ADVANCED NUMBER THEORY 2008 ASSIGNMENT 2: THE KRONECKER SYMBOL

Due date: Wednesday, June 11, 2008

Recall from the basic number theory course that for m > 0 odd, the Jacobi symbol $\left(\frac{a}{m}\right)$ is defined in terms of the Legendre symbol by writing $m = \prod p_i$ as a product of odd primes and then setting $\left(\frac{a}{m}\right) := \prod_i \left(\frac{a}{p}\right)$. The law of quadratic reciprocity states that for m > 0odd,

$$\left(\frac{-1}{m}\right) = (-1)^{\frac{m-1}{2}}, \quad \left(\frac{2}{m}\right) = \begin{cases} 1, & m = \pm 1 \mod 8\\ -1, & m = \pm 3 \mod 8 \end{cases}$$

and that for m > 0, n > 0 coprime and odd we have

$$\left(\frac{m}{n}\right) = \left(\frac{n}{m}\right)(-1)^{\frac{m-1}{2}\frac{n-1}{2}}$$

The **Kronecker symbol** $\left(\frac{d}{m}\right)$ is defined for and m > 0 and d = 0, 1 mod 4 not a perfect square, by requiring

$$\begin{pmatrix} \frac{d}{2} \end{pmatrix} = \begin{cases} 1 & d \equiv 1 \mod 8\\ -1 & d \equiv 5 \mod 8; \end{cases}$$

for an odd prime p, $\left(\frac{d}{p}\right) = 0$ if $p \mid d$ and $\left(\frac{d}{p}\right)$ is the Legendre symbol for $p \nmid d$; and for $m = \prod_i p_i$ set $\left(\frac{d}{m}\right) = \prod_i \left(\frac{d}{p_i}\right)$. In particular for m > 0odd this is just the Jacobi symbol. Show that

1. a) $\left(\frac{d}{2}\right) = \left(\frac{2}{|d|}\right)$, d odd. b) For m, n > 0, $\left(\frac{d}{mn}\right) = \left(\frac{d}{m}\right)\left(\frac{d}{n}\right)$

2. If m > 0 is coprime to d then $\left(\frac{d}{m}\right) = \left(\frac{m}{|d|}\right) d$ odd.

3. If $d = 2^b d_1$ with d_1 odd and b > 0 then

$$\left(\frac{d}{m}\right) = \left(\frac{2}{m}\right)^b (-1)^{\frac{d_1-1}{2}\frac{m-1}{2}} \left(\frac{m}{|d_1|}\right)$$

4. Define $\chi_d(m) := \left(\frac{d}{m}\right)$ for m > 0. Show that $\chi_d(m) = \chi_d(n)$ if $m \equiv n \mod |d|$. Conclude that χ_d is a real Dirichlet character mod |d|.