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Weierstrass equations

In what follows k is an arbitrary field.

Definition

An elliptic curve over k is the locus of a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

together with a base point at infinity, such that the discriminant
∆(a1, . . . , a6) 6= 0.

The discriminant is a polynomial in the coefficients of the
Weierstrass equation. Non-vanishing is a smoothness condition.
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Weierstrass equations II

Assume k a field, char(k) 6= 2, 3.

Lemma

Let a, b ∈ k such that a3 − b2 6= 0. The locus of

E : y2 = x3 − 27ax − 54b

together with a point O at infinity is an elliptic curve over k. Its
discriminant satisfies

1728∆ = a3 − b2.
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The group law

Curves given by Weierstrass equations admit a structure of
commutative algebraic groups.

Assume that E has the special form from before.

P = (x , y) ∈ E =⇒ −P := (x ,−y) ∈ E .

Addition via chord-tangent method: Given P,Q ∈ E (k), set

P + Q = −R,

where R is the third intersection point of E with the line
through P,Q.
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The group law II
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Endomorphism rings I

End(E ) is a torsion-free Z-algebra, i.e. has characteristic 0.

Proposition

Let E be an elliptic curve. Then one of the following is true.

End(E ) = Z.

End(E ) is an order in an imaginary quadratic number field,
i.e. E has complex multiplication.

End(E ) is a maximal order in a quaternion algebra, i.e. E is
supersingular.
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Endomorphism rings II

1 If char(k) = 0, then E is not supersingular.

2 If char(k) = p > 0 and E is supersingular, then E is defined
over Fp and isomorphic to a curve defined over Fp2 .

3 In particular the set Sp of Fp-classes of supersingular elliptic
curves is finite.
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Complex multiplication

1 Assume char(k) 6= 2 and E : y2 = x3 + x .

2 Let i ∈ k s.t. i2 = −1. Then

[i](x , y) = (−x , iy) ((x , y) ∈ E )

defines a non-trivial automorphism of E .

3 Note [i] 6∈ Z as [i]2 = −1.
4 For the curves

E : y2 = x3 + x over C,
Ẽ : y2 = x3 + x over F5,
E : y2 = x3 + x over F7

the endomorphism ring contains Z[i] 6∼= Z.
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A supersingular curve

1 Consider E : y2 = x3 + x over k = F7. Let K = F72 .

2 E (K ) \ E (k) 6= ∅: (2, 2i) ∈ E (K ) \ E (k).

3 Let ϕ ∈ Gal(K |k) be the non-trivial Galois automorphism,
i.e. the Frobenius automorphism.

4 ϕ yields an automorphism of E (K ), trivial on E (k).

5 ϕ 6∈ Z[i] as ϕ ◦ [i] 6= [i] ◦ ϕ. Otherwise i = i7, i.e. i ∈ k .

6 Hence E is supersingular.
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Complex uniformization

There is a one-to-one correspondence

{Λ ⊆ C a lattice} /C×
OO

��
{E/C elliptic curve} /C− Isomorphism

For every elliptic curve E over C, there is a lattice Λ ⊆ C such
that E (C) ∼= C /Λ as complex Lie groups and vice versa.

This is an equivalence of categories.

Special case of GAGA.
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Complex multiplication I

Every holomorphic endomorphism of C /Λ has a unique lift to
a holomorphic endomorphism of C preserving Λ.

Therefore

o := End(C
/

Λ) = {ω ∈ C : ωΛ ⊆ Λ}.

W.l.o.g. Λ = Z + Zτ , =τ 6= 0. If ω ∈ o, then ω ∈ Λ.

Applying ω to 1 and τ respectively shows

(a + bτ)τ = c + dτ (a, b, c , d ∈ Z).

Therefore o = Z or o ⊆ Q(τ) is an order in an imaginary
quadratic number field and Λ is a proper o-ideal.
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Complex multiplication II

Orders in quadratic number fields are parametrized by their
discriminants D.

The covolume of oD in C is covol(oD) =

√
|D|
2 .

Let

CMD = {E/C : E has CM by oD}/C-isomorphism.

Let Cl(oD) be the set of fractional proper oD-ideals up to
principal equivalence.

Then Cl(oD)←→ CMD via

[a] ∈ Cl(oD) 7→
[C/a]

by previous argument.
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Summary

Elliptic curves over C correspond to C×-homothety classes of
lattices in C.

Isomorphism classes of curves with CM by oD correspond to
classes of proper fractional oD-ideals.

Cl(oD) acts on CMD by

[a] ∗
[C/Λ

]
:=
[C/a−1Λ

]
.
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Supersingular reduction

Assume that D is a negative fundamental discriminant, i.e. oD is
the ring of integers in Q(

√
D). We also assume p > 3.

1 All CMD-curves can be defined over a numberfield.

2 There is a reduction map E 7→ E mod p whose image is a
curve defined over Fp.

3 If p is not split in Q(
√
D), then E mod p is a supersingular

elliptic curve.

