MODULAR FORMS 2019: LATTICES

ZEÉV RUDNICK

1. The space of lattices

Definition. A lattice in \mathbb{R}^d is a <u>discrete</u> subgroup $L \subset \mathbb{R}^d$ which <u>spans</u> \mathbb{R}^d .

The canonical example is the integer lattice \mathbb{Z}^d .

"Discrete" means that any element $\ell \in L$ is isolated from the rest, that is there is some $\epsilon(\ell) > 0$ so that $\operatorname{dist}(\ell, \ell') = |\ell - \ell'| \ge \epsilon(\ell)$ for all $\ell' \ne \ell$ in L. Since L is a subgroup of \mathbb{R} , we may in fact take ϵ uniform, by translation invariance of the distance: if $\delta = \inf |\ell| = \operatorname{dist}(\ell, 0)$ then $\operatorname{dist}(\ell, \ell') = |\ell' - \ell| = \operatorname{dist}(\ell - \ell', 0) \ge \delta$.

Discreteness also implies there L has no accumulation points, because if $\{\ell_n\}$ is a sequence of <u>distinct</u> points with $\ell_n \to x$, then we may, by throwing out some points, and relabeling we may assume that $|\ell_1 - x| \ge |\ell_2 - x| \ge \cdots \searrow 0$. But then $0 < |\ell_{n+1} - \ell_n| \le |\ell_{n+1} - x| + |x - \ell_n| \to 0$ contradicting discreteness.

Therefore any subset of L admits a shortest vector (not necessarily unique).

Theorem 1.1. Any lattice $L \subset \mathbb{R}^d$ has a basis: There is a basis w_1, \ldots, w_d of \mathbb{R}^d such that $L = \mathbb{Z}w_1 + \cdots + \mathbb{Z}w_d$.

Exercise 1. Conversely, a set of the form $\mathbb{Z}w_1 + \cdots + \mathbb{Z}w_d$ with w_i linearly independent is a lattice.

We begin with the one-dimensional case (d = 1).

Lemma 1.2. A lattice in \mathbb{R} is of the form $L = \mathbb{Z}w$ where $w \neq 0$ is a shortest nonzero vector: $|\ell| \geq |w|$ for all $0 \neq \ell \in L$.

Proof. Let $\delta := \operatorname{dist}(0, L \setminus \{0\}) = \operatorname{inf}(\operatorname{dist}(\ell, 0) : \ell \neq 0) > 0$. By symmetry $\ell \mapsto -\ell$, we can find a sequence of positive elements of L so that $\ell_n \to \delta$. Since L has no accumulation points, that sequence has to stabilize: $\ell_n = \ell_N$ for all $n \geq N$, so that $w = \ell_N = \delta$ is a shortest vector.

Date: March 27, 2019.

ZEÉV RUDNICK

Now we show that $L = \mathbb{Z}w$: By replacing w by -w, we can assume that w > 0. Clearly $\mathbb{Z}w \subset L$, and if there is some vector $\ell \in L \setminus \mathbb{Z}w$ then there is some integer n so that $nw < \ell < (n+1)w$, and then $\ell' := \ell - nw$ is a nonzero positive element of L which is shorter than w:

$$0 < \ell' = \ell - nw < (n+1)w - nw = w,$$

a contradiction.

Now let's do the case d = 2 (and then stop).

Lemma 1.3. A lattice in \mathbb{R}^2 is of the form $\mathbb{Z}w_1 + \mathbb{Z}w_2$ with w_1, w_2 linearly independent (over \mathbb{R}). Moreover, we may take w_1 a shortest nonzero vector, and w_2 a shortest vector linearly independent from w_1 .

Proof. Let $0 \neq w_1 \in L$ be a shortest vector. Then $L_1 := L \cap \mathbb{R}w_1$ is a lattice in $\mathbb{R}w_1$, and w_1 is a shortest vector in L_1 , and so by the 1-dim case, $L_1 = L \cap \mathbb{R}w_1 = \mathbb{Z}w_1$.

Now take a shortest vector w_2 in $L \setminus L \cap \mathbb{R}w_1 = L \setminus \mathbb{Z}w_1$ (it exists because by discreteness, and subset of L admits a shortest vector). Note that $L \cap \mathbb{R}w_2 = \mathbb{Z}w_2$ again by the 1-dim case.

Because $w_2 \notin \mathbb{R}w_1$, we must have that w_1, w_2 span \mathbb{R}^2 .

