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1. Hecke’s bound for Fourier coefficients of cusp forms

A key quantity associated to a modular form are its Fourier coeffi-
cients, that is the coefficients af (n) of its q-expansion

f(τ) =
∑
n≥0

af (n)qn.

For instance, we computed the coefficients of the Eisenstein series
Gk(τ), which for n 6= 0 are divisor sums ckσk−1(n). In particular,
they are at least of size nk−1. In fact, this is also an upper bound, since
for k − 1 > 1 we have

σk−1(n)� nk−1

Exercise 1. Let σs(n) =
∑

d|n d
s (the sum over all divisors of n).

a) Show that σs is multiplicative: σs(mn) = σs(m)σs(n) if m,n are
coprime
b) Show that for s > 1, σs(n)�s n

s.

As we shall see, the coefficients of cusp forms are much smaller, and
that is a key input into the theory of modular forms.

Before beginning this study, we need some preparations.
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Lemma 1.1. Let f ∈ Sk be a cusp form. Then
a) f(x+ iy)�f e

−2πy decays exponentially y → +∞.
b) There is some Cf > 0 so that yk|f(x+iy)|2 ≤ Cf for all x+iy ∈ H.

Proof. a) Using the q-expansion f(τ) =
∑

n≥1 af (n)qn, which has no
constant term when f is cuspidal, we see that f = O(q) as q → 0,
which gives f(x+ iy)�f e

−2πy as y = Im τ → +∞.
In particular, there is some Cf > 0 so that yk|f(x + iy)|2 ≤ Cf for

y ≥
√

3/2.
b) We note that the quantity h(τ) = yk|f(x + iy)|2 is invariant

under SL(2,Z): h(γτ) = h(τ) for all γ ∈ SL(2,Z), because y = Im(τ)
transforms as

Im(γτ) =
Im(τ)

|cτ + d|2
, γ =

(
a b
c d

)
Thus h(τ) is determined by its restriction to the standard fundamental
domain F , and

sup
τ∈H

h(τ) = sup
τ∈F

h(τ)

Since h ≤ Cf for Im(τ) ≥
√

3/2, in particular h ≤ Cf for all τ in
the standard fundamental domain, and by periodicity of h it therefore
satisfies this bound for all τ ∈ H. �

We can now present a bound for Fourier coefficients of cusp forms,
due to Erich Hecke (1930’s)

Theorem 1.2. (Hecke) Let f ∈ Sk be a cusp form of weight k, with
q-expansion f =

∑
n≥1 af (n)qn. Then

|af (n)| ≤ cfn
k/2

Compare to the lower bound of nk−1 for the coefficients σk−1(n) of
the Eisenstein series, which are much bigger for large n.

Proof. Write the Fourier series of f as

f(x+ iy) =
∑
m≥1

af (m)e−2πmye2πimx

Hence by Parseval (orthogonality of the exponentials e2πimx), for all
y > 0 ∫ 1

0

yk|f(x+ iy)|2dx = yk
∞∑
m=1

|af (m)|2e−4πmy
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By Lemma 1.1, we know yk|f(x+ iy)|2 ≤ Cf so that we obtain

yk
∞∑
m=1

|af (m)|2e−4πmy ≤ Cf

for all y > 0.
In particular, if we truncate the sum after n terms (all terms are

non-negative so we can do this) for any n ≥ 1 we have an inequality
n∑

m=1

|af (m)|2e−4πmy ≤ Cfy
−k

Now choose y = 1/n, and replace e−4πm/n ≥ e−4π for m ≤ n to
obtain

(1)
n∑

m=1

|af (m)|2 � nk

and in particular |af (n)| �f n
k/2 as claimed. �

The inequality (1) indicates that the expected size of af (n) is n(k−1)/2,
rather than nk/2. This was dubbed the Ramanujan conjecture, and
eventually proven by Deligne in 1973: |af (n)| � n(k−1)/2+ε, for all
ε > 0. We will return to this later.

