
MODULAR FORMS 2019:
FOURIER COEFFICIENTS I
WEEK OF APRIL 14 2019
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1. The Fourier expansion of Ek and ∆

One of the most important aspects in applications of the theory of
modular forms is their “Fourier coefficients”, that is the coefficients in
the q-expansion

f(τ) = f̃(q) =
∑
n≥0

a(n)qn

Exercise 1. Let f, g ∈Mk, so that the first b k
12
c+1 Fourier coefficients

coincide (that is f =
∑

n≥0 a(n)qn, g =
∑

n≥0 b(n)qn and a(n) = b(n)

for all 0 ≤ n ≤ b k
12
c). Then f = g.

1.1. The q-expansion of Gk. We determine the Fourier expansion of
the Eisenstein series Gk. Define the divisor sums

σs(n) :=
∑
d|n

ds

Theorem 1.1. For k > 2 even,

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

We present two different proofs
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Proof. We write

Gk(τ) =
∞∑
n=0

Ane
2πinτ

We already saw that A0 = 2ζ(k). For n ≥ 1, write

An =

∫ 1

0

Gk(x+ iy)e−2πin(x+iy)dx =
∑

(c,d)6=(0,0)

∫ 1

0

(cτ + d)−ke−2πinτdx

The terms with c = 0 give∑
d6=0

d−k
∫ 1

0

e−2πin(x+iy)dx = 2ζ(k)δn,0 = 0

since we assume n 6= 0.
For the terms with c 6= 0, recall that k is even to replace the sum

over c 6= 0 by twice the sum over c ≥ 1∑
c 6=0

= 2
∑
c≥1

∑
d∈Z

∫ 1

0

(cτ + d)−ke−2πinτdx

For fixed c ≥ 1, write d = cq + r with q ∈ Z and 1 ≤ r ≤ c, so that∑
d∈Z

∫ 1

0

(cτ + d)−ke−2πinτdx =
∑
q∈Z

∑
r mod c

∫ 1

0

(c(τ + q) + r)−ke−2πin(τ+q)dx

=
∑

r mod c

∫ ∞
−∞

(cτ + r)−ke−2πinτdx

= c−k
∑

r mod c

∫ ∞
−∞

(τ +
r

c
)−ke−2πinτdx

= c−k
∑

r mod c

e2πin
r
c

∫ ∞
−∞

τ−ke−2πinτdx

=

{
(n
c
)k−1tk, c | n

0, c - n

where tk =
∫∞
−∞ τ

−ke−2πiτdx.
Now summing over c ≥ 1 gives for n ≥ 1

An = 2tk
∑
c|n

(
n

c
)k−1 = 2tk

∑
d|n

dk−1 = 2tkσk−1(n)
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Finally, we need to evaluate the integral tk, which can be shown to
equal

tk :=

∫ ∞
−∞

τ−ke−2πiτdx = (2π)k−1
∫ ∞
−∞

τ−ke−iτdx =
(−2πi)k

(k − 1)!

which concludes the proof. �

Here is a different proof:

Proof. We write

Gk(τ) = 2ζ(k) + 2
∞∑
m=1

Rm(τ), Rm(τ) :=
∑
n∈Z

1

(mτ + n)k

We will need the partial fraction expansion of the cotangent function
(see your Complex Variables course):

π cotπτ =
1

τ
+
∞∑
n=1

( 1

τ + n
+

1

τ − n

)
On the other hand, writing q = e2πiτ , we have

π cot(πτ) = πi
eiπτ + e−iπτ

eiπτ − e−iπτ
= πi− 2πi

1− q
= −πi− 2πi

∞∑
d=1

qd

Hence we find

1

τ
+
∞∑
n=1

( 1

τ + n
+

1

τ − n

)
= −πi− 2πi

∞∑
d=1

qd

Differentiate this k − 1 times (w.r.t. τ , recall q = e2πiτ ) and divide by
(−1)k−1(k − 1)! to obtain∑

n∈Z

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∞∑
d=1

dk−1e2πidτ

Replace τ by mτ for m ≥ 1 to obtain

Rm(τ) :=
∑
n∈Z

1

(mτ + n)k
=

(−2πi)k

(k − 1)!

∞∑
d=1

dk−1e2πimdτ

Hence

Gk(τ) = 2ζ(k) + 2
∞∑
m=1

Rm(τ) = 2ζ(k) + 2
(−2πi)k

(k − 1)!

∞∑
d=1

∞∑
d=1

dk−1e2πimdτ
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Finally, in the double sum we write n = dm and change order of
summation to obtain

∞∑
d=1

∞∑
d=1

dk−1e2πimdτ =
∞∑
n=1

(∑
d|n

dk−1
)
qn =

∞∑
n=1

σk−1(n)qn

which gives the claim. �

We define

Ek(τ) =
1

2

∑
gcd(m,n)=1

(mτ + n)−k

which satisfies Ek(i∞) = 1, so that Gk = 2ζ(k)Ek. Then

Ek(τ) = 1 + γk

∞∑
n=1

σk−1(n)qn

where (see Table 1).

γk =
( (2πi)k

(k − 1)!

)
/ζ(k)

k 4 6 8 10 12 14 16

γk 240 −504 480 -264 65520/691 -24 16320/3617

Table 1. The numbers γk.

Euler showed that for k ≥ 2 even

ζ(k) =
2k−1

k!
B k

2
· πk

where Bm are the Bernoulli numbers (Table 2)

x

ex − 1
= 1− x

2
+
∞∑
m=1

(−1)m+1Bm
x2m

(2m)!

m 1 2 3 4 5 6 7

Bm 1/6 1/30 1/42 1/30 5/66 691/2730 7/6

Table 2. The Bernoulli numbers

Therefore

γk =
(2πi)k/(k − 1)!

