MODULAR FORMS 2019: LATTICES

ZEEV RUDNICK

1. THE SPACE OF LATTICES

Definition. A lattice in R? is a discrete subgroup L C R% which spans
R,

The canonical example is the integer lattice Z<.

“Discrete” means that any element ¢ € L is isolated from the rest,
that is there is some €(¢) > 0 so that dist(¢,¢') = |¢ — '] > €({) for all
¢ # ¢ in L. Since L is a subgroup of R, we may in fact take e uniform,
by translation invariance of the distance: if 6 = inf |¢| = dist(¢, 0) then
dist(¢,0") = |0/ — ¢| = dist(¢ — ¢/,0) > 6.

Discreteness also implies there L has no accumulation points, be-
cause if {/,} is a sequence of distinct points with ¢, — x, then we
may, by throwing out some points, and relabeling we may assume
that |6 — x| > |l — x| > -+ N\ 0. But then 0 < [,11 — €,] <
|01 — x| + |z — £,| = 0 contradicting discreteness.

Therefore any subset of L admits a shortest vector (not necessarily
unique).

Theorem 1.1. Any lattice L C R? has a basis: There is a basis
wi, ..., wg of RY such that L = Zw; + - - - + Zawy.

Exercise 1. Conversely, a set of the form Zw, + --- + Zwy with w;
linearly independent is a lattice.

We begin with the one-dimensional case (d = 1).

Lemma 1.2. A lattice in R is of the form L = Zw where w # 0 is a
shortest nonzero vector: |¢| > |w| for all0 # ¢ € L.

Proof. Let 6 := dist(0, L\{0}) = inf(dist(¢,0) : £ # 0) > 0. By sym-
metry ¢ — —{, we can find a sequence of positive elements of L so
that ¢, — 0. Since L has no accumulation points, that sequence has
to stabilize: ¢,, = fy for all n > N, so that w = ¢y = J is a shortest
vector.

Date: March 27, 2019.



2 ZEEV RUDNICK

Now we show that L = Zw: By replacing w by —w, we can assume
that w > 0. Clearly Zw C L, and if there is some vector ¢ € L\Zw
then there is some integer n so that nw < ¢ < (n + 1)w, and then
¢ := { — nw is a nonzero positive element of L which is shorter than
w:

0<l =0—nw<(n+1)w—nw=uw,
a contradiction. 0

Now let’s do the case d = 2 (and then stop).

Lemma 1.3. A lattice in R? is of the form Zw, + Zaw, with wy, w,
linearly independent (over R). Moreover, we may take wy a shortest
nonzero vector, and wo a shortest vector linearly independent from w;.

Proof. Let 0 # wy € L be a shortest vector. Then L; := L NRw; is a
lattice in Rwy, and w; is a shortest vector in Ly, and so by the 1-dim
case, L1 = L N Rwy = Zw;.

Now take a shortest vector wy in L\L N Rw; = L\Zw; (it exists
because by discreteness, and subset of L admits a shortest vector).
Note that L N Rw, = Zw, again by the 1-dim case.

Because wy ¢ Rw;, we must have that wy, w, span R?,

We claim that L = Zw;+Zw,. Otherwise, take a vector v € L\Zw;+
Zawy. Write v = xywy + zows with x; € R. If one of z; is integer,
then we can replace v by v/ = v — x;w; to get a vector of the form
zjw; € Rw; N L = Zw;j, and so also the second coordinate is integer,
contradicting v ¢ Zw, + Zws,. So we must have both x; ¢ Z.

Take integers n; so that 0 < |x; — n;| < 1/2, and replace v by v' =
v — (nqwy +naws) = yw + Yyaws, to get a vector v’ =€ L\ (Zw; + Zw,)
which is small: Since y;w,, yowsy are linearly independent, then by the
refined triangle inequality,

[y1w1 + yows| <y |yr1wi| + [y2ws]
Recall |wq| < |we| and |y;| < 1/2 to get

1 1 1 1
V| < Jyrwn | + |yows| < §|w1\ + §!w2| < §’w2| + §\w2| = |wy|

and so v' € L\Rw; is a vector in L, linearly independent of w;, which
is shorter than w,, contradicting the choice of ws.
Hence L = Zw, + Zws. O

Remark: Let L C R be a discrete subgroup. The following are
equivalent
(1) L spans R?
(2) L = Zw, + -+ + Zw, for a basis of R?
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(3) RY/L is compact,
(4) vol(R?/L) < oo, that is there is a “fundamental domain” for L
with finite volume.

1.1. Change of basis and GL(2,Z). Suppose L = Zw; + Zwy =
Zwy + Zwy. This happens if and only if there is an invertible integer

matrix A = (ZL Z) € GL(2,Z) such that

w] = awy + wy, W = cwy + dws

Note that for A € M(2,Z) to be invertible over Z it is necessary and
sufficient that det A = %1 is invertible in Z.

1.2. Homothety classes. Now identify R? with C. We say two lat-

tices L, L’ C C are homothetic if L' = AL for some scalar A € C*.

Equivalently, L’ is obtained from L by some dilation with a positive

number r > 0 and a rotation. This is clearly an equivalence relation.
Let R be the set of lattices in C, and X(1) := R/C* the set of

homothety classes. We want to give a geometric description of X (1).
Let

M = {(wy,w,) € C*: Im(w; /wy) > 0}
To any pair (wy,ws) € M we associate the lattice L = Zw; +Zws € R.

