Simultaneous equidistribution of supersingular reductions of CM-curves

Joint with Menny Aka, Philippe Michel, and Andreas Wieser

Manuel Luethi
Tel Aviv University
May 72020

Weierstrass equations

In what follows k is an arbitrary field.

Definition

An elliptic curve over k is the locus of a Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

together with a base point at infinity, such that the discriminant $\Delta\left(a_{1}, \ldots, a_{6}\right) \neq 0$.

The discriminant is a polynomial in the coefficients of the Weierstrass equation. Non-vanishing is a smoothness condition.

Weierstrass equations II

Assume k a field, $\operatorname{char}(k) \neq 2,3$.

Lemma

Let $a, b \in k$ such that $a^{3}-b^{2} \neq 0$. The locus of

$$
E: y^{2}=x^{3}-27 a x-54 b
$$

together with a point O at infinity is an elliptic curve over k. Its discriminant satisfies

$$
1728 \Delta=a^{3}-b^{2}
$$

The group law

Curves given by Weierstrass equations admit a structure of commutative algebraic groups.

- Assume that E has the special form from before.
- $P=(x, y) \in E \Longrightarrow-P:=(x,-y) \in E$.
- Addition via chord-tangent method: Given $P, Q \in E(k)$, set

$$
P+Q=-R
$$

where R is the third intersection point of E with the line through P, Q.

Elliptic curves and supersingular reductions
Towards equidistribution

Elliptic curves
Endomorphism rings Elliptic curves over \mathbb{C}
Reduction of CM curves

The group law II

Endomorphism rings I

$\operatorname{End}(E)$ is a torsion-free \mathbb{Z}-algebra, i.e. has characteristic 0 .

Proposition

Let E be an elliptic curve. Then one of the following is true.

- $\operatorname{End}(E)=\mathbb{Z}$.
- $\operatorname{End}(E)$ is an order in an imaginary quadratic number field, i.e. E has complex multiplication.
- End (E) is a maximal order in a quaternion algebra, i.e. E is supersingular.

Endomorphism rings II

(1) If $\operatorname{char}(k)=0$, then E is not supersingular.
(2) If $\operatorname{char}(k)=p>0$ and E is supersingular, then E is defined over $\overline{\mathbb{F}_{p}}$ and isomorphic to a curve defined over $\mathbb{F}_{p^{2}}$.
(3) In particular the set \mathscr{S}_{p} of $\overline{\mathbb{F}_{p}}$-classes of supersingular elliptic curves is finite.

Complex multiplication

(1) Assume $\operatorname{char}(k) \neq 2$ and $E: y^{2}=x^{3}+x$.
(2) Let $\mathrm{i} \in \bar{k}$ s.t. $\mathrm{i}^{2}=-1$. Then

$$
[\mathrm{i}](x, y)=(-x, \mathrm{i} y) \quad((x, y) \in E)
$$

defines a non-trivial automorphism of E.
(3) Note $[\mathrm{i}] \notin \mathbb{Z}$ as $[\mathrm{i}]^{2}=-1$.
(9) For the curves

- $E: y^{2}=x^{3}+x$ over \mathbb{C},
- $\tilde{E}: y^{2}=x^{3}+x$ over \mathbb{F}_{5},
- $\bar{E}: y^{2}=x^{3}+x$ over \mathbb{F}_{7}
the endomorphism ring contains $\mathbb{Z}[\mathrm{i}] \not \approx \mathbb{Z}$.

A supersingular curve

(1) Consider $\bar{E}: y^{2}=x^{3}+x$ over $k=\mathbb{F}_{7}$. Let $K=\mathbb{F}_{7^{2}}$.
(2) $\bar{E}(K) \backslash \bar{E}(k) \neq \emptyset:(2,2 \mathrm{i}) \in \bar{E}(K) \backslash \bar{E}(k)$.
(3) Let $\varphi \in \operatorname{Gal}(K \mid k)$ be the non-trivial Galois automorphism, i.e. the Frobenius automorphism.
(9) φ yields an automorphism of $\bar{E}(K)$, trivial on $\bar{E}(k)$.
(5) $\varphi \notin \mathbb{Z}[\mathrm{i}]$ as $\varphi \circ[\mathrm{i}] \neq[\mathrm{i}] \circ \varphi$. Otherwise $\mathrm{i}=\mathrm{i}^{7}$, i.e. $\mathrm{i} \in k$.
(0) Hence \bar{E} is supersingular.

