Poisson statistics for sequences modulo one

Nadav Yesha
Department of Mathematics
University of Haifa
אוניברסיטת חיפה

Based on joint works with C. Aistleitner (Graz), S. Baker (Birmingham) and N. Technau (Madison)

TAU Number Theory Seminar, December 2020

Outline

(1) Background

- Uniform Distribution Modulo One
- Gap Distribution
- Correlations
(2) Results
- The Sequences $\left(n^{\alpha}\right)$ and $\left(\alpha^{n}\right)$
- Proof Ideas

Uniform Distribution Modulo One

- Let $\left(x_{n}\right)$ be a sequence of real numbers. We are interested in the distribution of the fractional parts $\left\{x_{n}\right\}$ in the unit interval $[0,1)$.
- We say that $\left(x_{n}\right)$ is uniformly distributed modulo 1 , if for every interval $I \subseteq[0,1)$, we have

In other words, every interval gets its proportional share of fractional parts.

- Example: Take $x_{n}=\sqrt{2} n$. The fractional parts are:
$0.414214,0.828427,0.242641,0.656854,0.0710678,0.485281$,
$0.899495,0.313708,0.727922,0.142136$,

Uniform Distribution Modulo One

- Let $\left(x_{n}\right)$ be a sequence of real numbers. We are interested in the distribution of the fractional parts $\left\{x_{n}\right\}$ in the unit interval $[0,1)$.
- We say that $\left(x_{n}\right)$ is uniformly distributed modulo 1 , if for every interval $I \subseteq[0,1)$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq n \leq N:\left\{x_{n}\right\} \in I\right\}=|I|
$$

In other words, every interval gets its proportional share of fractional parts.

- Example: Take $x_{n}=\sqrt{2} n$. The fractional parts are:
$0.414214,0.828427,0.242641,0.656854,0.0710678,0.485281$,
$0.899495,0.313708,0.727922,0.142136$.
- Let $\left(x_{n}\right)$ be a sequence of real numbers. We are interested in the distribution of the fractional parts $\left\{x_{n}\right\}$ in the unit interval $[0,1)$.
- We say that $\left(x_{n}\right)$ is uniformly distributed modulo 1 , if for every interval $I \subseteq[0,1)$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq n \leq N:\left\{x_{n}\right\} \in I\right\}=|I|
$$

In other words, every interval gets its proportional share of fractional parts.

- Example: Take $x_{n}=\sqrt{2} n$. The fractional parts are:
$0.414214,0.828427,0.242641,0.656854,0.0710678,0.485281$, $0.899495,0.313708,0.727922,0.142136, \ldots$

Example - The Distribution of $(\sqrt{2} n) \bmod 1$

Figure: The first 100 fractional parts of the sequence $(\sqrt{2} n)$.

Figure: The distribution of the first 1000 fractional parts of the sequence $(\sqrt{2} n)$.

The Weyl Criterion

Theorem (The Weyl criterion, 1914)

The sequence $\left(x_{n}\right)$ is uniformly distributed mod 1 if and only if for every fixed integer $k \neq 0$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k x_{n}}=0
$$

Theorem (Bohl, Sierpiński, Weyl, 1909-10)

Let $\alpha \in \mathbb{R}$ be an irrational number. Then the sequence (αn) is uniformly distributed mod 1 .

Proof (Weyl, 1914): Fix integer $k \neq 0$. Then

Theorem (The Weyl criterion, 1914)

The sequence $\left(x_{n}\right)$ is uniformly distributed mod 1 if and only if for every fixed integer $k \neq 0$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k x_{n}}=0
$$

Theorem (Bohl, Sierpiński, Weyl, 1909-10)

Let $\alpha \in \mathbb{R}$ be an irrational number. Then the sequence (αn) is uniformly distributed mod 1 .

Proof (Weyl, 1914): Fix integer $k \neq 0$. Then

$\overline{N|\sin \pi k \alpha|}$

Theorem (The Weyl criterion, 1914)

The sequence $\left(x_{n}\right)$ is uniformly distributed mod 1 if and only if for every fixed integer $k \neq 0$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k x_{n}}=0
$$

Theorem (Bohl, Sierpiński, Weyl, 1909-10)

Let $\alpha \in \mathbb{R}$ be an irrational number. Then the sequence (αn) is uniformly distributed mod 1 .

