subset of disease-gene associations where the

causal genes are known to be expressed in the associated tissue (see

Figure S3 and Text S1 for an analysis over the entire association

set).

For MAS.40%, the AUC of the original, generic PPI network

(0.825) was lower than that of each representative tissue-specific

network (0.85–0.88). The results, summarized in Figure 3 and

Figure S2, point to a moderate yet considerable improvement.

Among the tissue-specific networks, TS-ERW with rw = 0.5,

which is the most similar to the original network, exhibits the

smallest improvement. The improvement peaks for TS-ERW with

rw = 0.001. TS-NR (tissue-specific node removal) and TS-ERW
with rw = 0.1 networks have comparable AUC values.

We further inspected the cross-validation results by comparing

the ranking of true causal genes in the generic network to the

tissue-specific networks on a case-to-case basis, in order to estimate

how often the tissue-specific data improves the prioritization.

Instead of bundling all of the cross-validation results together, we

regarded every test case (disease-gene association) in the data set

separately, and compared the ranking given to the actual causal

gene by PRINCE using the generic and the tissue-specific PPI

networks. We found that for every tested MAS threshold, both

ERW and NR tissue-specific PRINCE ranked true associations

higher than the generic PRINCE in a majority of the cases

(Table 1). This also holds true when considering the entire

association set, with the exception of NR at MAS.8% (Supp.

Figure 2. A summary of tissue-specific PPI network reconstruction methods. First, we determine the set of expressed genes in a given
tissue based on an expression cutoff of 200 Affymetrix AD units. The set of expressed genes is then superimposed on the general PPI using one of
two strategies: (a) Node Removal – removing genes which are considered unexpressed from the network. (b) Edge Reweight - Reducing the weight of
an edge connecting one or two unexpressed genes. This results in a tissue specific PPI network.
doi:10.1371/journal.pcbi.1002690.g002

Figure 3. Comparing generic and tissue-specific PPIs’ perfor-
mance in candidate disease genes prioritization. Performance
comparison between the generic and different variants of tissue-
specific PRINCE, according to the ROC Area under curve (AUC) of causal
gene prediction in a leave-one-out cross validation test. Error bars
represent the standard deviation of AUC values obtained when
replacing leave-one-out with 25-fold cross validation of ten random
partitions. Results are for a disease-tissue MAS threshold of 40%.
doi:10.1371/journal.pcbi.1002690.g003

Network-Based Tissue-Specific Gene Prioritization
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Table S2). For example, when choosing a MAS threshold of 8%

(the same threshold used in [40]) and reweight parameter rw = 0.1,

we observe that TS-ERW PRINCE gives better ranks to 288

(47%) true associations, whereas the generic network PRINCE

gives better ranks to only 58 (9.5%) true associations. 266

associations are identically ranked under both network types. To

assess the significance of the improved rankings, we performed a

Wilcoxon signed-rank test between the rankings of true causal

genes provided by generic PRINCE and every tissue-specific

variant. As evident from Table 1, the rankings obtained by the

tissue-specific variants significantly outperform the ranking of the

generic variant (p,1E28). Similar trends were observed when

analyzing the entire association set (Table S2).

Inferring disease-tissue associations
Having the ability to predict the effects of disease genes on

specific tissues, naturally gives rise to the question: given a disease

(a collection of disease-causing genes), what tissues are most likely

to be affected? This is of particular interest, since while the overt

clinical manifestations of a disease are usually well-known, in many

cases it may have more subtle, sub-clinical tissue effects that may

escape early detection. Such alterations may manifest themselves

at later stages of the disease, and may be wrongly attributed to

other potential complications and confounding factors, instead of

the original disease, which can serve at least as an important

predisposing factor.

To investigate this potential scenario in depth, we developed a

method to computationally infer disease-tissue associations using

the framework presented in the previous section. For a given query

disease, we applied TS-ERW PRINCE (rw = 0.1, chosen for its

robustly positive results for both disease-gene association sets

presented in the paper) once for every tissue, using the tissue’s

modified PPI network as input. We then ranked the tissues

according to the relative rank PRINCE assigns to the causal

gene in the tissues’ respective networks (for results obtained using

the absolute score PRINCE assigns to the causal gene see Supp.