We claim that $L = \mathbb{Z}w_1 + \mathbb{Z}w_2$. Otherwise, take a vector $v \in L \setminus \mathbb{Z}w_1 + \mathbb{Z}w_2$. Write $v = x_1w_1 + x_2w_2$ with $x_i \in \mathbb{R}$. If one of x_i is integer, then we can replace v by $v' = v - x_iw_i$ to get a vector of the form $x_jw_j \in \mathbb{R}w_j \cap L = \mathbb{Z}w_j$, and so also the second coordinate is integer, contradicting $v \notin \mathbb{Z}w_1 + \mathbb{Z}w_2$. So we must have both $x_i \notin \mathbb{Z}$.

Take integers n_i so that $0 < |x_i - n_i| \le 1/2$, and replace v by $v' = v - (n_1w_1 + n_2w_2) = y_1w_1 + y_2w_2$, to get a vector $v' = \in L \setminus (\mathbb{Z}w_1 + \mathbb{Z}w_2)$ which is small: Since y_1w_1 , y_2w_2 are linearly independent, then by the refined triangle inequality,

$$|y_1w_1 + y_2w_2| <_{\neq} |y_1w_1| + |y_2w_2|$$

Recall $|w_1| \leq |w_2|$ and $|y_i| \leq 1/2$ to get

$$|v'| < |y_1w_1| + |y_2w_2| \le \frac{1}{2}|w_1| + \frac{1}{2}|w_2| \le \frac{1}{2}|w_2| + \frac{1}{2}|w_2| = |w_2|$$

and so $v' \in L \setminus \mathbb{R}w_1$ is a vector in L, linearly independent of w_1 , which is shorter than w_2 , contradicting the choice of w_2 .

Hence $L = \mathbb{Z}w_1 + \mathbb{Z}w_2$.

Remark: Let $L \subset \mathbb{R}^d$ be a discrete subgroup. The following are equivalent

- (1) L spans \mathbb{R}^d
- (2) $L = \mathbb{Z}w_1 + \cdots + \mathbb{Z}w_d$ for a basis of \mathbb{R}^d

- (3) \mathbb{R}^d/L is compact,
- (4) $\operatorname{vol}(\mathbb{R}^d/L) < \infty$, that is there is a "fundamental domain" for L with finite volume.

1.1. Change of basis and $\operatorname{GL}(2,\mathbb{Z})$. Suppose $L = \mathbb{Z}w_1 + \mathbb{Z}w_2 = \mathbb{Z}w'_1 + \mathbb{Z}w'_2$. This happens if and only if there is an invertible integer matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}(2,\mathbb{Z})$ such that $w'_1 = aw_1 + w_2, \quad w_2 = cw_1 + dw_2$

Note that for $A \in M(2,\mathbb{Z})$ to be invertible over \mathbb{Z} it is necessary and sufficient that det $A = \pm 1$ is invertible in \mathbb{Z} .

1.2. Homothety classes. Now identify \mathbb{R}^2 with \mathbb{C} . We say two lattices $L, L' \subset \mathbb{C}$ are homothetic if $L' = \lambda L$ for some scalar $\lambda \in \mathbb{C}^*$. Equivalently, L' is obtained from L by some dilation with a positive number r > 0 and a rotation. This is clearly an equivalence relation.

Let \mathcal{R} be the set of lattices in \mathbb{C} , and $X(1) := \mathcal{R}/\mathbb{C}^*$ the set of homothety classes. We want to give a geometric description of X(1). Let

$$\mathcal{M} = \{ (w_1, w_1) \in \mathbb{C}^2 : \operatorname{Im}(w_1/w_2) > 0 \}$$

To any pair $(w_1, w_2) \in \mathcal{M}$ we associate the lattice $L = \mathbb{Z}w_1 + \mathbb{Z}w_2 \in \mathcal{R}$. Conversely, to any lattice $L \subset \mathbb{C}$ we have a basis w_1, w_2 so in particular w_1, w_2 are linearly independent over \mathbb{R} , so that $\operatorname{Im}(w_1/w_2) \neq 0$. Since

$$\operatorname{Im} \frac{1}{\tau} = -\operatorname{Im}(\tau)/|\tau|^2$$

we can change the role of w_1 and w_2 and obtain that the set of bases of L is split into two "oriented" equivalence classes, say the "positive" bases are those with $\text{Im}(w_1/w_2) > 0$. Thus there is a surjective map

$$\mathcal{M} \to \mathcal{R}, \quad (w_1, w_2) \mapsto \mathbb{Z} w_1 + \mathbb{Z} w_2$$

