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Uniform Distribution Modulo One

Let (xn) be a sequence of real numbers. We are interested in
the distribution of the fractional parts {xn} in the unit interval
[0, 1).
We say that (xn) is uniformly distributed modulo 1, if for
every interval I ⊆ [0, 1), we have

lim
N→∞

1
N # {1 ≤ n ≤ N : {xn} ∈ I} = |I| .

In other words, every interval gets its proportional share of
fractional parts.
Example: Take xn =

√
2n. The fractional parts are:

0.414214, 0.828427, 0.242641, 0.656854, 0.0710678, 0.485281,
0.899495, 0.313708, 0.727922, 0.142136, . . .
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Example – The Distribution of
(√

2n
)
mod 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure: The first 100 fractional parts of the sequence
(√

2n
)
.

Figure: The distribution of the first 1000 fractional parts of the sequence(√
2n
)
.

4 / 28



The Weyl Criterion

Theorem (The Weyl criterion, 1914)
The sequence (xn) is uniformly distributed mod 1 if and only if for
every fixed integer k 6= 0, we have

lim
N→∞

1
N

N∑
n=1

e2πikxn = 0.

Theorem (Bohl, Sierpiński, Weyl, 1909-10)
Let α ∈ R be an irrational number. Then the sequence (αn) is
uniformly distributed mod 1.

Proof (Weyl, 1914): Fix integer k 6= 0. Then
∣∣∣∣∣ 1N

N∑
n=1

e2πiknα
∣∣∣∣∣ =

∣∣∣1− e2πikNα
∣∣∣

N |1− e2πikα|
≤ 2

N |1− e2πikα|
= 1

N |sinπkα| .
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Examples

Theorem (Weyl, 1914)
Let p (x) = amxm + · · ·+ a1x + a0 be a polynomial with real
coefficients, with at least one of the coefficients ai (i ≥ 1)
irrational. Then the sequence (p (n)) is u.d. mod 1.

Example: Take p (x) =
√
2x2. The sequence

(√
2n2

)
is u.d.

mod 1.

Theorem (Fejér, Csillag 1930)
For any α 6= 0 and σ > 0 with σ not integer, the sequence (αnσ) is
u.d. mod 1.

Example: The sequence (
√
n) is u.d. mod 1.

Theorem (Koksma, 1935)
The sequence (αn) is u.d. mod 1 for almost all α > 1.
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Comparison of Uniformly Distributed Sequences

0.0 0.2 0.4 0.6 0.8 1.0

{ 2 n}

{ 2 n2}

{ n ]

{n3/2}

{1.1n}

Random points

Figure: Some uniformly distributed sequences modulo one

The definition of uniform distribution mod 1 does not capture
the fact that some sequences look much more equidistributed
than others. It also fails to fully capture the “randomness” of
the sequences.
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Fine-Scale Statistics

Uniform distribution modulo 1 measures the number of points
in fixed intervals I ⊆ [0, 1).
Subtler aspects of a sequence may be revealed by considering
fine-scale statistics, i.e., statistics in intervals of length 1/N
(the average gap), after restricting to the first N elements of
the sequence.
To study “randomness” of a sequence, we can compare these
statistics to those of random points in the unit interval.
Let X1,X2, . . . ,XN be i.i.d. random variables uniformly
distributed in the unit interval. The order statistics
X(1) ≤ X(2) ≤ · · · ≤ X(N) are distributed like the first N points
of a Poisson point process N (t) on R (conditional on the
event N (1) = N).
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Gap Distribution

For the first N elements of a sequence (xn), denote the
ordered fractional parts by

xN
(1) ≤ xN

(2) ≤ · · · ≤ xN
(N) ≤ xN

(N+1)

where by convention xN
(N+1) = 1 + xN

(1).

Let δN
n = N

(
xN

(n+1) − xN
(n)

)
be the normalized gaps.

Poisson statistics: For any I ⊆ [0,∞)

lim
N→∞

1
N #

{
1 ≤ n ≤ N : δN

n ∈ I
}

=
∫

I
e−s ds.
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The Three-Gap Theorem

Consider the gaps in the sequence (αn) .

Theorem (Sós, Surányi, Świerczkowski, 1957–1959)
Let α ∈ R. For any N, consider the gaps δN

n of the fractional parts
of the sequence (αn). Then δN

n attains at most three distinct
values.

0.0 0.2 0.4 0.6 0.8 1.0

Figure: The first 15 fractional parts of the sequence
√
2n. The (rescaled)

gaps are: 1.06602, 1.06602, 0.441559, 1.06602, 1.06602, 0.441559,
1.06602, 1.06602, 1.50758, 1.06602, 1.06602, 0.441559, 1.06602,
1.06602, 1.50758.
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The Sequence
(
αnd

)
We say that an irrational α is Diophantine, if for all ε > 0 and
all integers p, q 6= 0 ∣∣∣∣α− p

q

∣∣∣∣ > C (α, ε)
q2+ε .