Text S1 and Figure S4). For example, given a disease d and a

known causal gene g, if g is ranked 4th. when using PRINCE with

the Kidney PPI and 6th. when using PRINCE with the Heart PPI,

then the kidney is considered more strongly associated with d than

the heart.

We compared our predicted disease-tissue associations to the

data collected by Lage et al. For every disease with MAS.40%,

we checked what ranking was given to the tissue which was

assigned the highest association score by Lage et al (Figure 4). In

53% of the cases the tissue predicted by Lage was ranked first by

us as well (p,0.013, see Methods). These results further show the

power of tissue specific PPI approach to detect tissue specific

disease involvement. Obviously, such analyses could not have been

performed using the generic PRINCE method, which is oblivious

of the tissue-specific information.

Discussion

In the current study we aimed to infer disease causing genes

using tissue-specific PPI networks. Most previous studies that used

these networks to infer causal genes were based on generic PPI

networks and ignored differences between tissues [19]. Neverthe-

less, this generic approach may be limited as there are significant

differences in expression patterns between tissues, both with

respect to mRNA as well as in protein levels [38,42]. These

differences imply that different tissues have different active PPI

networks: a specific interaction may take place in some tissues

while not in others, based on the expression distribution of the

interacting proteins [24]. Moreover, these differences may explain

why, in many cases, a disease may affect a specific tissue and not

others: the same protein may be active in specific tissues and

Table 1. Evaluation of generic and tissue-specific gene prioritization methods according to their ranking of the true causal genes.

#cases of better ranking

MAS threshold Tissue-specific network type Tissue-specific Tie Generic
Wilcoxon signed-rank
test p-value

8% NR 295 203 103 2.09e215

8% ERW, rw = 0.001 291 233 88 9.12e226

8% ERW, rw = 0.1 288 266 58 1.88e237

8% ERW, rw = 0.5 248 334 30 8.85e237

40% NR 125 91 40 7.68e29

40% ERW, rw = 0.001 124 102 30 1.24e214

40% ERW, rw = 0.1 122 117 17 2.84e217

40% ERW, rw = 0.5 103 145 8 6.34e217

The table presents a case-to-case comparison of the ranking provided by generic and tissue-specific PRINCE, as well as the statistical significance of this comparison
using Wilcoxon signed-rank test.
doi:10.1371/journal.pcbi.1002690.t001

Figure 4. Evaluation of tissue-disease association prediction.
The histogram shows the distribution of our disease-tissue ranking for
the tissues assigned by Lage et al. in every test case (disease-gene
association). As can be seen, in more than half of the cases the
associated tissue was predicted first among all other tissues.
doi:10.1371/journal.pcbi.1002690.g004

Network-Based Tissue-Specific Gene Prioritization
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inactive in others, or can have different function in different tissues

based on its different neighbors in the different networks.

Following these observations, we decided to examine the utility

of building and incorporating tissue specific PPI networks in our

analysis. Adding tissue specificity information for various diseases

[40] we were able to perform a tissue specific inference of disease

causing genes.

We used the PRINCE algorithm for gene prioritization and

contrasted between generic and tissue specific PPIs. We found that

the tissue specific approach enhances the performance of the

algorithm. In our analysis we used two different methods for tissue

specific PPI networks construction that yield different gene

prioritization performance. We observed that better results were

obtained when modifying the weights of the networks edges (using

the ERW method) compared to following the more drastic

approach of removing lowly-expressed proteins from the network

(using the NR method). There may be several explanations for

these differences. First, it may be related to PRINCE algorithm. A

global network-based algorithm such as PRINCE is expected to be

less successful when applied to a more disconnected network, such

as those generated by the NR approach. Moreover, even for other

algorithms that are based on local inference which is not

propagated, ERW may be proven more appropriate. NR is a

very strict method, eliminating every unexpressed protein, while

ERW assigns a continuous value for the interaction based on the

expression of the two interacting proteins. Thus, the former is

likely to be less robust to noisy data such as gene expression [43–

45]).