Proof (Weyl, 1914): Fix integer $k \neq 0$. Then

$$
\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k n \alpha}\right|=\frac{\left|1-e^{2 \pi i k N \alpha}\right|}{N\left|1-e^{2 \pi i k \alpha}\right|} \leq \frac{2}{N \mid 1-e^{2 \pi i k \alpha \mid}}=\frac{1}{N|\sin \pi k \alpha|}
$$

Examples

Theorem (Weyl, 1914)

Let $p(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0}$ be a polynomial with real coefficients, with at least one of the coefficients $a_{i}(i \geq 1)$ irrational. Then the sequence $(p(n))$ is u.d. mod 1.

- Example: Take $p(x)=\sqrt{2} x^{2}$. The sequence $\left(\sqrt{2} n^{2}\right)$ is u.d. $\bmod 1$.

Theorem (Fejér, Csillag 1930)
 For any $\alpha \neq 0$ and $\sigma>0$ with σ not integer, the sequence $\left(\alpha n^{\sigma}\right)$ is u.d. $\bmod 1$
 - Example: The sequence (\sqrt{n}) is u.d. $\bmod 1$

Theorem (Koksma, 1935)

The sequence $\left(\alpha^{n}\right)$ is u.d mod 1 for almost all $\alpha>1$.

Theorem (Weyl, 1914)

Let $p(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0}$ be a polynomial with real coefficients, with at least one of the coefficients $a_{i}(i \geq 1)$ irrational. Then the sequence $(p(n))$ is u.d. mod 1.

- Example: Take $p(x)=\sqrt{2} x^{2}$. The sequence $\left(\sqrt{2} n^{2}\right)$ is u.d. $\bmod 1$.

Theorem (Fejér, Csillag 1930)

For any $\alpha \neq 0$ and $\sigma>0$ with σ not integer, the sequence $\left(\alpha n^{\sigma}\right)$ is u.d. mod 1 .

- Example: The sequence (\sqrt{n}) is u.d. $\bmod 1$.

Theorem (Koksma, 1935)
The sequence $\left(\alpha^{n}\right)$ is $u . d$. mod 1 for almost all $\alpha>1$.

Examples

Theorem (Weyl, 1914)

Let $p(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0}$ be a polynomial with real coefficients, with at least one of the coefficients $a_{i}(i \geq 1)$ irrational. Then the sequence $(p(n))$ is u.d. mod 1.

- Example: Take $p(x)=\sqrt{2} x^{2}$. The sequence $\left(\sqrt{2} n^{2}\right)$ is u.d. $\bmod 1$.

Theorem (Fejér, Csillag 1930)

For any $\alpha \neq 0$ and $\sigma>0$ with σ not integer, the sequence $\left(\alpha n^{\sigma}\right)$ is u.d. mod 1 .

- Example: The sequence (\sqrt{n}) is u.d. $\bmod 1$.

Theorem (Koksma, 1935)

The sequence $\left(\alpha^{n}\right)$ is u.d. mod 1 for almost all $\alpha>1$.

Comparison of Uniformly Distributed Sequences

Figure: Some uniformly distributed sequences modulo one

- The definition of uniform distribution mod 1 does not capture the fact that some sequences look much more equidistributed than others. It also fails to fully capture the "randomness" of the sequences.

Fine-Scale Statistics

- Uniform distribution modulo 1 measures the number of points in fixed intervals $I \subseteq[0,1)$.
- Subtler aspects of a sequence may be revealed by considering fine-scale statistics, i.e., statistics in intervals of length $1 / \mathrm{N}$ (the average gap), after restricting to the first N elements of the sequence.
- To study "randomness" of a sequence, we can compare these statistics to those of random points in the unit interval.
- Let $X_{1}, X_{2}, \ldots, X_{N}$ be i.i.d. random variables uniformly distributed in the unit interval. The order statistics $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(N)}$ are distributed like the first N points of a Poisson point process $\mathcal{N}(t)$ on \mathbb{R} (conditional on the event $\mathcal{N}(1)=N$)
- Uniform distribution modulo 1 measures the number of points in fixed intervals $I \subseteq[0,1)$.
- Subtler aspects of a sequence may be revealed by considering fine-scale statistics, i.e., statistics in intervals of length $1 / N$ (the average gap), after restricting to the first N elements of the sequence.
- To study "randomness" of a sequence, we can compare these statistics to those of random points in the unit interval. - Let $X_{1}, X_{2}, \ldots, X_{N}$ be i.i.d. random variables uniformly distributed in the unit interval. The order statistics $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(N)}$ are distributed like the first N points of a Poisson point process $\mathcal{N}(t)$ on \mathbb{R} (conditional on the event $\mathcal{N}(1)=N)$
- Uniform distribution modulo 1 measures the number of points in fixed intervals $I \subseteq[0,1)$.
- Subtler aspects of a sequence may be revealed by considering fine-scale statistics, i.e., statistics in intervals of length $1 / N$ (the average gap), after restricting to the first N elements of the sequence.
- To study "randomness" of a sequence, we can compare these statistics to those of random points in the unit interval.

