NUMBER THEORY SEMINAR 2014/15 EXERCISE 3 PROF. ZEÉV RUDNICK DUE DATE: DECEMBER 11, 2014

1. Show that there is some c > 0 so that for all $x \gg 1$, every interval $(x - cx^{1/4}, x)$ contains a sum of two squares.

Hint: Given $y \gg 1$, show that there is a square $y - O(\sqrt{y}) < \Box < y$. It is not known if we may take c arbitrarily small.

2. Show that there is some c > 0 for which there are arbitrarily large x for which there is an interval $[x, x + c \frac{\log x}{\log \log x}]$ which contains no sums of two squares.

Hint: If p_j is the *j*-th prime congruent to 3 mod 4, find *n* with $n + j = p_j \mod p_j^2$, $j = 1, \ldots, J$.