One might suggest that there is no need to generate tissue

specific PPI networks for tissue specific prioritization. Rather, one

might use the generic PRINCE and then, in a post-processing

manner, assign the lowest possible ranks to the lowly-expressed

genes in the tissue being investigated. While such an attenuation

approach performs poorly when applied to the entire gene-disease

association set (AUC = 0.755, Figure S3, ‘Unexpressed genes

attenuated’), it improves over the standard PRINCE when its

application is restricted to associations that involve genes that are

expressed in the relevant tissue. As shown in Figure S5, for

MAS.40% this approach yields an AUC of 0.897, albeit

significantly smaller than the attenuated version of TS-ERW

(AUC = 0.905, Wilcoxon sign rank P-value = 0.02 for rw = 0.1).

Interestingly, as a preprocessing step for the tissue specific

PRINCE algorithm, we found that a considerable fraction of

disease genes are not expressed in the tissue associated with the

disease. There may be several explanations for this observation.

First, it may reflect an error in measurements, either of the

expression microarray or the computational inference of disease-

tissue association. Nevertheless, such a substantial fraction of genes

is more likely to reflect a true biological observation. For example,

a protein may be active although having lower mRNA levels.

Posttranscriptional modifications or higher translational efficiency

may also result in higher protein levels or longer protein half-lives

[46,47]. In addition to putative differences between mRNA and

protein levels, obviously, there may be proteins who perform their

function in relatively low levels Indeed, we found that many of the

genes unexpressed at their disease’s assigned tissue also have low

overall expression levels, suggesting that these genes might still be

expressed at functional level in the diseased tissue.

Another possibility may be that the damage to the tissue was

caused by a disruption of the protein function within the tissue in

earlier developmental stages. Supporting this hypothesis we found

that lowly-expressed disease causing genes are enriched with

developmental annotations such as multicellular development

processes (GO:0007275) and organ development (GO:0048513),

and with stimulus response annotations (GO:0051716). Hence, the

protein may not be active in the adult tissues (as manifested by its

expression pattern), but a mutation in the genes may alter normal

development of the tissue or may prevent the normal response of

the tissue to stress or other stimuli, resulting in a disease. Finally,

due to the complexity and the dependencies between tissues in a

multi-tissue organism, a mutation in a protein active in one tissue

may result in clinical pathology in another tissue. For example,

Vitamin D – dependent rickets 1A (MIM: 264700) is primarily a

bone disorder, but it is caused by a mutation in the gene CYP27B1,

which is active in the kidney and participates in the hydroxylation

of Vitamin D into its active form, Calcitriol [48]. Overall, the role

of lowly expressed genes in causing disease in a given tissue is a

rather complex one and deserves a separate analysis that is beyond

the current scope.

Some limitations of the current analysis should be mentioned.

First, a direct tissue specific measure of protein abundance would

be more adequate than mRNA levels as a measure for the

presence and hence the activation and functionality of a protein in

a tissue. However, despite the best efforts of the scientific

community, compendiums of human tissue-specific protein

abundance levels across multiple tissues are not nearly as

comprehensive as the mRNA expression dataset we use, both in

tissue scope, gene coverage and quantitative resolution [42]. In

addition, the mutual expression of two possibly interacting

proteins does not guarantee that the interaction will take place,

and there are other factors that also should be considered such as,

most prominently, the proteins’ phosphorylation state. Neverthe-

less, even given these limitations, our tissue specific approach

performs better than the generic approach. As large scale data on

tissue specific protein abundance and cellular localization will

become available, it will be interesting to repeat the analysis

reported here to see whether it yields better predictions, as may be

expected.

In recent years, PPI networks were shown to be a powerful tool

in many fields of molecular biology, such as predicting protein

annotation and more [19,49,50]. We hope that the results of this

study will encourage future studies to utilize tissue-specific PPI

networks to further increase their predictive and explanatory

power.

Methods

Tissue specific gene expression
We downloaded the Novartis Research Foundation Gene

Expression Database (GNF) tissue-specific gene expression data

set [38] from the Gene Expression Omnibus (http://www.ncbi.

nlm.nih.gov/geo/) (GDS596). We averaged replicas and for each

gene took the probe with the maximal expression level. We used

60 non-diseased tissues for which disease-tissue association data

existed (out of 79 tissues). Following [24,51], a gene was

considered expressed in a tissue if its expression in that tissue

was at least 200 Affymetrix average-difference (AD) units.