By Roth’s theorem all algebraic irrationals are Diophantine,
and by Khinchin’s theorem, almost all α ∈ R are Diophantine.

Conjecture (Rudnick–Sarnak, 1998): Let d ≥ 2, and let α be
a Diophantine irrational. Then the gap distribution of the
fractional parts of the sequence

(
αnd

)
is Poissonian.

Rudnick–Sarnak’s conjecture is open even for the simplest
choices of α, e.g., is the gap distribution of the fractional
parts of

(√
2n2

)
Poissonian? We do not even have a “metric”

result (i.e., a result holding for almost all α).
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The gaps of
(√

2n2
)

Figure: The gap distribution of the first 10000 fractional parts of the
sequence

(√
2n2).
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The Sequence (nα)

Conjecture: Let α > 0 such that α in not an integer, and
α 6= 1/2. Then the gap distribution of the fractional parts of
the sequence (nα) is Poissonian.

Here again, not a single case is known. The case σ = 1/2 is
special:

Theorem (Elkies–McMullen, 2004)
The gap distribution of the fractional parts of the sequence (

√
n)

converges to a non Poissonian limit distribution.
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The gaps of
(
n3/4

)

Figure: The gap distribution of the first 105 fractional parts of the
sequence

(
n3/4).
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The gaps of (
√

n)

Figure: The gap distribution of the first 107 fractional parts of the
sequence

(√
n
)
.
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Intervals around Points

Given N points (xn ) in the unit interval and s > 0, a random
interval of the form

[
x − s

N , x + s
N
]
is expected to contain 2s

points.
When the centre of the interval is one of the given points xm,
it contains

#
{
1 ≤ n ≤ N : n 6= m, ‖xn − xm‖ ≤

s
N

}
other points.

Figure: Counting the number of points in an interval around a point
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Pair Correlation

Averaging over all centres xm, we get the pair correlation
function

R2,N ([−s, s]) = 1
N #

{
1 ≤ n 6= m ≤ N : ‖xn − xm‖ ≤

s
N

}
which measures the average number of (other) points in an
interval around a point.
For N random points (Poisson model), it converges to the
Lebesgue measure

lim
N→∞

R2,N ([−s, s]) = 2s.
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Smoothed Pair Correlation

For f ∈ C∞c (R) we can equivalently work with the smooth
pair correlation function

R2,N (f ) = 1
N
∑
k∈Z

∑
1≤n 6=m≤N

f (N (xn − xm − k)) .

Poissonian pair correlation (smooth version):

lim
N→∞

R2,N (f ) =
∫ ∞
−∞

f (x) dx .
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The Pair Correlation of
(
αnd

)
Theorem (Rudnick–Sarnak, 1998)

Let d ≥ 2. For almost all α ∈ R, the sequence
(
αnd

)
has

Poissonian pair correlation.

Very little is known for specific values of α. For example, is
the pair correlation of

√
2n2 Poissonian?

Figure: The pair correlation measure of the first 2000 fractional parts of
the sequence

(√
2n2).
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The Pair Correlation of (
√

n)

Theorem (El-Baz–Marklof–Vinogradov, 2013)
The pair correlation of the sequence (

√
n)√n/∈Z is Poissonian.

Figure: The pair correlation measure of the first 2000 fractional parts of
the sequence

(√
n
)

√
n/∈Z.
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Higher Correlations

For f ∈ C∞c
(
Rk−1

)
, the k−level correlation is defined by

Rk,N (f ) = 1
N

∑
k∈Zk−1

∑
1≤n1,...,nk≤N

distinct

f (N (∆− k))

where

∆ =
(
xn2 − xn1 , xn3 − xn2 , . . . , xnk − xnk−1

)
.

Poissonian k−level correlation:

lim
N→∞

Rk,N (f ) =
∫
Rk−1

f (x) dx .

If all the k−level correlations are Poissonian, then the gap
distribution is also Poissonian.

21 / 28



Higher Correlations

For f ∈ C∞c
(
Rk−1

)
, the k−level correlation is defined by

Rk,N (f ) = 1
N

∑
k∈Zk−1

∑
1≤n1,...,nk≤N

distinct

f (N (∆− k))

where

∆ =
(
xn2 − xn1 , xn3 − xn2 , . . . , xnk − xnk−1

)
.

Poissonian k−level correlation:

lim
N→∞

Rk,N (f ) =
∫
Rk−1

f (x) dx .

If all the k−level correlations are Poissonian, then the gap
distribution is also Poissonian.

21 / 28



Higher Correlations

For f ∈ C∞c
(
Rk−1

)
, the k−level correlation is defined by

Rk,N (f ) = 1
N

∑
k∈Zk−1

∑
1≤n1,...,nk≤N

distinct

f (N (∆− k))

where

∆ =
(
xn2 − xn1 , xn3 − xn2 , . . . , xnk − xnk−1

)
.

