Simultaneous equidistribution of supersingular reductions of CM-curves Joint with Menny Aka, Philippe Michel, and Andreas Wieser

Manuel Luethi

Tel Aviv University

May 7 2020

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Weierstrass equations

In what follows k is an arbitrary field.

Definition

An elliptic curve over k is the locus of a Weierstrass equation

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

together with a base point at infinity, such that the discriminant $\Delta(a_1,\ldots,a_6) \neq 0.$

The discriminant is a polynomial in the coefficients of the Weierstrass equation. Non-vanishing is a smoothness condition.

2 / 25

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Weierstrass equations II

Assume k a field, $char(k) \neq 2, 3$.

Lemma

Let $a, b \in k$ such that $a^3 - b^2 \neq 0$. The locus of

$$E: y^2 = x^3 - 27ax - 54b$$

together with a point O at infinity is an elliptic curve over k. Its discriminant satisfies

$$1728\Delta = a^3 - b^2.$$

The group law

Curves given by Weierstrass equations admit a structure of commutative algebraic groups.

• Assume that *E* has the special form from before.

•
$$P = (x, y) \in E \implies -P := (x, -y) \in E.$$

• Addition via chord-tangent method: Given $P, Q \in E(k)$, set

$$P+Q=-R,$$

Elliptic curves

where R is the third intersection point of E with the line through P, Q.

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curve

The group law II

Endomorphism rings I

End(E) is a torsion-free \mathbb{Z} -algebra, i.e. has characteristic 0.

Proposition

Let E be an elliptic curve. Then one of the following is true.

- $\operatorname{End}(E) = \mathbb{Z}$.
- End(*E*) is an order in an imaginary quadratic number field, i.e. *E* has complex multiplication.
- End(*E*) is a maximal order in a quaternion algebra, i.e. *E* is supersingular.

∃ ► < ∃ ►</p>

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Endomorphism rings II

- If char(k) = 0, then *E* is *not* supersingular.
- If char(k) = p > 0 and E is supersingular, then E is defined over F_p and isomorphic to a curve defined over F_{p²}.
- **③** In particular the set \mathscr{S}_p of $\overline{\mathbb{F}_p}$ -classes of supersingular elliptic curves is finite.

Complex multiplication

$$[\mathrm{i}](x,y)=(-x,\mathrm{i}y)\quad ((x,y)\in E)$$

defines a non-trivial automorphism of E.

 $\textbf{ o Note } [i] \not\in \mathbb{Z} \text{ as } [i]^2 = -1.$

I For the curves

•
$$E: y^2 = x^3 + x$$
 over \mathbb{C} ,

•
$$\underline{\tilde{E}}$$
 : $y^2 = x^3 + x$ over \mathbb{F}_5 ,

•
$$\overline{E}$$
 : $y^2 = x^3 + x$ over \mathbb{F}_7

the endomorphism ring contains $\mathbb{Z}[i] \not\cong \mathbb{Z}$.

- 4 同 1 4 三 1 4 三 1

A supersingular curve

- Consider $\overline{E}: y^2 = x^3 + x$ over $k = \mathbb{F}_7$. Let $K = \mathbb{F}_{7^2}$.
- Set φ ∈ Gal(K|k) be the non-trivial Galois automorphism,
 i.e. the Frobenius automorphism.
- φ yields an automorphism of $\overline{E}(K)$, trivial on $\overline{E}(k)$.
- $\varphi \notin \mathbb{Z}[i]$ as $\varphi \circ [i] \neq [i] \circ \varphi$. Otherwise $i = i^7$, i.e. $i \in k$.
- Hence \overline{E} is supersingular.

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Complex uniformization

• There is a one-to-one correspondence

- For every elliptic curve E over C, there is a lattice Λ ⊆ C such that E(C) ≃ C / Λ as complex Lie groups and vice versa.
- This is an equivalence of categories.
- Special case of GAGA.

Complex multiplication I

- Every holomorphic endomorphism of \mathbb{C} / Λ has a unique lift to a holomorphic endomorphism of \mathbb{C} preserving Λ .
- Therefore

$$\mathfrak{o} := \operatorname{End}(\mathbb{C}/\Lambda) = \{\omega \in \mathbb{C} : \omega \Lambda \subseteq \Lambda\}.$$

- W.I.o.g. $\Lambda = \mathbb{Z} + \mathbb{Z}\tau$, $\Im \tau \neq 0$. If $\omega \in \mathfrak{o}$, then $\omega \in \Lambda$.
- Applying ω to 1 and τ respectively shows

$$(a+b au) au=c+d au$$
 $(a,b,c,d\in\mathbb{Z}).$

Complex multiplication II

- Orders in quadratic number fields are parametrized by their discriminants *D*.
- The covolume of \mathfrak{o}_D in \mathbb{C} is $\operatorname{covol}(\mathfrak{o}_D) = \frac{\sqrt{|D|}}{2}$.