Any two (ordered) bases $\langle w_1, w_2 \rangle$ and $\langle w'_1, w'_2 \rangle$ differ by an element of $GL(2, \mathbb{Z})$, and two belong to the same oriented equivalence class iff they differ by an element in $SL(2, \mathbb{Z})$, since

$$\operatorname{Im} \frac{aw_1 + bw_2}{cw_1 + dw_2} = \operatorname{Im} \frac{a\frac{w_1}{w_2} + b}{c\frac{w_1}{w_2} + d} = \frac{ad - bc}{|c\frac{w_1}{w_2} + d|^2} \operatorname{Im}(w_1/w_2)$$

Thus we obtain a bijection

$$\mathcal{M}/\operatorname{SL}(2,\mathbb{Z})\simeq\mathcal{R}$$

This bijection descends to a bijection with the space X(1) of homothety classes of lattices

$$\mathbb{C}^* \backslash \mathcal{M} / \operatorname{SL}(2, \mathbb{Z}) \simeq \mathcal{R} / \mathbb{C}^* =: X(1)$$
$$(w_1, w_2) \mapsto \mathbb{Z}1 + \mathbb{Z}\tau, \quad \tau := \frac{w_1}{w_2} \in \mathbb{H}$$

The number $\tau := \frac{w_1}{w_2}$ is an element of the upper half-plane \mathbb{H} , so the space X(1) of homothety classes of lattices is identified with the quotient space $\mathbb{H}/\mathrm{SL}(2,\mathbb{Z})$.

1.3. The fundamental domain. To any homothety class of lattices, we can find, by scaling appropriately, a basis $(1, \tau)$ where 1 is a shortest vector, and $\tau = x + iy$ is linearly independent and $|\tau| \ge 1$ (since 1 is a shortest vector); and if necessary replacing it by $-\tau$, we can assume that $y = \text{Im}(\tau) > 0$, so that $(1, \tau) \in \mathcal{M}$. We can also take τ to be a shortest vector linearly independent from 1. This forces $x = \text{Re}(\tau) \in [-1/2, 1/2]$. Indeed, if we replace $\tau = w_2$ by $\tau' = \tau - n = w_2 - nw_1$, then we still get a basis element, with $\text{Im}(\tau') = \text{Im}(\tau) = y$, and

$$|\tau'|^2 = (x-n)^2 + y^2$$

so that we get a minimal value when $|x - n| \le 1/2$. Thus each homothety class in X(1) gives us an number in the (closure of the) region (see Figure 1)

$$\mathcal{F} = \{ \tau \in \mathbb{H} : \operatorname{Re}(\tau) \in [-\frac{1}{2}, \frac{1}{2}), |\tau| > 1 \text{ or } |\tau| = 1 \text{ and } \operatorname{Re} \tau \le 0 \}$$

FIGURE 1. The fundamental domain \mathcal{F} (shaded) and it's translates.

4

We will show that two elements of the interior of \mathcal{F} represent different classes of X(1), and that the only equivalences are of i with itself and of $\rho = e^{2\pi i/3}$ with itself.

From now on, we denote

$$\Gamma = \mathrm{SL}(2,\mathbb{Z})/\{\pm I\}$$

First, we define two important transformations $S, T \in \Gamma$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} : \tau \mapsto -\frac{1}{\tau} \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : \tau \mapsto \tau + 1$$

Theorem 1.4. a) For every $\tau \in \mathbb{H}$, there is some $g \in \Gamma$ so that $g\tau \in \mathcal{F}$.

b) If two distinct points $\tau, \tau' \in \overline{\mathcal{F}}$ are Γ -equivalent, then they lie on the boundary of \mathcal{F} , and either $\operatorname{Re}(\tau) = \pm 1/2$ and $\tau' = T^{\pm 1}\tau = \tau \pm 1$, or $|\tau| = 1$ and $\tau' = S\tau = -1/\tau$,

c) Let $I(\tau) = \operatorname{Stab}_{\Gamma}(\tau)$. Then $I(\tau) = \{\pm I\}$ except if τ is Γ -equivalent to

- *i*, in which case $I(i) = \{\pm I, \pm S\}$
- $\rho := e^{2\pi i/3}$, in which case $I(\rho) = \{\pm I, \pm ST, \pm (ST)^2\}$ is generated by ST
- $-\overline{\rho} = e^{\pi i/3}$, when $I(-\overline{\rho}) = \{\pm I, \pm TS, \pm (TS)^2\}$ is generated by TS.
- d) Γ (in fact SL(2, \mathbb{Z})) is generated by S and T.