Similarly, a protein was defined to be present in a tissue if the

corresponding gene was expressed there.

Disease-tissue associations
The disease-tissue association matrix was contributed by Kasper

Lage [40]. Lage et al. estimated the association of a tissue and a

disease by measuring their co-occurrences in PubMed abstracts.

Specifically, the association score was computed using Ochiai’s

coefficient (OC) [52], and then normalized by the sum of all OCs

for the same disease. Subsequently, each disease was associated

with the tissue that attained the highest association score. A
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computationally-generated disease-tissue association set was used

since at this time there was no large-scale, manually curated

disease-tissue association set available.

Analysis of lowly expressed causal genes
For 76 disease genes that were lowly-expressed or not expressed

(i.e., expression below 200 AD units) in the tissue associated with

the relevant disease, we conducted functional enrichment analysis

using the DAVID web server [53,54]. To test if these genes tend to

be lowly expressed across all tissues, we generated a random set of

genes that are lowly-expressed on the same disease tissues as the

original set. I.e., for each original disease-causing gene that is lowly

expressed in the associated tissue, we randomly selected another

gene that is also lowly-expressed in that tissue. Next, we computed

for each gene the number of tissues in which it was expressed

(expression breadth) and compared the resulting distribution to

that of a random set, repeating the comparison across 10,000

random sets built similarly. In the same manner we also evaluated

the significance of the distribution of average expression level of

the lowly-expressed genes.

To estimate the number of disease genes that are expected to be

lowly-expressed at an assigned tissue at random, we computed this

quantity for 10,000 permutations of the tissue assignment vector

taken for a given MAS threshold. We permuted the vector instead

of picking a tissue from a uniform distribution for every disease, in

order to maintain the bias of tissues that tend to be associated with

many diseases (e.g. skin diseases, cardiac diseases). Since the

fraction measured experimentally was lower than those resulting

from the 10,000 permutations, the estimated p-value is p,1E25.

Generic and tissue–specific network construction
We constructed a weighted human PPI network with 9,998

proteins and 41,702 interactions. The network is based on three

high throughput experiments [55–57] and the HPRD database

[58]. The interactions were assigned confidence scores based on

the experimental evidence available for each interaction using a

logistic regression model adapted from [59]. We considered two

ways of obtaining tissue-specific networks: Node-removal
tissue-specific PPI network was derived by removing from

the original PPI network proteins that are not expressed in the

relevant tissue, and all of the edges adjacent to them. The

remaining edges were retained, along with their weights. In an

edge – reweight tissue-specific PPI network, the confidence

of each interaction represents the probability that the interaction

takes place within a given tissue.

We now describe in detail the reweighting scheme that we used.

Our underlying assumption was that an interaction between

proteins P1 and P2 occurs at a specific tissue t if only if P1 and P2

interact in the general network and are both expressed at tissue t.

Denote the event that proteins Pi and Pj interact in the generic

network as Ii,j, and the event that protein Pi is expressed in tissue t as

X(i,t). Now, a gene is considered expressed in a given tissue if its

measured expression level in that tissue is above 200 AD units.

However, expression data is often noisy [45,51] so there is a chance

that a gene not passing this cutoff is still expressed (we assume that if

a gene passes the threshold then it is indeed expressed in the given

tissue). If we denote this probability by rw, then

w’i,j~P Pi, Pj interact Tissue~tj
� �

~

P Ii,j tj
� �

� P X i,tð Þ tjð Þ � P X j,tð Þ tjð Þ~wi,j � rwn

where wij is the original weight of the interaction and n is the

number (0–2) of lowly-expressed genes in tissue t out of {Pi,Pj}.

Thus, conversion of the generic PPI weight to a tissue specific PPI

weight using the edge reweight method involves multiplying an

edge’s weight by rw if one of its adjacent genes is not expressed in the

tissue, and by rw2 if neither of the edge’s adjacent genes are

expressed in the tissue.