Let

 $\operatorname{CM}_D = \{E/\mathbb{C} : E \text{ has CM by } \mathfrak{o}_D\}/\mathbb{C}\text{-isomorphism}.$

- Let Cl(o_D) be the set of fractional proper o_D-ideals up to principal equivalence.
- Then $\operatorname{Cl}(\mathfrak{o}_D) \longleftrightarrow \operatorname{CM}_D$ via

$$[\mathfrak{a}] \in \mathrm{Cl}(\mathfrak{o}_D) \mapsto [\mathbb{C}/\mathfrak{a}]$$

by previous argument.

э

イロト イボト イヨト イヨト

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Summary

- Elliptic curves over C correspond to C[×]-homothety classes of lattices in C.
- Isomorphism classes of curves with CM by o_D correspond to classes of proper fractional o_D -ideals.
- $\operatorname{Cl}(\mathfrak{o}_D)$ acts on CM_D by

$$[\mathfrak{a}] * [\mathbb{C}/\Lambda] := [\mathbb{C}/\mathfrak{a}^{-1}\Lambda].$$

Supersingular reduction

Assume that D is a negative fundamental discriminant, i.e. \mathfrak{o}_D is the ring of integers in $\mathbb{Q}(\sqrt{D})$. We also assume p > 3.

- $\textcircled{O} All CM_{D} \text{-curves can be defined over a numberfield.}$
- ② There is a reduction map $E \mapsto E \mod p$ whose image is a curve defined over $\overline{\mathbb{F}_p}$.
- **③** If p is not split in $\mathbb{Q}(\sqrt{D})$, then $E \mod p$ is a supersingular elliptic curve.

Compare to reduction of $E: y^2 = x^3 + x$ over \mathbb{Q} to $\overline{E}: y^2 = x^3 + x$ over \mathbb{F}_p .

- If p = 5, then p = (2 + i)(2 i) splits in $\mathbb{Z}[i]$ and \overline{E} is not supersingular.
- If p = 7, then p is prime in $\mathbb{Z}[i]$ and \overline{E} is supersingular.

∃ ► < ∃ ►</p>

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Deuring's theorem

The following result is a simplified version of a result due to $\mathsf{M}.$ Deuring.

Theorem

Let \overline{E} be a supersingular elliptic curve over $\overline{\mathbb{F}_p}$. Then there exists an elliptic curve E with complex multiplication such that $\overline{E} \cong E \mod p$.

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Lifting supersingular curves I

- \mathscr{S}_p is finite; in fact $|\mathscr{S}_p| = \frac{p}{12} + O(1)$.
- CM_D is finite; in fact $|\operatorname{CM}_D| \asymp |D|^{\frac{1}{2} + o(1)} \to \infty$ as $D \to -\infty$.
- Consider the sequence of reductions $CM_D \to \mathscr{S}_p$ as $D \to -\infty$ along the condition that p is inert in $\mathbb{Q}(\sqrt{D})$. Question: Will the reduction eventually be surjective?

A B M A B M

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Lifting supersingular curves II

The following result is a simplified version of a result due to Ph. Michel.

Theorem

Let \overline{E} be a supersingular elliptic curve defined over $\overline{\mathbb{F}_p}$. There exists $D_0 < 0$ such that for all fundamental discriminants $D \leq D_0$ for which p is inert there is $E \in CM_D$ such that $\overline{E} \cong E \mod p$.

In fact, Ph. Michel proves an effective equidistribution result for the natural (non-uniform) probability measure on \mathscr{S}_p .

Our result

Elliptic curves Endomorphism rings Elliptic curves over C Reduction of CM curves

Theorem (Aka-L.-Michel-Wieser)

Let $q_1, q_2, p_1, \ldots, p_s$ be distinct odd primes. There is $D_0 < 0$ such that for any fundamental discriminant $D \le D_0$ satisfying that

- p_1, \ldots, p_s are inert in $\mathbb{Q}(\sqrt{D})$ and
- q_1, q_2 are split in $\mathbb{Q}(\sqrt{D})$

the simultaneous reduction map

$$\operatorname{CM}_{D} \to \prod_{i=1}^{s} \mathscr{S}_{p_{i}} \qquad E \mapsto (E \operatorname{mod} p_{1}, \ldots, E \operatorname{mod} p_{s})$$

is surjective.

In fact, we use a classification of joinings by Einsiedler and Lindenstrauss to prove an (ineffective) equidistribution result.