Corollary 1.3. Let f ∈ Mk be a modular form of weight k > 2, not
necessarily cuspidal. Then the Fourier coefficients satisfy

|af (n)| � nk−1

Indeed, writing f = AGk + g with g ∈ Sk cuspidal, we see that

af (n) = cσk−1(n) + ag(n)

Applying Hecke’s bound for ag(n) � nk/2 and the bound σk−1(n) �
nk−1 for k − 1 > 1 gives the result.
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2. The Petersson inner product

The hyperbolic measure on the upper half plane is the one with
volume element dxdy/y2. A computation shows that it is invariant
under any hyperbolic isometry (Mobius transformation) g ∈ SL(2,R).

Exercise 2. Check that dxdy/y2 is invariant under an Mobius trans-
formation g ∈ SL(2,R).

Exercise 3. Compute the hyperbolic area
∫
F
dxdy
y2

of the standard fun-

damental domain F for SL(2,Z).

The Petersson inner product is defined on Sk by (write τ = x+ iy)

〈f, g〉 :=

∫
SL(2,Z)\H

f(τ)g(τ)yk
dxdy

y2

Check that the insertion of the factor yk makes this well defined, that is
independent of which fundamental domain we integrate over, because
f(τ)g(τ)yk is SL(2,Z)-invariant, and the measure dxdy/y2 is invariant
under any hyperbolic isometry (Mobius transformation) g ∈ SL(2,R).

The integral is convergent whenever one of the forms is cuspidal (and
the other is a modular form), since cusp forms decay exponentially
|f(x+ iy)| � e−2πy as y → +∞ as is seen from the q-expansion f(τ) =
af (1)q +O(q2), while any modular form is bounded as y → +∞.

We will need to use the following “unfolding” principle:

Lemma 2.1. If h is any “nice” function on H, which is invariant
under Γ∞ (that is periodic: h(τ + 1) = h(τ)) then

(2)

∫
Γ\H

∑
γ∈Γ∞\Γ

h(γτ)
dxdy

y2
=

∫ ∞
0

(∫ 1

0

h(x+ iy)dx
)dy
y2

Proof. If F is a fundamental domain for Γ, and {γj} are represnstatives
for the disjoint cosets of Γ∞ in Γ¡ then ∩jγjF is a fundamental domain
for Γ∞. Hence∫

Γ\H

∑
γ∈Γ∞\Γ

h(γτ)
dxdy

y2
=

∫
Γ∞\H

h(τ)
dxdy

y2

where now the integration is over a fundamental domain for Γ∞.

As a fundamental domain for Γ∞ = {±
(

1 n
0 1

)
: n ∈ Z}, which is

just the subgroup of translations generated by τ 7→ τ + 1, we can take
the strip

{x+ iy : 0 ≤ x < 1, y > 0}
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Hence ∫
Γ∞\H

∑
γ∈Γ∞\Γ

h(γτ)
dxdy

y2
=

∫ ∞
0

(∫ 1

0

h(x+ iy)dx
)dy
y2

as claimed. �

Using the Petersson inner product, we can see that the Poincaré
series are the dual of the Fourier coefficients

Theorem 2.2. Let f ∈ Sk be a cusp form, with Fourier expansion

f(τ) =
∞∑
n=1

af (n)qn.

Then for m > 0,

〈f, P k
m〉 =

Γ(k − 1)

(4πm)k−1
af (m)

Proof. We write

〈f, P k
m〉 =

∫
Γ\H

f(τ)
∑

γ∈Γ∞\Γ

e(mγ(τ))

(cτ + d)
k

Im(τ)k
dxdy

y2

using f(τ) = f(γ(τ))/(cτ + d)k gives

=

∫
Γ\H

∑
γ∈Γ∞\Γ

f(γ(τ))
Im(τ)k

|cτ + d|2k
e(mγ(τ))

dxdy

y2

using Im(γ(τ)) = Im(τ)/|cτ + d|2 gives

=

∫
Γ\H

∑
γ∈Γ∞\Γ

f(γ(τ))e(mγ(τ)) Im(γ(τ))k
dxdy

y2

Applying the unfolding principle (2) with h(τ) = f(τ)e(mτ) Im(τ)k

(which is clearly periodic ) gives

〈f, P k
m〉 =

∫
Γ\H

∑
γ∈Γ∞\Γ

f(γ(τ))e(mγ(τ)) Im(γ(τ))k
dxdy

y2

=

∫ ∞
0

(∫ 1

0

f(x+ iy)e(m(−x+ iy))ykdx
)dy
y2

=

∫ ∞
0

(∫ 1

0

f(x+ iy)e(−mx)dx
)
yk−1e−2πmy dy

y
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Inserting the Fourier expansion f(x + iy) =
∑

n≥1 af (n)e−2πnye(nx)
gives

〈f, P k
m〉 = af (m)