- Uniform distribution modulo 1 measures the number of points in fixed intervals $I \subseteq[0,1)$.
- Subtler aspects of a sequence may be revealed by considering fine-scale statistics, i.e., statistics in intervals of length $1 / N$ (the average gap), after restricting to the first N elements of the sequence.
- To study "randomness" of a sequence, we can compare these statistics to those of random points in the unit interval.
- Let $X_{1}, X_{2}, \ldots, X_{N}$ be i.i.d. random variables uniformly distributed in the unit interval. The order statistics $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(N)}$ are distributed like the first N points of a Poisson point process $\mathcal{N}(t)$ on \mathbb{R} (conditional on the event $\mathcal{N}(1)=N)$.
- For the first N elements of a sequence $\left(x_{n}\right)$, denote the ordered fractional parts by

$$
x_{(1)}^{N} \leq x_{(2)}^{N} \leq \cdots \leq x_{(N)}^{N} \leq x_{(N+1)}^{N}
$$

where by convention $x_{(N+1)}^{N}=1+x_{(1)}^{N}$.

- Let $\delta_{n}^{N}=N\left(x_{(n+1)}^{N}-x_{(n)}^{N}\right)$ be the normalized gaps.
- Poisson statistics: For any $I \subseteq[0, \infty)$

- For the first N elements of a sequence $\left(x_{n}\right)$, denote the ordered fractional parts by

$$
x_{(1)}^{N} \leq x_{(2)}^{N} \leq \cdots \leq x_{(N)}^{N} \leq x_{(N+1)}^{N}
$$

where by convention $x_{(N+1)}^{N}=1+x_{(1)}^{N}$.

- Let $\delta_{n}^{N}=N\left(x_{(n+1)}^{N}-x_{(n)}^{N}\right)$ be the normalized gaps.
- Poisson statistics: For any $I \subseteq[0, \infty)$

- For the first N elements of a sequence $\left(x_{n}\right)$, denote the ordered fractional parts by

$$
x_{(1)}^{N} \leq x_{(2)}^{N} \leq \cdots \leq x_{(N)}^{N} \leq x_{(N+1)}^{N}
$$

where by convention $x_{(N+1)}^{N}=1+x_{(1)}^{N}$.

- Let $\delta_{n}^{N}=N\left(x_{(n+1)}^{N}-x_{(n)}^{N}\right)$ be the normalized gaps.
- Poisson statistics: For any $I \subseteq[0, \infty)$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq n \leq N: \delta_{n}^{N} \in I\right\}=\int_{I} e^{-s} d s
$$

- Consider the gaps in the sequence (αn).

Theorem (Sós, Surányi, Świerczkowski, 1957-1959)

Let $\alpha \in \mathbb{R}$. For any N, consider the gaps δ_{n}^{N} of the fractional parts of the sequence (αn). Then δ_{n}^{N} attains at most three distinct values.

Figure: The first 15 fractional parts of the sequence $\sqrt{2} n$. The (rescaled) gaps are: 1.06602, 1.06602, $0.441559,1.06602,1.06602,0.441559$, 1.06602, 1.06602, 1.50758, 1.06602, 1.06602, 0.441559, 1.06602, 1.06602, 1.50758.

- We say that an irrational α is Diophantine, if for all $\epsilon>0$ and all integers $p, q \neq 0$

$$
\left|\alpha-\frac{p}{q}\right|>\frac{C(\alpha, \epsilon)}{q^{2+\epsilon}} .
$$

By Roth's theorem all algebraic irrationals are Diophantine, and by Khinchin's theorem, almost all $\alpha \in \mathbb{R}$ are Diophantine.

- Conjecture (Rudnick-Sarnak, 1998): Let $d \geq 2$, and let α be a Diophantine irrational. Then the gap distribution of the fractional parts of the sequence $\left(\alpha n^{d}\right)$ is Poissonian.
- Rudnick-Sarnak's conjecture is open even for the simplest choices of α, e.g., is the gap distribution of the fractional parts of $\left(\sqrt{2} n^{2}\right)$ Poissonian? We do not even have a "metric" result (i.e., a result holding for almost all α).
- We say that an irrational α is Diophantine, if for all $\epsilon>0$ and all integers $p, q \neq 0$

$$
\left|\alpha-\frac{p}{q}\right|>\frac{C(\alpha, \epsilon)}{q^{2+\epsilon}} .
$$

By Roth's theorem all algebraic irrationals are Diophantine, and by Khinchin's theorem, almost all $\alpha \in \mathbb{R}$ are Diophantine.