(Optimal) embeddings and supersingular reduction

- Let D < 0 a fundamental discriminant, p inert in $\mathbb{Q}(\sqrt{D})$.
- Let $E \in CM_D$.
- Then $\mathbf{B}_{\infty,p} := \operatorname{End}(E \mod p) \otimes \mathbb{Q}$ is a quaternion algebra.
- $\mathcal{O} = \operatorname{End}(E \mod p)$ is a maximal order in $\mathbf{B}_{\infty,p}$.
- The isomorphism class of $\mathbf{B}_{\infty,p}$ only depends on p.
- Reduction mod p gives embedding

$$\iota: \mathsf{End}(E) \hookrightarrow \mathsf{End}(E \bmod p),$$

i.e. an embedding

$$\iota:\mathfrak{o}_D\hookrightarrow\mathcal{O}.$$

∃ ► < ∃ ►</p>

Embeddings and supersingular reduction From embeddings to equidistribution

Equivalence of embeddings

Definition

Let $\iota_1, \iota_2 : \mathfrak{o}_D \hookrightarrow \mathcal{O}$ embeddings. Then $\iota_1 \sim \iota_2$ if

$$\exists u \in \mathcal{O}^{\times} \, \forall x \in \mathfrak{o}_D \quad \iota_2(x) = u\iota_1(x)u^{-1}.$$

We let $h(\mathfrak{o}_D, \mathcal{O})$ be the number of equivalence classes of embeddings $\iota : \mathfrak{o}_D \hookrightarrow \mathcal{O}$.

Deuring's theorem revisited

Consider the following version of Deuring's theorem, due to B. Gross and D. Zagier.

Theorem

Let $\mathcal{O} \subseteq \mathbf{B}_{\infty,p}$ be a maximal order and $\iota : \mathfrak{o}_D \hookrightarrow \mathcal{O}$ an embedding. Then there exists a unique $E \in \mathrm{CM}_D$ such that

 $\operatorname{End}(E \mod p) \cong \mathcal{O}$

and the embedding $\iota_E : \operatorname{End}(E) \hookrightarrow \operatorname{End}(E \mod p)$ is equivalent to ι under the isomorphism.

In the theorem, we use that there is a natural way to choose the isomorphism $\mathfrak{o}_D \cong \operatorname{End}(E)$.

∃ ► < ∃ ►</p>

Counting embeddings

Recall: D < 0 is a fundamental discriminant and p inert in $\mathbb{Q}(\sqrt{D})$.

Lemma (N. Elkies, K. Ono, and T. Yang)
Let
$$\overline{E} \in \mathscr{S}_p$$
 and $\mathcal{O} = \operatorname{End}(\overline{E})$. Then
 $|\{E \in \operatorname{CM}_D : E \mod p \cong \overline{E}\}| = \frac{1}{2}h(\mathfrak{o}_D, \mathcal{O})$

Surjectivity in one factor I

- By the lemma it suffices to prove that eventually $h(\mathfrak{o}_D, \mathcal{O}) > 0$ for all maximal orders $\mathcal{O} \subseteq \mathbf{B}_{\infty, p}$.
- Up to conjugacy, ${\bf B}_{\infty,p}$ contains only finitely many maximal orders.
- For surjectivity, it suffices to prove that for all maximal orders $\mathcal{O} \subseteq \mathbf{B}_{\infty,p}$ eventually $h(\mathfrak{o}_D, \mathcal{O}) > 0$.
- For equidistribution we need to show that h(o_D, O)/|Cl(o_D)| has the right asymptotics.

Surjectivity in one factor II

- Let $\iota : \mathfrak{o}_D \hookrightarrow \mathcal{O} \subseteq \mathbf{B}_{\infty,p}$ an embedding.
- ι is completely determined by $\iota(\sqrt{D})$.
- Let $\mathcal{O}^T = \{x \in \mathbb{Z} + 2\mathcal{O} : \operatorname{Tr}(x) = 0\}$ (Gross lattice). There is a one-to-one correspondence between embeddings $\iota : \mathfrak{o}_D \hookrightarrow \mathcal{O}$ and the set

$$\{v \in \mathcal{O}^T : v \text{ is primitive and } \operatorname{Nr}(v) = -D\}.$$

Surjectivity in one factor III

Therefore the surjectivity of the reduction map is equivalent to the following.

Theorem

Let p prime, $\mathcal{F}(p)$ the set of negative fundamental discriminants D s.t. p is inert in $\mathbb{Q}(\sqrt{D})$. Let \mathcal{O} be a maximal order in $\mathbf{B}_{\infty,p}$. There exists $D_0 < 0$ such that for all $D \in \mathcal{F}(p)$ we have

$$D < D_0 \implies -D \in \operatorname{Nr}(\mathcal{O}^T).$$

This follows from a theorem of Duke. Under additional congruence conditions, this admits a dynamic proof due to Linnik and Skubenko.

A B M A B M