∫ ∞
0

e−4πmyyk−1dy

y
= af (m)

Γ(k − 1)

(4πm)k−1

�

We deduce that for k ≥ 12, the P k
m ∈ Sk span Sk, because a modular

form is determined by it’s Fourier coefficients (the q-expansion) and by
Theorem 2.2 a cusp for which is orthogonal to all the Poincaré series
must be zero.

Corollary 2.3. The space of cusp forms admits a basis consisting of
Poincaré series.

Exercise 4. Let k ≥ 12. Then the Poincaré series {P k
m, 1 ≤ m ≤

1 + k
12
} span Sk.
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3. Petersson’s formula

(without proof)
Hans Petersson (1932) gave a formula for the Fourier coefficients

of the Poincaré series P k
m as an infinite sum of “Kloosterman sums”

weighted by Bessel functions. This awkward-looking formula is in fact
very useful, allows to bring in consideration from the theory of ex-
ponential sums and the “Riemann Hypothesis for curves over a finite
field”, and we shall use it to improve Hecke’s bound for the Fourier
coefficients of any cusp form.

Theorem 3.1. Let m ≥ 1, and k > 2 even. The q-expansion of the
Poincaré series is P k

m(τ) =
∑

n≥1 pm(n)qn where

pm(n) = 2πik(
n

m
)
k−1
2

∑
c≥1

Kl(m,n; c)

c
Jk−1

(4π
√
mn

c

)
Here Jk−1(x) is the Bessel function of order k− 1, and Kl(m,n; c) is

a Kloosterman sum. We discuss both below.
The proof of Petersson’s formula, which we omit, runs along the

lines of our computation of the Fourier coefficients of the Eisenstein
series, but is more complicated, using a parameterization of the double
cosets Γ∞\Γ/Γ∞. Recall that in our computation we encountered the
integral

∫∞
−∞ τ

−ke−iτdτ = 2πik/(k−1)! (this is easy); here we will come
up against the integral∫ ∞

−∞
z−ke−iλ(z+z−1)dz = 2πi−kJk−1(2λ).

3.0.1. The J-Bessel function. We also recall the J-Bessel function Jα(x)
(for us α will be a positive integer): These are solutions of Bessel’s dif-
ferential equation

x2y′′ + xy′ + (x2 − α2)y = 0

that are finite at the origin (x = 0) for integer or positive α. They
admit a power series expansion around x− 0

Jα(x) =
∞∑
m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

In particular, near x = 0 we have

Jα(x) ∼ 1

α!

(x
2

)α
� xα, 0 < x� 1
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An integral representation used by Bessel, is that for α = n integer

Jn(x) =
1

2π

∫ π

−π
e−i(x sin t−nt)dt

For x→ +∞, we have

Jα(x) =

√
2

πx

(
cos(x− απ

2
− π

4
) +O(

1

x
)
)
� x−1/2

The Bessel function admits an integral representation that is espe-
cially relevant for us

(3) Jk−1(4πt) =
ik

2π

∫ +∞+iy

−∞+iy

z−ke−2πit(z+ 1
z

)dz

where z = x+ iy with y > 0.

3.0.2. Kloosterman sums. Let c ≥ 1 and m,n ∈ Z integers. The
Kloosterman sum is defined as

Kl(m,n; c) :=
∑

x mod c
gcd(x,c)=1

e
(mx+ nx̄

c

)
where we abbreviate

e(z) := e2πiz

and x̄ denotes the multiplicative inverse of x mod c: xx̄ = 1 mod c.
In view of the integral representation (3), they can be viewed as finite
field analogues of the Bessel function.