- Conjecture (Rudnick-Sarnak, 1998): Let $d \geq 2$, and let α be a Diophantine irrational. Then the gap distribution of the fractional parts of the sequence $\left(\alpha n^{d}\right)$ is Poissonian.
- Rudnick-Sarnak's conjecture is open even for the simplest choices of α, e.g., is the gap distribution of the fractional parts of $\left(\sqrt{2} n^{2}\right)$ Poissonian? We do not even have a "metric" result (i.e., a result holding for almost all α).
- We say that an irrational α is Diophantine, if for all $\epsilon>0$ and all integers $p, q \neq 0$

$$
\left|\alpha-\frac{p}{q}\right|>\frac{C(\alpha, \epsilon)}{q^{2+\epsilon}} .
$$

By Roth's theorem all algebraic irrationals are Diophantine, and by Khinchin's theorem, almost all $\alpha \in \mathbb{R}$ are Diophantine.

- Conjecture (Rudnick-Sarnak, 1998): Let $d \geq 2$, and let α be a Diophantine irrational. Then the gap distribution of the fractional parts of the sequence $\left(\alpha n^{d}\right)$ is Poissonian.
- Rudnick-Sarnak's conjecture is open even for the simplest choices of α, e.g., is the gap distribution of the fractional parts of $\left(\sqrt{2} n^{2}\right)$ Poissonian? We do not even have a "metric" result (i.e., a result holding for almost all α).

The gaps of $\left(\sqrt{2} n^{2}\right)$

Figure: The gap distribution of the first 10000 fractional parts of the sequence $\left(\sqrt{2} n^{2}\right)$.

- Conjecture: Let $\alpha>0$ such that α in not an integer, and $\alpha \neq 1 / 2$. Then the gap distribution of the fractional parts of the sequence $\left(n^{\alpha}\right)$ is Poissonian.
- Here again, not a single case is known. The case $\sigma=1 / 2$ is special:

Theorem (Elkies-McMullen, 2004)
 The gap distribution of the fractional parts of the sequence (\sqrt{n}) converges to a non Poissonian limit distribution.

- Conjecture: Let $\alpha>0$ such that α in not an integer, and $\alpha \neq 1 / 2$. Then the gap distribution of the fractional parts of the sequence $\left(n^{\alpha}\right)$ is Poissonian.
- Here again, not a single case is known. The case $\sigma=1 / 2$ is special:

Theorem (Elkies-McMullen, 2004)
 The gap distribution of the fractional parts of the sequence (\sqrt{n}) converges to a non Poissonian limit distribution.

The Sequence (n^{α})

- Conjecture: Let $\alpha>0$ such that α in not an integer, and $\alpha \neq 1 / 2$. Then the gap distribution of the fractional parts of the sequence $\left(n^{\alpha}\right)$ is Poissonian.
- Here again, not a single case is known. The case $\sigma=1 / 2$ is special:

Theorem (Elkies-McMullen, 2004)

The gap distribution of the fractional parts of the sequence (\sqrt{n}) converges to a non Poissonian limit distribution.

The gaps of $\left(n^{3 / 4}\right)$

Figure: The gap distribution of the first 10^{5} fractional parts of the sequence $\left(n^{3 / 4}\right)$.

The gaps of (\sqrt{n})

Figure: The gap distribution of the first 10^{7} fractional parts of the sequence (\sqrt{n}).

Intervals around Points

- Given N points $\left(x_{n}\right)$ in the unit interval and $s>0$, a random interval of the form $\left[x-\frac{s}{N}, x+\frac{s}{N}\right]$ is expected to contain $2 s$ points.
- When the centre of the interval is one of the given points x_{m}, it contains

$$
\#\left\{1 \leq n \leq N: n \neq m,\left\|x_{n}-x_{m}\right\| \leq \frac{s}{N}\right\}
$$

other points.

Figure: Counting the number of points in an interval around a point

- Averaging over all centres x_{m}, we get the pair correlation function

$$
R_{2, N}([-s, s])=\frac{1}{N} \#\left\{1 \leq n \neq m \leq N:\left\|x_{n}-x_{m}\right\| \leq \frac{s}{N}\right\}
$$

which measures the average number of (other) points in an interval around a point.