Compare to reduction of E : y2 = x3 + x over Q to
E : y2 = x3 + x over Fp.

If p = 5, then p = (2 + i)(2− i) splits in Z[i] and E is not
supersingular.

If p = 7, then p is prime in Z[i] and E is supersingular.
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Deuring’s theorem

The following result is a simplified version of a result due to
M. Deuring.

Theorem

Let E be a supersingular elliptic curve over Fp. Then there exists
an elliptic curve E with complex multiplication such that
E ∼= E mod p.
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Lifting supersingular curves I

Sp is finite; in fact |Sp| = p
12 + O(1).

CMD is finite; in fact |CMD | � |D|
1
2
+o(1) →∞ as D → −∞.

Consider the sequence of reductions CMD → Sp as
D → −∞ along the condition that p is inert in Q(

√
D).

Question: Will the reduction eventually be surjective?
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Lifting supersingular curves II

The following result is a simplified version of a result due to
Ph. Michel.

Theorem

Let E be a supersingular elliptic curve defined over Fp. There
exists D0 < 0 such that for all fundamental discriminants D ≤ D0

for which p is inert there is E ∈ CMD such that E ∼= E mod p.

In fact, Ph. Michel proves an effective equidistribution result for
the natural (non-uniform) probability measure on Sp.
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Our result

Theorem (Aka-L.-Michel-Wieser)

Let q1, q2, p1, . . . , ps be distinct odd primes. There is D0 < 0 such
that for any fundamental discriminant D ≤ D0 satisfying that

p1, . . . , ps are inert in Q(
√
D) and

q1, q2 are split in Q(
√
D)

the simultaneous reduction map

CMD →
s∏

i=1

Spi E 7→ (E mod p1, . . . ,E mod ps)

is surjective.

In fact, we use a classification of joinings by Einsiedler and
Lindenstrauss to prove an (ineffective) equidistribution result.
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(Optimal) embeddings and supersingular reduction

Let D < 0 a fundamental discriminant, p inert in Q(
√
D).

Let E ∈ CMD .

Then B∞,p := End(E mod p)⊗Q is a quaternion algebra.

O = End(E mod p) is a maximal order in B∞,p.

The isomorphism class of B∞,p only depends on p.

Reduction mod p gives embedding

ι : End(E ) ↪→ End(E mod p),

i.e. an embedding
ι : oD ↪→ O.
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Equivalence of embeddings

Definition

Let ι1, ι2 : oD ↪→ O embeddings. Then ι1 ∼ ι2 if

∃u ∈ O× ∀x ∈ oD ι2(x) = uι1(x)u−1.

We let h(oD ,O) be the number of equivalence classes of
embeddings ι : oD ↪→ O.
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Deuring’s theorem revisited

Consider the following version of Deuring’s theorem, due to
B. Gross and D. Zagier.

Theorem

Let O ⊆ B∞,p be a maximal order and ι : oD ↪→ O an embedding.
Then there exists a unique E ∈ CMD such that

End(E mod p) ∼= O

and the embedding ιE : End(E ) ↪→ End(E mod p) is equivalent to
ι under the isomorphism.

In the theorem, we use that there is a natural way to choose the
isomorphism oD ∼= End(E ).
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Counting embeddings

Recall: D < 0 is a fundamental discriminant and p inert in Q(
√
D).

Lemma (N. Elkies, K. Ono, and T. Yang)

Let E ∈ Sp and O = End(E ). Then

|{E ∈ CMD : E mod p ∼= E}| =
1

2
h(oD ,O).
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Surjectivity in one factor I

By the lemma it suffices to prove that eventually
h(oD ,O) > 0 for all maximal orders O ⊆ B∞,p.

Up to conjugacy, B∞,p contains only finitely many maximal
orders.

For surjectivity, it suffices to prove that for all maximal orders
O ⊆ B∞,p eventually h(oD ,O) > 0.

For equidistribution we need to show that h(oD ,O)/|Cl(oD)|
has the right asymptotics.
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Surjectivity in one factor II

Let ι : oD ↪→ O ⊆ B∞,p an embedding.

ι is completely determined by ι(
√
D).

Let OT = {x ∈ Z + 2O : Tr(x) = 0} (Gross lattice). There is
a one-to-one correspondence between embeddings ι : oD ↪→ O
and the set

{v ∈ OT : v is primitive and Nr(v) = −D}.
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Surjectivity in one factor III

Therefore the surjectivity of the reduction map is equivalent to the
following.

Theorem

Let p prime, F(p) the set of negative fundamental discriminants D
s.t. p is inert in Q(

√
D). Let O be a maximal order in B∞,p.

There exists D0 < 0 such that for all D ∈ F(p) we have

D < D0 =⇒ −D ∈ Nr(OT ).

This follows from a theorem of Duke. Under additional congruence
conditions, this admits a dynamic proof due to Linnik and
Skubenko.
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