Complex uniformization

- There is a one-to-one correspondence

$$
\{\Lambda \subseteq \mathbb{C} \text { a lattice }\} / \mathbb{C}^{\times}
$$

$\{E / \mathbb{C}$ elliptic curve $\} / \mathbb{C}$ - Isomorphism

- For every elliptic curve E over \mathbb{C}, there is a lattice $\Lambda \subseteq \mathbb{C}$ such that $E(\mathbb{C}) \cong \mathbb{C} / \Lambda$ as complex Lie groups and vice versa.
- This is an equivalence of categories.
- Special case of GAGA.

Complex multiplication I

- Every holomorphic endomorphism of \mathbb{C} / Λ has a unique lift to a holomorphic endomorphism of \mathbb{C} preserving Λ.
- Therefore

$$
\mathfrak{o}:=\operatorname{End}(\mathbb{C} / \Lambda)=\{\omega \in \mathbb{C}: \omega \Lambda \subseteq \Lambda\}
$$

- W.I.o.g. $\Lambda=\mathbb{Z}+\mathbb{Z} \tau$, $\Im \neq 0$. If $\omega \in \mathfrak{o}$, then $\omega \in \Lambda$.
- Applying ω to 1 and τ respectively shows

$$
(a+b \tau) \tau=c+d \tau \quad(a, b, c, d \in \mathbb{Z})
$$

- Therefore $\mathfrak{o}=\mathbb{Z}$ or $\mathfrak{o} \subseteq \mathbb{Q}(\tau)$ is an order in an imaginary quadratic number field and Λ is a proper \mathfrak{o}-ideal.

Complex multiplication II

- Orders in quadratic number fields are parametrized by their discriminants D.
- The covolume of \mathfrak{o}_{D} in \mathbb{C} is $\operatorname{covol}\left(\mathfrak{o}_{D}\right)=\frac{\sqrt{|D|}}{2}$.
- Let

$$
\mathrm{CM}_{D}=\left\{E / \mathbb{C}: E \text { has } \mathrm{CM} \text { by } \mathfrak{o}_{D}\right\} / \mathbb{C} \text {-isomorphism. }
$$

- Let $\mathrm{Cl}\left(\mathfrak{o}_{D}\right)$ be the set of fractional proper \mathfrak{o}_{D}-ideals up to principal equivalence.
- Then $\mathrm{Cl}\left(\mathfrak{o}_{D}\right) \longleftrightarrow \mathrm{CM}_{D}$ via

$$
[\mathfrak{a}] \in \mathrm{Cl}\left(\mathfrak{o}_{D}\right) \mapsto[\mathbb{C} / \mathfrak{a}]
$$

by previous argument.

Summary

- Elliptic curves over \mathbb{C} correspond to \mathbb{C}^{\times}-homothety classes of lattices in \mathbb{C}.
- Isomorphism classes of curves with CM by \mathfrak{o}_{D} correspond to classes of proper fractional \mathfrak{o}_{D}-ideals.
- $\mathrm{Cl}\left(\mathfrak{o}_{D}\right)$ acts on CM_{D} by

$$
[\mathfrak{a}] *[\mathbb{C} / \Lambda]:=\left[\mathbb{C} / \mathfrak{a}^{-1} \wedge\right] .
$$

Supersingular reduction

Assume that D is a negative fundamental discriminant, i.e. \mathfrak{o}_{D} is the ring of integers in $\mathbb{Q}(\sqrt{D})$. We also assume $p>3$.
(1) All CM_{D}-curves can be defined over a numberfield.
(2) There is a reduction map $E \mapsto E \bmod p$ whose image is a curve defined over $\overline{\mathbb{F}_{p}}$.
(3) If p is not split in $\mathbb{Q}(\sqrt{D})$, then $E \bmod p$ is a supersingular elliptic curve.
Compare to reduction of $E: y^{2}=x^{3}+x$ over \mathbb{Q} to
$\bar{E}: y^{2}=x^{3}+x$ over \mathbb{F}_{p}.

