EXERCISE 1 NUMBER THEORY RESEARCH SEMINAR 2017/18 PROF. ZEÉV RUDNICK DUE DATE: NOVEMBER 8, 2017

1. Let k be an even integer, and p a prime so that 2p-1 is also prime, and such that both p and 2p-1 are coprime to k. Let n = k(2p-1). Show that $\varphi(n) = \varphi(n+k)$ (where φ is Euler totient function).

2. Show that the probability that a random permutation on n letters is an n-cycle, is 1/n.

3. Let $\Omega_n(\sigma)$ be the number of cycles of a permutation $\sigma \in S_n$, and let

$$f_n(t) := \mathcal{E}(e^{it\Omega_n})$$

be the characteristic function of Ω_n , thought of as a random variable on S_n . Here E denotes the expectation, that is the average over all permutations in S_n . Show that

$$f_n(t) = \prod_{j=1}^n (1 - \frac{1}{j} + \frac{e^{it}}{j}) .$$