ADVANCED NUMBER THEORY 2008 ASSIGNMENT 4

Due date: Wednesday, June 25, 2008

1. Decide which of the following forms are equivalent:

2. An automorph of a binary quadratic f = [a, b, c] is a unimodular transformation $\begin{pmatrix} m & n \\ k & l \end{pmatrix} \in SL_2(\mathbb{Z})$ which transforms f to itself. If f is anisotropic (disc(f) is not a perfect square) and primitive (gcd(a, b, c) = 1), then all automorphs are of the form

$$P(t,u) = \begin{pmatrix} \frac{t-bu}{2} & -cu\\ au & \frac{t+bu}{2} \end{pmatrix}$$

where (t, u) solves the Pell equation $t^2 - Du^2 = 4$, D = disc(f).

When the discriminant D > 0 is not a perfect square, the group of automorphs is infinite, of the form $\pm P_0^n$, $n \in \mathbb{Z}$ where $P_0 = P(t_0, u_0)$, with $t_0 > 0$, $u_0 > 0$ is the minimal solution of the Pell equation $t^2 - Du^2 = 4$.

Find the generator P_0 for the forms [3, 1, -1], [-3, 3, 1], [1, 0, -58], [2, 0, -29].

3. a) Find all automorphs of the isotropic form f(x, y) = xy.

b) Do the same for all isotropic nondegenerate $(\operatorname{disc}(f) \neq 0)$ forms. (=extra credit).