Proof. a) Let $\Gamma' = \langle S, T \rangle \subseteq \Gamma$. For $\tau \in \mathbb{H}$, consider the Γ' orbit. Recall that

Im
$$g\tau = \frac{\operatorname{Im} \tau}{|c\tau + d|^2}, \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Take a point $g\tau \in \Gamma'\tau$ with <u>maximal</u> imaginary part, which means that the vector $c\tau + d \in \mathbb{Z}1 + \mathbb{Z}\tau$ is shortest (in the orbit of Γ'). Necessarily $|g\tau| \geq 1$, otherwise $S(g\tau) \in \Gamma'\tau$ would have bigger imaginary part, because if $|g\tau| < 1$ then

$$\operatorname{Im} Sg\tau = \frac{\operatorname{Im} g\tau}{|g\tau|^2} > \operatorname{Im} g\tau$$

contradicting the maximality of $\operatorname{Im} q\tau$.

Now if $n - \frac{1}{2} \leq \operatorname{Re} g\tau < n + 1/2$, apply T^{-n} to $g\tau$ to obtain a point $\tau' = T^{-n}g\tau = g\tau - n \in \Gamma'\tau$ with real part in [-1/2, 1/2), which has the same imaginary part as $g\tau$ and so lies in $\overline{\mathcal{F}}$.

We skip the proof of (b) and (c).

To prove (d), that $\Gamma = \langle S, T \rangle$. Given $g \in \Gamma$, pick $\tau_0 \in \text{int}\mathcal{F}$ (e.g. $\tau_0 = 2i$) and consider the point $g\tau_0$. By part (a), there is some $g' \in \Gamma'$ such that $g'g\tau_0 \in \overline{\mathcal{F}}$. Then the points τ_0 and $g'g\tau_0$ lie in $\overline{\mathcal{F}}$, are equivalent

ZEÉV RUDNICK

modulo Γ , and one of them is in the interior, hence by part (b) they must coincide: $\tau_0 = g'g\tau_0$. But by part (c), an interior point has only a trivial stabilizer, hence $g = \pm g'^{-1} \in \Gamma'$. Thus $\Gamma = \Gamma' = \langle S, T \rangle$. \Box

1.4. An algorithmic proof of generation of $SL(2, \mathbb{Z})$. Here is an alternative, algorithmic, proof that $SL(2, \mathbb{Z})$ is generated by $S = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

and $T = \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}$: First observe the action of left multiplication of a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by S and T^n :

$$SA = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix}$$

that is we switch the rows of A (and change the sign of the second row);

$$T^{n}A = \begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + nc & b + nd \\ c & d \end{pmatrix}$$

that is we add a multiple of the second row to the first, and do not change the second row.

So starting with A, if $|a| \ge |c|$ then we add a suitable multiple of the second row to the first (i.e. multiply A by T^n), to replace $a \mapsto a' = a + nc$ where now |a'| < |c|. Then we switch the first and second row (and change the sign of the old first row), to again be in the position that the new a'' = -c is bigger in absolute value than the new c'' = a'. Now continue until we get to a point that the resulting matrix is upper triangular, and having determinant one with integer entries it must be of the form $\pm \begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} = S^{\{0,2\}}T^n$. Hence we are done. Example: $A = \begin{pmatrix} 4 & 9 \\ 3 & 7 \end{pmatrix}$. Then $A \mapsto T^{-1}A = \begin{pmatrix} 1 & -1 \\ & 1 \end{pmatrix} \begin{pmatrix} 4 & 9 \\ 2 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 7 \end{pmatrix} \mapsto ST^{-1}A = \begin{pmatrix} -3 & -7 \\ 1 & -2 \end{pmatrix}$

$$H \rightarrow I \quad A = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \rightarrow SI \quad A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$H \rightarrow T^3 ST^{-1} A = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow ST^3 ST^{-1} A = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = S^2 T^2$$

Hence we find (recall that $S^{-1} = -S = S^3$)

$$A = TS^{-1}T^{-3}S^{-1}S^{2}T^{2} = TS^{-1}T^{-3}ST^{2} = -TST^{-3}ST^{2}$$