- If $p=5$, then $p=(2+\mathrm{i})(2-\mathrm{i})$ splits in $\mathbb{Z}[\mathrm{i}]$ and \bar{E} is not supersingular.
- If $p=7$, then p is prime in $\mathbb{Z}[\mathrm{i}]$ and \bar{E} is supersingular.

Deuring's theorem

The following result is a simplified version of a result due to M . Deuring.

Theorem

Let \bar{E} be a supersingular elliptic curve over $\overline{\mathbb{F}_{p}}$. Then there exists an elliptic curve E with complex multiplication such that $\bar{E} \cong E \bmod p$.

Lifting supersingular curves I

- \mathscr{S}_{p} is finite; in fact $\left|\mathscr{S}_{p}\right|=\frac{p}{12}+O(1)$.
- CM_{D} is finite; in fact $\left|\mathrm{CM}_{D}\right| \asymp|D|^{\frac{1}{2}+o(1)} \rightarrow \infty$ as $D \rightarrow-\infty$.
- Consider the sequence of reductions $\mathrm{CM}_{D} \rightarrow \mathscr{S}_{p}$ as $D \rightarrow-\infty$ along the condition that p is inert in $\mathbb{Q}(\sqrt{D})$. Question: Will the reduction eventually be surjective?

Lifting supersingular curves II

The following result is a simplified version of a result due to Ph. Michel.

Theorem

Let \bar{E} be a supersingular elliptic curve defined over $\overline{\mathbb{F}_{p}}$. There exists $D_{0}<0$ such that for all fundamental discriminants $D \leq D_{0}$ for which p is inert there is $E \in \mathrm{CM}_{D}$ such that $\bar{E} \cong E \bmod p$.

In fact, Ph. Michel proves an effective equidistribution result for the natural (non-uniform) probability measure on \mathscr{S}_{p}.

Our result

Theorem (Aka-L.-Michel-Wieser)

Let $q_{1}, q_{2}, p_{1}, \ldots, p_{s}$ be distinct odd primes. There is $D_{0}<0$ such that for any fundamental discriminant $D \leq D_{0}$ satisfying that

- p_{1}, \ldots, p_{s} are inert in $\mathbb{Q}(\sqrt{D})$ and
- q_{1}, q_{2} are split in $\mathbb{Q}(\sqrt{D})$
the simultaneous reduction map

$$
\mathrm{CM}_{D} \rightarrow \prod_{i=1}^{s} \mathscr{S}_{p_{i}} \quad E \mapsto\left(E \bmod p_{1}, \ldots, E \bmod p_{s}\right)
$$

is surjective.
In fact, we use a classification of joinings by Einsiedler and Lindenstrauss to prove an (ineffective) equidistribution result.

(Optimal) embeddings and supersingular reduction

- Let $D<0$ a fundamental discriminant, p inert in $\mathbb{Q}(\sqrt{D})$.
- Let $E \in \mathrm{CM}_{D}$.
- Then $\mathbf{B}_{\infty, p}:=\operatorname{End}(E \bmod p) \otimes \mathbb{Q}$ is a quaternion algebra.
- $\mathcal{O}=\operatorname{End}(E \bmod p)$ is a maximal order in $\mathbf{B}_{\infty, p}$.
- The isomorphism class of $\mathbf{B}_{\infty, p}$ only depends on p.
- Reduction mod p gives embedding

$$
\iota: \operatorname{End}(E) \hookrightarrow \operatorname{End}(E \bmod p)
$$

i.e. an embedding

$$
\iota: \mathfrak{o}_{D} \hookrightarrow \mathcal{O}
$$

Equivalence of embeddings

Definition

Let $\iota_{1}, \iota_{2}: \mathfrak{o}_{D} \hookrightarrow \mathcal{O}$ embeddings. Then $\iota_{1} \sim \iota_{2}$ if

$$
\exists u \in \mathcal{O}^{\times} \forall x \in \mathfrak{o}_{D} \quad \iota_{2}(x)=u \iota_{1}(x) u^{-1}
$$

We let $h\left(\mathfrak{o}_{D}, \mathcal{O}\right)$ be the number of equivalence classes of embeddings $\iota: \mathfrak{o}_{D} \hookrightarrow \mathcal{O}$.