0ƒrwƒ1:

Prioritization and performance evaluation
We extracted from GeneCards [39] 1347 gene-disease associ-

ations. 938 of these associations included diseases for which tissue

association information was available. This narrowed gene-disease

association set spans 744 distinct genetic disorders and 637 distinct

causal genes. For most experiments, diseases with a maximal tissue

association score (MAS) below a certain threshold were filtered

out. Disease information was taken from the Online Mendelian

Inheritance in Man (OMIM) knowledgebase [60]. The disease

similarity network was constructed and pre-processed as described

in [4]. PPI edge weights were also normalized by the degree of

their adjacent protein. The algorithm parameters were the same as

in [4]: a= 0.9, c = 215 and 10 iterations.

To evaluate the performance of the different variants of

PRINCE, we used a leave-one-out cross validation procedure. In

each cross-validation trial, a single disease-gene association, ,g,d.

was removed from the association set. In addition, any other

disease-gene association involving g was removed to avoid the

trivial case where mutations in the same gene cause two very

similar disorders. PRINCE was then executed to score the nodes

of the network. For the purpose of performance assessment, we

constructed an artificial genomic interval of 100 genes which are

part of the generic network and are located around g on the

genomic sequence, for every g. The scores assigned to these 100

genes were compared to g’s score. Note that for NR networks,

unexpressed genes may still appear in the artificial interval, but

they automatically gain a score of ‘0’. Using an artificial linkage

interval enabled us to simulate the real-life scenario where

prioritization is done only on genes residing within the genomic

interval association with a disease.

To generate the ROC curve, we bundled together all of the

scores from all of the cross validation trials, sorting them from

highest to lowest and recording true- and false- positive rates at

various score cutoffs. The actual causal genes were considered

positive, and the rest of the genes were considered negative.

For case-to-case rank comparison, we considered each trial

separately, and counted in how many trials did the tissue-specific

PRINCE gave the actual causal gene a better rank compared to

the entire network PRINCE, in how many times tissue-specific

PRINCE gave a worse rank, and in how many cases both input

networks yielded the same rank (Table 1).

To assess the significance of the difference between the

different AUCs, we employed 25-fold cross validation. We

performed random partitions and used the standard deviation

as error bars in Figure 3a. The statistical significance of the

ranking differences was evaluated via Wilcoxon signed-rank tests

(Tables 1 and S2).

To fine-tune the rw parameter, we constructed sets of TS-

ERW networks for varying values of rw and repeated the leave-

one-out cross validation procedure for each set, for both the

entire disease-gene association set and the expressed disease

genes association set. We filtered the diseases-gene association

sets with a MAS.40% disease-tissue association threshold. We
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sampled the value of rw at constant intervals in the range [0,1].

Having observed that the AUC peaks at the lowest non-zero

value of rw (0.1), we proceeded to sample smaller values of rw,

each one smaller than the previous in an order of magnitude. We

stopped this procedure when we observed a decline in

performance at both sets and convergence to the AUC yielded

by rw = 0.

Inferring disease-tissue associations
We filtered the disease-gene association set with a MAS.40%

disease-tissue association threshold. The 40% threshold was picked

in order to retain only high-confidence associations (,90%

estimated accuracy). We considered only disease-tissue associations

where the causal gene is known to be expressed in the tissue

assigned by Lage et al. [40].

For each disease-gene pair, we removed the association and ran

PRINCE with the same definitions and parameters as the previous

section. We repeated the procedure once per tissue, using that

tissue’s TS-ERW PPI with rw = 0.1 (A value shown to produce

stable positive results for both association sets) as an input for

PRINCE. We then assessed PRINCE’s performance for every

tissue using the relative rank PRINCE assigns the causal gene.

Finally, we sorted the tissues’ according to the PRINCE rank and

ranked them accordingly.

We evaluated the correlation of our tissue ranking with the

tissues given the highest association score by Lage et al. for each

disease (denoted ‘assigned tissue’ from now on). For every disease-

gene association, we checked the ranking we gave to the assigned

tissue.