Conversely, to any lattice L. C C we have a basis wy, wy so in particular
wy, wy are linearly independent over R, so that Im(w; /ws) # 0. Since

1
Im—- = — Im(7‘)/|7|2
T

we can change the role of w; and wy and obtain that the set of bases
of L is split into two “oriented” equivalence classes, say the “positive”
bases are those with Im(w; /ws) > 0. Thus there is a surjective map

M — R, (wl, U)Q) —> Zw1 + ZU)Q

Any two (ordered) bases (wq,wq) and (w},w}) differ by an element
of GL(2,Z), and two belong to the same oriented equivalence class iff
they differ by an element in SL(2,Z), since

awy + bwy CL% +b ad — be
—_— = 1In = I
cwy + dwy cot+d et +dP?

Im m (w1 /ws)

Thus we obtain a bijection

M/SL(2,Z) ~R
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This bijection descends to a bijection with the space X (1) of homothety
classes of lattices

C\M/SL(2,7) ~ R/C* =: X(1)

(w1, we) — Z1 + Z1, T:= el
Wa
The number 7 := 2L is an element of the upper half-plane H, so the

2
space X (1) of homothety classes of lattices is identified with the quo-
tient space H/ SL(2,7Z).

1.3. The fundamental domain. To any homothety class of lattices,
we can find, by scaling appropriately, a basis (1, 7) where 1 is a shortest
vector, and 7 = x + iy is linearly independent and |7| > 1 (since 1 is
a shortest vector); and if necessary replacing it by —7, we can assume
that y = Im(7) > 0, so that (1,7) € M. We can also take 7 to be a
shortest vector linearly independent from 1. This forces x = Re(r) €
[—1/2,1/2]. Indeed, if we replace 7 = wy by 7/ = 7 — n = wy — nwy,
then we still get a basis element, with Im(7") = Im(7) = y, and

72 = (2 =) +

so that we get a minimal value when |z — n| < 1/2. Thus each homo-
thety class in X (1) gives us an number in the (closure of the) region
(see Figure 1)

11
.F:{TEH:RG(T)E[—§,§), |7 > 1 or |7| =1 and Ret <0}

ST-'S

-1 0 +1

FIGURE 1. The fundamental domain F (shaded) and it’s translates.
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We will show that two elements of the interior of F represent different
classes of X (1), and that the only equivalences are of i with itself and
of p = e*™/3 with itself.

From now on, we denote

T = SL(2,Z)/{£I}

First, we define two important transformations S,T € I"

0 1 1 11
S_(—l O).TP—)—; T—(O 1).7’+—>7’—|—1

Theorem 1.4. a) For every T € H, there is some g € I" so that g7 € F.
b) If two distinct points 7,7 € F are I'-equivalent, then they lie on
the boundary of F, and either Re(t) = +1/2 and 7' = TH*'7 =7 £ 1,
or|r|=1and v =St =-1/1,
c) Let I(1) = Stabr(7). Then I(1) = {£I} except if T is I'-equivalent
to
e i, in which case (i) = {£I,+S}
o p:=e¥/3 in which case I(p) = {1, £ST,£(ST)?} is gener-

ated by ST
o —p=c"3 when I(—p) = {£I,£TS,+£(TS)?} is generated by
TS.

d) I (in fact SL(2,Z)) is generated by S and T.
Proof. a) Let I'" = (S, T) CI'. For 7 € H, consider the I" orbit. Recall

that
I Im T a b
mgr= —— =
" “er+ap 97 \e d

Take a point g7 € 7 with maximal imaginary part, which means
that the vector e + d € Z1 + Zr is shortest (in the orbit of I''). Nec-
essarily |g7| > 1, otherwise S(g7) € I"7 would have bigger imaginary
part, because if |[g7| < 1 then

maqgrm

I
Im Sgr = _92 > Imgr

lg7]
contradicting the maximality of Im g7.

Now if n — % < Regr <n+1/2, apply T~" to g7 to obtain a point
7 =T7"gr = g7 —n € "7 with real part in [—1/2,1/2), which has
the same imaginary part as g7 and so lies in F.

We skip the proof of (b) and (c).

To prove (d), that I' = (S, T'). Given g € I, pick 7y € intF (e.g. 70 =
2i) and consider the point g7y. By part (a), there is some ¢’ € I” such
that ¢'gro € F. Then the points 7y and ¢'g7o lie in F, are equivalent
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modulo T', and one of them is in the interior, hence by part (b) they
must coincide: 79 = ¢'g1. But by part (c), an interior point has only
a trivial stabilizer, hence g = +¢/~! € I". Thus ' =T" = (S, T). O

1.4. An algorithmic proof of generation of SI.(2,7Z). Here is an al-
ternative, algorithmic, proof that SL(2, Z) is generated by S = (1 _1)

and T = (1 }) First observe the action of left multiplication of a
matrix A = <Z Z) by S and T™:

sa=(0 )0 a) - ()

that is we switch the rows of A (and change the sign of the second

row);
na (1 n\(fa b\ (a+nc b+nd
= (M) ()= ()

that is we add a multiple of the second row to the first, and do not
change the second row.

So starting with A, if |a] > |c| then we add a suitable multiple of the
second row to the first (i.e. multiply A by T"), to replace a — a’ =
a + nc where now |a’| < |¢|. Then we switch the first and second row
(and change the sign of the old first row), to again be in the position
that the new a” = —c is bigger in absolute value than the new ¢’ = a'.
Now continue until we get to a point that the resulting matrix is upper
triangular, and having determinant one with integer entries it must be

of the form + 1 7; = 5102} Hence we are done.

Example: A = (4 9). Then

. (1 =1\ (4 9\ (12 S, (-3 =T
AT A_( 1><3 7)_(3 7)H5T A_<1 2)

— T?ST A = ((1) _21> — ST?ST A = (_01 :f) = 5717

Hence we find (recall that S7! = —S§ = S?)
A=TS'T38718*T? =TS 'T*ST? = —=TST°ST?