Poissonian k−level correlation:

lim
N→∞

Rk,N (f ) =
∫
Rk−1

f (x) dx .

If all the k−level correlations are Poissonian, then the gap
distribution is also Poissonian.

21 / 28



The Sequences (nα) and (αn)

Theorem (Technau–Y., 2020)
The sequence (nα) has Poissonian k−level correlation for almost
all α > 4k2 − 4k − 1.

This gives Poisson pair correlation for almost all α > 7. Can
one improve the range of α all the way down to α > 0?

Theorem (Aistleitner–Baker, 2020)
The sequence (αn) has Poissonian pair correlation for almost all
α > 1.

Aistleitner and Baker conjectured that for almost all α > 1, all
k−level correlations are Poissonian, and hence the gap
distribution is Poissonian for almost all α > 1.
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The Sequence (αn)

Theorem (Aistleitner–Baker–Technau–Y., 2020)
For almost all α > 1, all k−level correlations of (αn) are
Poissonian, and hence the gap distribution is Poissonian for almost
all α > 1.

Theorem (Aistleitner–Baker–Technau–Y., 2020)
Let (an) be a sequence of positive real numbers such that
lim

n→∞
an

log n =∞, and such that an+1 − an ≥ n−C for some C > 0
for all sufficiently large n. Then for almost all α > 0, all k−level
correlations of (eαan ) are Poissonian, and hence the gap
distribution is Poissonian for almost all α > 0.

The case (αn) follows by setting an = n and α̃ = eα. This
cannot be used directly for the sequence (nα) corresponding
to an = log n, since the condition lim

n→∞
an

log n =∞ fails to hold.
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all α > 1.
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n→∞
an

log n =∞, and such that an+1 − an ≥ n−C for some C > 0
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Exponential Sums

Consider the (smooth) pair correlation R2,N (f ) of the
sequence (eαan ), where α ∈ J := [A,A + 1]. Applying the
Poisson summation formula and using the rapid decay of the
Fourier coefficients, we get

R2,N (f ) =
(
1− 1

N

)
f̂ (0)

+ 1
N2

∑
06=|k|≤N1+ε

f̂
( k
N

) ∑
1≤n 6=m≤N

e2πik(eαan−eαam )

+ O
(
N−∞

)
and we would like to show that for almost all α > 0, the
middle term vanishes as N →∞.
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An L2 Approach

By a standard Borel-Cantelli argument, it is enough to show
that the variance of R2,N decays with a polynomial rate,
which reduces to showing that

1
N4

∑
06=|k1|≤N1+ε

06=|k2|≤N1+ε

∑
1≤m1 6=m2≤N
1≤n1 6=n2≤N

∣∣∣∣∫
J
e2πiφ(α) dα

∣∣∣∣ = O
(
N−δ

)

for some δ > 0, where

φ (α) = k1 (eαam1 − eαam2 ) + k2 (eαan1 − eαan2 ) .

.
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A van der Corput type Lemma

Lemma
Let φ : J → R be a C∞-function. Fix ` ≥ 1, and suppose that
φ(`) (α) has at most C zeros, and that the inequality
max
1≤i≤`

∣∣∣φ(i) (α)
∣∣∣ ≥ λ > 0 holds throughout the interval J . If ` = 1,

assume additionally that φ′ is monotone on J . Then∫
J
e2πiφ(α) dα�`,C λ−1/`.

The crux of the argument is therefore to prove that at each
α ∈ J , at least some derivative of

φ (α) = k1 (eαam1 − eαam2 ) + k2 (eαan1 − eαan2 )

is large (“repulsion principle”).
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Repulsion Principle

To prove repulsion, note that
φ(1) (α)
φ(2) (α)
φ(3) (α)
φ(4) (α)

 =


am1 am2 an1 an2

a2
m1 a2

m2 a2
n1 a2

n2
a3

m1 a3
m2 a3

n1 a3
n2

a4
m1 a4

m2 a4
n1 a4

n2




k1eαam1

−k1eαam2

k2eαan1

−k2eαan2

 .
Assume for simplicity that m1 > m2 > n1 > n2. Then if we
denote the Vandermonde matrix by M, then

max
1≤i≤4

∣∣∣φ(i) (α)
∣∣∣ ∥∥∥M−1

∥∥∥
∞
≥ eαam1

so that an appropriate lower bound for max1≤i≤4
∣∣∣φ(i) (α)

∣∣∣ will
follow from an upper bound for

∥∥M−1∥∥
∞, which we will get

from our assumptions.
There are “degenerate” configurations, e.g., when m1 = n1,
where φ (α) depends on fewer independent terms. These are
handled combinatorially.
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Thank You!

Thank you!
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