
MODULAR FORMS 2019: LATTICES
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1. The space of lattices

Definition. A lattice in Rd is a discrete subgroup L ⊂ Rd which spans

Rd.

The canonical example is the integer lattice Zd.
“Discrete” means that any element ` ∈ L is isolated from the rest,

that is there is some ε(`) > 0 so that dist(`, `′) = |`− `′| ≥ ε(`) for all
`′ 6= ` in L. Since L is a subgroup of R, we may in fact take ε uniform,
by translation invariance of the distance: if δ = inf |`| = dist(`, 0) then
dist(`, `′) = |`′ − `| = dist(`− `′, 0) ≥ δ.

Discreteness also implies there L has no accumulation points, be-
cause if {`n} is a sequence of distinct points with `n → x, then we
may, by throwing out some points, and relabeling we may assume
that |`1 − x| ≥ |`2 − x| ≥ · · · ↘ 0. But then 0 < |`n+1 − `n| ≤
|`n+1 − x|+ |x− `n| → 0 contradicting discreteness.

Therefore any subset of L admits a shortest vector (not necessarily
unique).

Theorem 1.1. Any lattice L ⊂ Rd has a basis: There is a basis
w1, . . . , wd of Rd such that L = Zw1 + · · ·+ Zwd.

Exercise 1. Conversely, a set of the form Zw1 + · · · + Zwd with wi
linearly independent is a lattice.

We begin with the one-dimensional case (d = 1).

Lemma 1.2. A lattice in R is of the form L = Zw where w 6= 0 is a
shortest nonzero vector: |`| ≥ |w| for all 0 6= ` ∈ L.

Proof. Let δ := dist(0, L\{0}) = inf(dist(`, 0) : ` 6= 0) > 0. By sym-
metry ` 7→ −`, we can find a sequence of positive elements of L so
that `n → δ. Since L has no accumulation points, that sequence has
to stabilize: `n = `N for all n ≥ N , so that w = `N = δ is a shortest
vector.
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Now we show that L = Zw: By replacing w by −w, we can assume
that w > 0. Clearly Zw ⊂ L, and if there is some vector ` ∈ L\Zw
then there is some integer n so that nw < ` < (n + 1)w, and then
`′ := ` − nw is a nonzero positive element of L which is shorter than
w:

0 < `′ = `− nw < (n+ 1)w − nw = w,

a contradiction. �

Now let’s do the case d = 2 (and then stop).

Lemma 1.3. A lattice in R2 is of the form Zw1 + Zw2 with w1, w2

linearly independent (over R). Moreover, we may take w1 a shortest
nonzero vector, and w2 a shortest vector linearly independent from w1.

Proof. Let 0 6= w1 ∈ L be a shortest vector. Then L1 := L ∩ Rw1 is a
lattice in Rw1, and w1 is a shortest vector in L1, and so by the 1-dim
case, L1 = L ∩ Rw1 = Zw1.

Now take a shortest vector w2 in L\L ∩ Rw1 = L\Zw1 (it exists
because by discreteness, and subset of L admits a shortest vector).
Note that L ∩ Rw2 = Zw2 again by the 1-dim case.

Because w2 /∈ Rw1, we must have that w1, w2 span R2.
We claim that L = Zw1+Zw2. Otherwise, take a vector v ∈ L\Zw1+

Zw2. Write v = x1w1 + x2w2 with xi ∈ R. If one of xi is integer,
then we can replace v by v′ = v − xiwi to get a vector of the form
xjwj ∈ Rwj ∩ L = Zwj, and so also the second coordinate is integer,
contradicting v /∈ Zw1 + Zw2. So we must have both xi /∈ Z.

Take integers ni so that 0 < |xi − ni| ≤ 1/2, and replace v by v′ =
v− (n1w1 +n2w2) = y1w1 +y2w2, to get a vector v′ =∈ L\(Zw1 +Zw2)
which is small: Since y1w1, y2w2 are linearly independent, then by the
refined triangle inequality,

|y1w1 + y2w2| <6= |y1w1|+ |y2w2|
Recall |w1| ≤ |w2| and |yi| ≤ 1/2 to get

|v′| < |y1w1|+ |y2w2| ≤
1

2
|w1|+

1

2
|w2| ≤

1

2
|w2|+

1

2
|w2| = |w2|

and so v′ ∈ L\Rw1 is a vector in L, linearly independent of w1, which
is shorter than w2, contradicting the choice of w2.