Deuring's theorem revisited

Consider the following version of Deuring's theorem, due to B. Gross and D. Zagier.

Theorem

Let $\mathcal{O} \subseteq \mathbf{B}_{\infty, p}$ be a maximal order and $\iota: \mathfrak{o}_{D} \hookrightarrow \mathcal{O}$ an embedding. Then there exists a unique $E \in \mathrm{CM}_{D}$ such that

$$
\operatorname{End}(E \bmod p) \cong \mathcal{O}
$$

and the embedding $\iota_{E}: \operatorname{End}(E) \hookrightarrow \operatorname{End}(E \bmod p)$ is equivalent to ι under the isomorphism.

In the theorem, we use that there is a natural way to choose the isomorphism $\mathfrak{o}_{D} \cong \operatorname{End}(E)$.

Counting embeddings

Recall: $D<0$ is a fundamental discriminant and p inert in $\mathbb{Q}(\sqrt{D})$.
Lemma (N. Elkies, K. Ono, and T. Yang)
Let $\bar{E} \in \mathscr{S}_{p}$ and $\mathcal{O}=\operatorname{End}(\bar{E})$. Then

$$
\left|\left\{E \in \mathrm{CM}_{D}: E \bmod p \cong \bar{E}\right\}\right|=\frac{1}{2} h\left(\mathfrak{o}_{D}, \mathcal{O}\right)
$$

Surjectivity in one factor I

- By the lemma it suffices to prove that eventually $h\left(\mathfrak{o}_{D}, \mathcal{O}\right)>0$ for all maximal orders $\mathcal{O} \subseteq \mathbf{B}_{\infty, p}$.
- Up to conjugacy, $\mathbf{B}_{\infty, p}$ contains only finitely many maximal orders.
- For surjectivity, it suffices to prove that for all maximal orders $\mathcal{O} \subseteq \mathbf{B}_{\infty, p}$ eventually $h\left(\mathfrak{o}_{D}, \mathcal{O}\right)>0$.
- For equidistribution we need to show that $h\left(\mathfrak{o}_{D}, \mathcal{O}\right) /\left|\mathrm{Cl}\left(\mathfrak{o}_{D}\right)\right|$ has the right asymptotics.

Surjectivity in one factor II

- Let $\iota: \mathfrak{o}_{D} \hookrightarrow \mathcal{O} \subseteq \mathbf{B}_{\infty, p}$ an embedding.
- ι is completely determined by $\iota(\sqrt{D})$.
- Let $\mathcal{O}^{T}=\{x \in \mathbb{Z}+2 \mathcal{O}: \operatorname{Tr}(x)=0\}$ (Gross lattice). There is a one-to-one correspondence between embeddings $\iota:_{o_{D}} \hookrightarrow \mathcal{O}$ and the set

$$
\left\{v \in \mathcal{O}^{T}: v \text { is primitive and } \operatorname{Nr}(v)=-D\right\} .
$$

Surjectivity in one factor III

Therefore the surjectivity of the reduction map is equivalent to the following.

Theorem

Let p prime, $\mathcal{F}(p)$ the set of negative fundamental discriminants D s.t. p is inert in $\mathbb{Q}(\sqrt{D})$. Let \mathcal{O} be a maximal order in $\mathbf{B}_{\infty, p}$. There exists $D_{0}<0$ such that for all $D \in \mathcal{F}(p)$ we have

$$
D<D_{0} \Longrightarrow-D \in \operatorname{Nr}\left(\mathcal{O}^{T}\right)
$$

This follows from a theorem of Duke. Under additional congruence conditions, this admits a dynamic proof due to Linnik and Skubenko.

