

COMPLEXITY: Exercise No. 10
due next week

1. The class **FP** is the class of all binary relations R for which there is a polynomial DTM M_R such that for any input x , M_R outputs a string y such that $(x, y) \in R$, and if there is no such y then M_R outputs 'no'.

The class **FNP** is the class of all binary relations R for which there is a polynomial NDTM M_R such that for any input x , there is a run of M_R in which the output is a string y such that $(x, y) \in R$ (if there is such y), and in all other runs of M_R , the output z satisfies either $(x, z) \in R$ or $z = \text{'no'}$.

A function reduction from a binary relation R to binary relation R' , is a pair (f, g) of functions that can be computed in polynomial times, such that for all x, y , $(f(x), y) \in R' \iff (x, g(y)) \in R$. If there is a function reduction from R to R' we denote $R \prec_f R'$

- (a) Show that **FP** and **FNP** are close under function reductions (i.e., if $R \prec_f R'$ and $R' \in \mathbf{FP}$ then $R \in \mathbf{FP}$ and the same for **FNP**).
- (b) Show that function reductions compose (i.e., if $R \prec_f R'$ and $R' \prec_f R''$ then $R \prec_f R''$).
- (c) Show that FSAT is **FNP**-complete.

2. (Test 99) Consider the following problem:

Input: Sets $S_1, \dots, S_k \subseteq \mathcal{N}$ where $|S_i| = 3$ for all i .

Goal: Find a set $I \subseteq \{1, 2, \dots, k\}$ with maximum size such that $S_i \cap S_j = \emptyset$ for all $i, j \in I$. Give a polynomial time approximation algorithm to this problem with a constant approximation ratio.

3. (Test 99) Consider the **MINIMUM STEINER TREE** problem:

Input: A complete graph $G = (V, E)$, a subset of the vertices $X \subseteq V$, and a length function $l(e) > 0$ defined on the edges. The lengths satisfy the triangle inequality.

Goal: Find a tree $T = (W, F)$ such that $X \subseteq W \subseteq V$, $F \subseteq E$ and $\text{Length}(T) = \sum_{e \in F} l(e)$ is minimal.

Give an approximation algorithm for this problem whose approximation ratio is ≤ 2 .

Note: If $X = V$ then the optimal tree is a minimum spanning tree, but this is not true if $X \subset V$.

4. (Test 96) Define the **MULTIPROCESSOR SCHEDULING** problem:

Input: positive integers l_1, \dots, l_n (lengths of tasks), and a positive integer m (the number of processors).

Goal: Find a partition $S_1 \cup S_2 \cup \dots \cup S_m = \{1, \dots, n\}$ such that $\max_i \sum_{j \in S_i} l_j$ is minimum. Give a polynomial time approximation algorithm with a constant approximation ratio.