Clearly Kl is symmetric in m and n. It satisfied a property called
“twisted multiplicativity” which for some purposes allows to reduce its
study to the case when c is a prime power:

Exercise 5. (Twisted Multiplicativity). Let c = c1c2 with gcd(c1, c2) =
1. Choose n1 and n2 such that n1c1 = 1 mod c2 and n2c2 = 1 mod c1.
Then

Kl(a, b; c) = Kl (n2a, n2b; c1) Kl (n1a, n1b; c2) .

When m = n = 0 mod c, then Kl(m,n; c) = ϕ(c) (the Euler totient
function), and is roughly of size c. For prime modulus c = p, with
a, b coprime to P , André Weil showed in 1948, as a consequence of his
proof of the Riemann Hypothesis for curves over a finite field, that

|Kl(a, b; p)| ≤ 2
√
p

Using the general properties of Kloosterman sums, such as twisted
multiplicativity, and a reduction of the case of prime power moduli to
Gauss sums and the prime modulus case, one deduces
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Theorem 3.2.

|Kl(a, b; c)| ≤
√

gcd(a, b, c)σ0(c)
√
c

where σ0(c) =
∑

d|c 1 is the number of divisors of c. In particular, for

fixed a, b 6= 0, we have for all ε > 0 there is some C(ε) > 0 so that

(4) |Kl(a, b; c)| ≤ C(ε)c1/2+ε

3.1. Kloosterman’s bound. It turns out that the hardest case to
handle in bounding Kloosterman sums is that of prime modulus. We
clearly have Kl(0, 0; p) = p− 1.

Exercise 6. If p is prime and a 6= 0 mod p then Kl(a, 0; p) = −1.

In the case that both a, b 6= 0 mod p, Kloosterman (1926) already
gave a non-trivial bound:

Theorem 3.3. If p > 2 is a prime and a, b 6= 0 mod p then

|Kl(a, b; p)| � p3/4.

Proof. We look at the fourth moment

V4 =
∑

a,b mod p

|Kl(a, b; p)|4

We will show that

(5) V4 � p4

On the other hand, we separate the term (a, b) = (0, 0) which con-
tributes (p− 1)4, the 2(p− 1) terms Kl(a, 0; p) and Kl(0, b; p), which of
which contributes (−1)4, and the remaining ones:

V4 = (p− 1)4 + 2(p− 1) +
∑
a,b 6=0

|Kl(a, b; p)|4

We next use

Exercise 7. If a, b 6= 0 mod p then

Kl(a, b; p) = Kl(ab, 1; p)

Therefore∑
a,b 6=0

|Kl(a, b; p)|4 =
∑
a,b 6=0

|Kl(ab, 1; p)|4 = (p− 1)
∑
c 6=0

|Kl(c, 1; p)|4

after changing variables c = ab. Thus we find

(6) (p− 1)
∑
c 6=0

|Kl(c, 1; p)|4 = V4 − p4 − 2(p− 1)
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On the other hand, expanding out

|Kl(a, b; p)|4 =
∑

x1,x2,y1,y2 6=0

ep(a(x1+x2−y1−y2)+b(x−1
1 +x−1

2 −y−1
1 −y−1

2 ))

(where ep(x) = e2πix/p), summing over a, b mod p and switching order
of summation gives

V4 =
∑

x1,x2,y1,y2 6=0

∑
a mod p

ep(a(x1 + x2 − y1 − y2)
∑

b mod p

ep(b(x
−1
1 + x−1

2 − y−1
1 − y−1

2 ))

= p2#{x1, x2, y1, y2 6= 0 mod p : x1 + x2 = y1 + y2, x
−1
1 + x−1

2 = y−1
1 = y−1

2 }

on using ∑
a mod p

ep(at) =

{
p , t = 0 mod p

0, t 6= 0 mod p

Now given y1, y2, if y2 6= −y1 then x1, x2 are determined up to order
by the system

(7) x1 + x2 = y1 + y2, x−1
1 + x−1

2 = y−1
1 = y−1

2

as the solutions of

x2 − (y1 + y2)x+ (y1 + y2)/(y−1
1 + y−1

2 ) = 0

which gives 2((p− 1)2 − (p− 1)) ≤ 2p2 solutions, and if y2 = −y1 then
necessarily x2 = −x1, which gives (p − 1)2 solutions. Altogether we
find that the system (7) has at most 3p2 solutions. Hence