Hence L = Zw1 + Zw2. �

Remark: Let L ⊂ Rd be a discrete subgroup. The following are
equivalent

(1) L spans Rd

(2) L = Zw1 + · · ·+ Zwd for a basis of Rd
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(3) Rd/L is compact,
(4) vol(Rd/L) <∞, that is there is a “fundamental domain” for L

with finite volume.

1.1. Change of basis and GL(2,Z). Suppose L = Zw1 + Zw2 =
Zw′1 + Zw′2. This happens if and only if there is an invertible integer

matrix A =

(
a b
c d

)
∈ GL(2,Z) such that

w′1 = aw1 + w2, w2 = cw1 + dw2

Note that for A ∈ M(2,Z) to be invertible over Z it is necessary and
sufficient that detA = ±1 is invertible in Z.

1.2. Homothety classes. Now identify R2 with C. We say two lat-
tices L,L′ ⊂ C are homothetic if L′ = λL for some scalar λ ∈ C∗.
Equivalently, L′ is obtained from L by some dilation with a positive
number r > 0 and a rotation. This is clearly an equivalence relation.

Let R be the set of lattices in C, and X(1) := R/C∗ the set of
homothety classes. We want to give a geometric description of X(1).

Let

M = {(w1, w1) ∈ C2 : Im(w1/w2) > 0}
To any pair (w1, w2) ∈M we associate the lattice L = Zw1 +Zw2 ∈ R.
Conversely, to any lattice L ⊂ C we have a basis w1, w2 so in particular
w1, w2 are linearly independent over R, so that Im(w1/w2) 6= 0. Since

Im
1

τ
= − Im(τ)/|τ |2

we can change the role of w1 and w2 and obtain that the set of bases
of L is split into two “oriented” equivalence classes, say the “positive”
bases are those with Im(w1/w2) > 0. Thus there is a surjective map

M→R, (w1, w2) 7→ Zw1 + Zw2

Any two (ordered) bases 〈w1, w2〉 and 〈w′1, w′2〉 differ by an element
of GL(2,Z), and two belong to the same oriented equivalence class iff
they differ by an element in SL(2,Z), since

Im
aw1 + bw2

cw1 + dw2

= Im
aw1

w2
+ b

cw1

w2
+ d

=
ad− bc
|cw1

w2
+ d|2

Im(w1/w2)

Thus we obtain a bijection

M/ SL(2,Z) ' R
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This bijection descends to a bijection with the space X(1) of homothety
classes of lattices

C∗\M/ SL(2,Z) ' R/C∗ =: X(1)

(w1, w2) 7→ Z1 + Zτ, τ :=
w1

w2

∈ H

The number τ := w1

w2
is an element of the upper half-plane H, so the

space X(1) of homothety classes of lattices is identified with the quo-
tient space H/ SL(2,Z).

1.3. The fundamental domain. To any homothety class of lattices,
we can find, by scaling appropriately, a basis (1, τ) where 1 is a shortest
vector, and τ = x + iy is linearly independent and |τ | ≥ 1 (since 1 is
a shortest vector); and if necessary replacing it by −τ , we can assume
that y = Im(τ) > 0, so that (1, τ) ∈ M. We can also take τ to be a
shortest vector linearly independent from 1. This forces x = Re(τ) ∈
[−1/2, 1/2]. Indeed, if we replace τ = w2 by τ ′ = τ − n = w2 − nw1,
then we still get a basis element, with Im(τ ′) = Im(τ) = y, and

|τ ′|2 = (x− n)2 + y2

so that we get a minimal value when |x− n| ≤ 1/2. Thus each homo-
thety class in X(1) gives us an number in the (closure of the) region
(see Figure 1)

F = {τ ∈ H : Re(τ) ∈ [−1

2
,
1

2
), |τ | > 1 or |τ | = 1 and Re τ ≤ 0}

Figure 1. The fundamental domain F (shaded) and it’s translates.
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We will show that two elements of the interior of F represent different
classes of X(1), and that the only equivalences are of i with itself and
of ρ = e2πi/3 with itself.