2k−1Bk/2πk/k!
= (−1)k/2

2k

Bk/2
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and in particular

γ4 = (−1)2
2 · 4
1/30

= 240, γ6 = (−1)3
2 · 6
1/42

= −504

so that

Corollary 1.2.

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn, E6(τ) = 1− 504
∞∑
n=1

σ5(n)qn

1.2. The q-expansion of ∆.

Theorem 1.3.

∆(τ) = (2π)12
∞∑
n=1

τ(n)qn

with τ(1) = 1, and τ(n) ∈ Z are integers.

Proof. We have ∆ = g32 − 27g23 and we saw that g2(i∞) = 4π4/3,

g3(i∞) = 8π6/27, so that g2 = 4π4

3
E4, g3 = (2π

3
)3E6. Therefore

∆ = (
4π4

3
E4)

3 − 27(
2π

3
)6E2

6 =
26π12

27

(
E3

4 − E2
6

)
Inserting the q-expansions of E4 and E6 (Corollary 1.2) gives

E3
4 − E2

6 =
(

1 + 240q +O(q2
)3
−
(

1− 504q +O(q2)
)2

=
(

1 + 3 · 240q +O(q2)
)
−
(

1− 2 · 504q +O(q2)
)

= 1728q +O(q2)

Hence (note 1728 = 123)

∆ =
26π12

27

(
123q +O(q2)

)
= (2π)12q +O(q2)

which shows that τ(1) = 1.
More generally, define τ(n) by

E3
4−E2

6 =
(

1+240
∞∑
n=1

σ3(n)qn
)3
−
(

1−504
∞∑
n=1

σ5(n)qn
)2

=: 1728
∞∑
n=1

τ(n)qn

then

∆(τ) = (2π)12
∞∑
n=1

τ(n)qn
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We write
∞∑
n=1

τ(n)qn =
E3

4 − E2
6

1728
=

(1 + 240A)3 − (1− 504B)2

1728

where

A :=
∞∑
n=1

σ3(n)qn, B :=
∞∑
n=1

σ5(n)qn

have q-expansions with integer coefficients. Expanding and simplifying
gives

∞∑
n=1

τ(n)qn = 5
A−B

12
+B + 100A2 + 8000A3 − 147B2

and we are reduced to checking that the q-series (A−B)/12 has integer
coefficients, which we leave as an exercise. �

Exercise 2. Show that

σ3(n) = σ5(n) mod 24

The first few values of τ(n) are given in Table 3

n 1 2 3 4 5 6 7 8
τ(n) 1 -24 252 -1472 4830 -6048 -16744 84480

n 9 10 11 12 13 14 15 16
τ(n) -113643 -115920 534612 -370944 -577738 401856 1217160 987136

Table 3. The Ramanujan τ function.

1.3. Properties of the Ramanujan tau-function τ(n). Jacobi’s
product formula assets that

∞∑
n=1

τ(n)qn = q
∞∏
n=1

(1− qn)24

Ramanujan (1916) observed, but did not prove, the following three
properties of τ(n):

(1) τ(mn) = τ(m)τ(n) if gcd(m,n) = 1
(2) τ(p)τ(pr) = τ(pr+1) + p11τ(pr−1) for p prime and r ≥ 1.
(3) |τ(p)| ≤ 2p11/2 for all primes p.
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The first two properties were proved by Mordell (1917), and can be
combined as

τ(m)τ(n) =
∑

d|gcd(m,n)

d11τ(
mn

d2
)

The third one, called the Ramanujan conjecture, was proved by Deligne
in 1973 as a consequence of his proof of the Weil conjectures.

The Sato-Tate conjecture (Mikio Sato 1963, based on computer

experiments): For p prime τ(p)/
√
p11 =: 2 cos θp is distributed like the

trace of a random SU(2) matrix. That is

lim
x→∞

1

#{p ≤ x}
#{p ≤ x : α < θp < β} =

2

π

∫ β

α

(sin θ)2dθ

This was proved by Barnet-Lamb, Geraghty, Harris, Taylor (2009).

Lehmer’s conjecture (1947): τ(n) 6= 0 for all n. This is still open.

1.4. The q-expansion of j. Using the information about the Fourier
coefficients of E4 and ∆, we may compute the coefficients of the q-
expansion of the j-invariant

j = 1728
g32
∆

=
E3

4

∆/(2π)12

Since E4 = 1+240
∑

n≥1 σ3(n)qn and ∆/(2π)12 = q
(

1+
∑

n≥2 τ(n)qn−1
)

have integer coefficients, we find

j =
E3

4

∆/(2π)12
=

1

q

1 + 240
∑

n≥1 σ3(n)qn

1 +
∑

n≥2 τ(n)qn−1
=

1

q
+
∑
n≥0

c(n)qn

and therefore c(n) ∈ Z are integers.
The first few terms in the expansion are

j =
1

q
+ 744 + 196884q + 21493760q2 + . . .

The Fourier coefficients c(n) grow much faster than those of modular
forms. Asymptotically,

c(n) ∼ e4π
√
n

√
2n3/4

(Petersson 1932).
In 1978, John McKay observed that the coefficient c(1) satisfies

196884 = 1 + 196883
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with the significance that the number 196883 is the dimension of the
smallest irreducible representation of the monster group, the largest
sporadic simple group, having order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8 · 1053

This led to the theory of “monstrous moonshine”, asserting that the
c(n)’s are the dimensions of the graded part of an infinite-dimensional
graded algebra representation of the monster group called the moon-
shine module.


