

COMPLEXITY: Exercise No. 8
due next lesson

1. (Test 99) A graph $G = (V, E)$ has *bandwidth* k , if there is a bijection $f : V \rightarrow \{1, 2, \dots, |V|\}$ such that $|f(i) - f(j)| \leq k$ for each edge $(i, j) \in E$.
 - a. Give a polynomial time algorithm that given a graph G with bandwidth ≤ 5 and an appropriate mapping f , it finds a maximum independent set in G .
 - b. Prove or disprove: The Independent Set problem is **NP**-complete on graphs with bandwidth $\leq \sqrt{|V|}$.
2. (Test 99) Is the following problem **NP**-complete? strongly **NP**-complete?
Instance: Non-negative integers a_1, a_2, \dots, a_{2n} .
Question: Is there a set $S \subseteq \{1, 2, \dots, 2n\}$ such that $|S| = n$ and $\sum_{i \in S} a_i = \sum_{i \notin S} a_i$?
3. (Test 98) Is the following problem **NP**-complete? strongly **NP**-complete?
Instance: Positive integers a_1, \dots, a_n, b .
Question: are there non-negative integers x_1, \dots, x_n such that $\sum_{i=1}^n a_i x_i = b$.