From now on, we denote

Γ = SL(2,Z)/{±I}
First, we define two important transformations S, T ∈ Γ

S =

(
0 1
−1 0

)
: τ 7→ −1

τ
T =

(
1 1
0 1

)
: τ 7→ τ + 1

Theorem 1.4. a) For every τ ∈ H, there is some g ∈ Γ so that gτ ∈ F .
b) If two distinct points τ, τ ′ ∈ F are Γ-equivalent, then they lie on

the boundary of F , and either Re(τ) = ±1/2 and τ ′ = T±1τ = τ ± 1,
or |τ | = 1 and τ ′ = Sτ = −1/τ ,

c) Let I(τ) = StabΓ(τ). Then I(τ) = {±I} except if τ is Γ-equivalent
to

• i, in which case I(i) = {±I,±S}
• ρ := e2πi/3, in which case I(ρ) = {±I,±ST,±(ST )2} is gener-
ated by ST
• −ρ = eπi/3, when I(−ρ) = {±I,±TS,±(TS)2} is generated by
TS.

d) Γ (in fact SL(2,Z)) is generated by S and T .

Proof. a) Let Γ′ = 〈S, T 〉 ⊆ Γ. For τ ∈ H, consider the Γ′ orbit. Recall
that

Im gτ =
Im τ

|cτ + d|2
, g =

(
a b
c d

)
Take a point gτ ∈ Γ′τ with maximal imaginary part, which means

that the vector cτ + d ∈ Z1 + Zτ is shortest (in the orbit of Γ′). Nec-
essarily |gτ | ≥ 1, otherwise S(gτ) ∈ Γ′τ would have bigger imaginary
part, because if |gτ | < 1 then

ImSgτ =
Im gτ

|gτ |2
> Im gτ

contradicting the maximality of Im gτ .
Now if n− 1

2
≤ Re gτ < n+ 1/2, apply T−n to gτ to obtain a point

τ ′ = T−ngτ = gτ − n ∈ Γ′τ with real part in [−1/2, 1/2), which has
the same imaginary part as gτ and so lies in F .

We skip the proof of (b) and (c).
To prove (d), that Γ = 〈S, T 〉. Given g ∈ Γ, pick τ0 ∈ intF (e.g. τ0 =

2i) and consider the point gτ0. By part (a), there is some g′ ∈ Γ′ such
that g′gτ0 ∈ F . Then the points τ0 and g′gτ0 lie in F , are equivalent
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modulo Γ, and one of them is in the interior, hence by part (b) they
must coincide: τ0 = g′gτ0. But by part (c), an interior point has only
a trivial stabilizer, hence g = ±g′−1 ∈ Γ′. Thus Γ = Γ′ = 〈S, T 〉. �

1.4. An algorithmic proof of generation of SL(2,Z). Here is an al-

ternative, algorithmic, proof that SL(2,Z) is generated by S =

(
−1

1

)
and T =

(
1 1

1

)
: First observe the action of left multiplication of a

matrix A =

(
a b
c d

)
by S and T n:

SA =

(
−1

1

)(
a b
c d

)
=

(
−c −d
a b

)
that is we switch the rows of A (and change the sign of the second
row);

T nA =

(
1 n

1

)(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
that is we add a multiple of the second row to the first, and do not
change the second row.

So starting with A, if |a| ≥ |c| then we add a suitable multiple of the
second row to the first (i.e. multiply A by T n), to replace a 7→ a′ =
a + nc where now |a′| < |c|. Then we switch the first and second row
(and change the sign of the old first row), to again be in the position
that the new a′′ = −c is bigger in absolute value than the new c′′ = a′.
Now continue until we get to a point that the resulting matrix is upper
triangular, and having determinant one with integer entries it must be

of the form ±
(

1 n
1

)
= S{0,2}T n. Hence we are done.

Example: A =

(
4 9
3 7

)
. Then

A 7→ T−1A =

(
1 −1

1

)(
4 9
3 7

)
=

(
1 2
3 7

)
7→ ST−1A =

(
−3 −7
1 2

)
7→ T 3ST−1A =

(
0 −1
1 2

)
7→ ST 3ST−1A =

(
−1 −2
0 −1

)
= S2T 2

Hence we find (recall that S−1 = −S = S3)

A = TS−1T−3S−1S2T 2 = TS−1T−3ST 2 = −TST−3ST 2