To provide an estimated p-value for the high number of highly-

ranked assigned tissues, we performed a permutation test as

follows: For every disease-gene association, we assigned at random

a tissue to the disease, selecting from the tissues where the causal

gene is expressed (to counter the bias caused from focusing on

disease-gene associations where the gene is expressed in the

assigned tissue), and marked the ranking we give the randomly

assigned tissue’. When using the ‘ranking by PRINCE rank’

scheme, we counted how many times the random tissue was

ranked first. We repeated this procedure 1000 times.

Supporting Information

Dataset S1 Entrez ids of network genes. At Datasets S2,

S3, the network genes are indexed from 1 to 9998. This file

contains the Entrez ids of these genes, sorted by their index.

(XLSX)

Dataset S2 The Edge-Reweight tissue-specific PPI net-
work. The file is divided to 60 sections. Section headers are

denoted with ‘#’. Each row represents a single interaction. The

first and second columns are the interacting genes’ indices, and the

third column is the interaction confidence, after reweight.

Confidences are not normalized. This network was generated

with rw = 0.1.

(ZIP)

Dataset S3 The Node-Removal tissue-specific PPI net-
work. The file is divided to 60 sections. Section headers are

denoted with ‘#’. Each row represents a single interaction. The

first and second columns are the interacting genes’ indices, and the

third column is the interaction confidence. Confidences are not

normalized. Note that even though some of the genes are removed

at each network, the gene indices are the same as in the other

Datasets.

(ZIP)

Figure S1 Benchmarking the rw parameter. Comparing

the ROC AUC obtained by a leave-one-out cross validation trials

for varying values of rw, using (A) The expressed disease-genes

association set and (B) the entire disease-gene association set.

Disease-tissue associations were filtered using a MAS.40%

threshold.

(PNG)

Figure S2 ROC curve comparison of generic and tissue-
specific variants of PRINCE. These ROC curves yielded the

ROC AUC values presented in Figure 3. The curves are the

output of a leave-one-out cross validation test, using the expressed

disease-genes association set and filtering disease-tissue associa-

tions with a MAS threshold of 40%.

(PNG)

Figure S3 Comparing generic and tissue-specific PPIs’
performance in disease genes prioritization using the
entire disease-gene association set. Performance compari-

son between generic and different variants of tissue-specific

PRINCE according to ROC Area Under Curve of causal gene

prediction in a leave-one-out cross validation test, using the entire

disease-gene association data set. The comparison also includes a

special variant of generic PRINCE where genes unexpressed at the

tissue get an automatic score of 0 (Orange column, described at

the third paragraph of the discussion section). Test cases where

disease-tissue association had a MAS lower than 40% were

discarded.

(PNG)

Figure S4 Evaluation of tissue-disease association in-
ference using the Absolute Score scheme. The histogram

shows the distribution of our disease-tissue ranking for the tissues

assigned by Lage et al, when we use the Absolute Score ranking

scheme instead of the Relative Rank ranking scheme. In this

scheme, tissues are ordered according to the score PRINCE

assigns to the actual causal gene at every tissue. As can be seen,

this scheme leads to a more fine-grained differentiation of tissue

ranking.

(PNG)

Figure S5 Comparing generic and tissue-specific PPIs’
performance using post-process attenuation of unex-
pressed genes. A performance comparison between the generic

and different variants of tissue-specific PRINCE, using a special

version of PRINCE where, in a post-processing step, the scores of

all genes not expressed in the relevant tissue is set to 0. These AUC

values were obtained by a leave-one-out cross validation trial using

the expressed disease-genes set and a MAS threshold of 40%.

(PNG)

Table S1 Topological properties of the tissue-specific
Node Removal networks.
(XLSX)

Table S2 Evaluation of generic and tissue-specific gene
prioritization methods using the entire disease-gene
association set. The table presents a case-to-case comparison of

the ranking provided by generic and tissue-specific PRINCE, as

well as the statistical significance of this comparison using

Wilcoxon signed-rank test.

(PDF)

Text S1 Supporting results. Describing the analysis of causal

genes prioritizations with tissue-specific networks using the entire

disease-gene association set, as well as disease-tissue association

inference using the Absolute Score tissue ranking scheme.

(PDF)
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