V4 ≤ 3p4

Inserting (6) we obtain for p� 1 that

(p− 1)
∑
c 6=0

|Kl(c, 1; p)|4 ≤ 2p4

Dropping all terms but one (which we may as we are summing non-
negative quantities) gives fr p� 1

|Kl(a, 1; p)|4 ≤ 2p3

which gives |Kl(a, 1; p)| ≤ 21/4p3/4. �

As we have mentioned, Weil showed that |Kl(a, 1; p)| ≤ 2
√
p for p

prime. Nick Katz (1988) showed that for large p, as we vary over a
coprime to p, the normalized sums −Kl(a, 1; p)/2

√
p become equidis-

tributed with respect to the Sato-Tate measure, that is the p− 1 num-
bers {Kl(a; 1; 0)

√
p : 1 ≤ a ≤ p − 1} have the same distribution as
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the trace of a random matrix in the compact Lie group SU(2), equiv-
alently writing −Kl(a, 1; p) = 2

√
p cos θ(a, p) then as p → ∞, for any

subinterval [α, β] ⊂ [0, π],

lim
p→∞

1

p− 1
#{a ∈ [1, p− 1] : θ(a, p) ∈ [α, β]} =

2

π

∫ β

α

(sin θ)2dθ

It is conjectured that an analogous statement holds for the angles of
Kl(1, 1; p) as p varies.

3.2. Application to bounding Fourier coefficients of cusp forms.
We use Petersson’s formula to give an upper bound for the Fourier co-
efficients |pm(n)|. To emphasize the arithmetic input, we highlight the
dependence on bounds for Kloosterman sums. Suppose that we are
given a bound

(8) |Kl(m,n; c)| � c1−δ

whenever gcd(m,n, c) = 1.

Proposition 3.4. Assume the bound (8). Then for fixed m ≥ 1, and
n→∞,

|pm(n)| � n
k−1
2 · n

1−δ
2

Before proving Proposition 3.4, we deduce:

Corollary 3.5. Assume the bound (8). Then for any cusp form f ∈
Sk, f =

∑
n≥1 af (n)qn, we have the bound

|af (n)| �f n
k
2
− δ

2

Proof. As we saw, the space of cusp forms admits a basis of Poincaré
series P k

m, m ∈ M = {m1, . . . ,md}, d = dimSk. Then we write f as a
linear combination f =

∑
m∈M cmP

k
m to obtain

af (n) =
∑
m∈M

cmpm(n)

and inputting Proposition 3.4 gives |af (n)| � n
k
2
− δ

2 . �

The trivial bound |Kl(m,n; c)| ≤ c (δ = 0) therefore recovers Hecke’s
bound (Theorem 1.2) |af (n)| � nk/2.

Kloosterman’s bound (δ = 1/4, Theorem 3.3) gives the better esti-
mate

|af (n)| � n
k−1
2

+ 3
8

Inserting Weil’s bound (essentially δ = 1/2) (4) gives

|af (n)| � n
k−1
2

+ 1
4
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However, this falls short of the Ramanujan conjecture (proved by Deligne
in 1973):

|af (n)| � n
k−1
2 σ0(n)� n

k−1
2

+ε, ∀ε > 0

3.2.1. Proof of Proposition 3.4.

Proof. For simplicity, take m = 1. Using Petersson’s formula we obtain

|p1(n)| � n(k−1)/2
∑
c≥1

|Kl(1, n; c)|
c

Jk−1(
4π
√
n

c
)

For the Kloosterman sum, use the bound |Kl(1, n; c)| � c1−δ. For
the Bessel function, use Jk−1(x) � xk−1 for x =

√
n/c < 1, and for

x =
√
n/c ≥ 1 use Jk−1(x)� x−1/2:

|p1(n)| � n(k−1)/2
∑

1≤c≤
√
n

c−δ(

√
n

c
)−1/2 + n(k−1)/2

∑
c>
√
n

c−δ(

√
n

c
)k−1

= n
k
2
− 3

4

∑
1≤c≤

√
n

c1/2−δ + nk−1
∑
c>
√
n

1

ck−1+δ
� n

k−1
2 · n

1−δ
2

�


