ADVANCED NUMBER THEORY 2012 ASSIGNMENT 4 DUE DATE: THURSDAY, JUNE 7, 2012

The following exercises are to gain facility with using Stirling's formula, which says that

$$\log \Gamma(s) = (s - \frac{1}{2})\log s - s + \frac{1}{2}\log 2\pi + O(\frac{1}{|s|})$$

as $|s| \to \infty$ in a sector $|\arg s| < \pi - \delta$, and that in that sector

$$\frac{\Gamma'}{\Gamma}(s) = \log s + O(\frac{1}{|s|})$$

1. Show that the binomial coefficients satisfy

$$\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}, \quad \text{as } n \to \infty$$

2. Show that for $s = \frac{1}{2} + it$, t real, as $t \to +\infty$, $\frac{1}{\pi} \operatorname{Im} \log \left(\pi^{-s/2} \Gamma(\frac{s}{2}) \right) = \frac{t}{2\pi} \log \frac{t}{2\pi} - \frac{t}{2\pi} - \frac{1}{8} + O(\frac{1}{t})$

3. Using the functional equation for $\zeta(s)$ and Stirling's formula, show that for $s = \sigma + it$ with $\sigma = \text{Re}(s) < 0$,

$$|\zeta(s)| \ll (\frac{t}{2\pi})^{\frac{1}{2}-\sigma}$$

as $t \to +\infty$ ($\sigma < 0$ is fixed), the implied constant depending on σ .