- For N random points (Poisson model), it converges to the Lebesgue measure

- Averaging over all centres x_{m}, we get the pair correlation function

$$
R_{2, N}([-s, s])=\frac{1}{N} \#\left\{1 \leq n \neq m \leq N:\left\|x_{n}-x_{m}\right\| \leq \frac{s}{N}\right\}
$$

which measures the average number of (other) points in an interval around a point.

- For N random points (Poisson model), it converges to the Lebesgue measure

$$
\lim _{N \rightarrow \infty} R_{2, N}([-s, s])=2 s
$$

Smoothed Pair Correlation

- For $f \in C_{c}^{\infty}(\mathbb{R})$ we can equivalently work with the smooth pair correlation function

$$
R_{2, N}(f)=\frac{1}{N} \sum_{k \in \mathbb{Z}} \sum_{1 \leq n \neq m \leq N} f\left(N\left(x_{n}-x_{m}-k\right)\right)
$$

- Poissonian pair correlation (smooth version):

Smoothed Pair Correlation

- For $f \in C_{c}^{\infty}(\mathbb{R})$ we can equivalently work with the smooth pair correlation function

$$
R_{2, N}(f)=\frac{1}{N} \sum_{k \in \mathbb{Z}} \sum_{1 \leq n \neq m \leq N} f\left(N\left(x_{n}-x_{m}-k\right)\right) .
$$

- Poissonian pair correlation (smooth version):

$$
\lim _{N \rightarrow \infty} R_{2, N}(f)=\int_{-\infty}^{\infty} f(x) d x
$$

The Pair Correlation of $\left(\alpha n^{d}\right)$

Theorem (Rudnick-Sarnak, 1998)

Let $d \geq 2$. For almost all $\alpha \in \mathbb{R}$, the sequence $\left(\alpha n^{d}\right)$ has Poissonian pair correlation.

- Very little is known for specific values of α. For example, is the pair correlation of $\sqrt{2} n^{2}$ Poissonian?

Figure: The pair correlation measure of the first 2000 fractional parts of the sequence $\left(\sqrt{2} n^{2}\right)$.

The Pair Correlation of (\sqrt{n})

Theorem (El-Baz-Marklof-Vinogradov, 2013)

The pair correlation of the sequence $(\sqrt{n})_{\sqrt{n} \notin \mathbb{Z}}$ is Poissonian.

Figure: The pair correlation measure of the first 2000 fractional parts of the sequence $(\sqrt{n})_{\sqrt{n} \notin \mathbb{Z}}$.

- For $f \in C_{c}^{\infty}\left(\mathbb{R}^{k-1}\right)$, the k-level correlation is defined by

$$
R_{k, N}(f)=\frac{1}{N} \sum_{\mathbf{k} \in \mathbb{Z}^{k-1}} \sum_{\substack{1 \leq n_{1}, \ldots, n_{k} \leq N \\ \text { distinct }}} f(N(\Delta-\mathbf{k}))
$$

where

$$
\Delta=\left(x_{n_{2}}-x_{n_{1}}, x_{n_{3}}-x_{n_{2}}, \ldots, x_{n_{k}}-x_{n_{k-1}}\right) .
$$

- Poissonian k-level correlation:

- If all the k-level correlations are Poissonian, then the gap distribution is also Poissonian.
- For $f \in C_{c}^{\infty}\left(\mathbb{R}^{k-1}\right)$, the k-level correlation is defined by

$$
R_{k, N}(f)=\frac{1}{N} \sum_{\mathbf{k} \in \mathbb{Z}^{k-1}} \sum_{\substack{1 \leq n_{1}, \ldots, n_{k} \leq N \\ \text { distinct }}} f(N(\Delta-\mathbf{k}))
$$

where

$$
\Delta=\left(x_{n_{2}}-x_{n_{1}}, x_{n_{3}}-x_{n_{2}}, \ldots, x_{n_{k}}-x_{n_{k-1}}\right) .
$$

- Poissonian k-level correlation:

$$
\lim _{N \rightarrow \infty} R_{k, N}(f)=\int_{\mathbb{R}^{k-1}} f(x) d x
$$

- If all the k-level correlations are Poissonian, then the gap distribution is also Poissonian.
- For $f \in C_{c}^{\infty}\left(\mathbb{R}^{k-1}\right)$, the k-level correlation is defined by

$$
R_{k, N}(f)=\frac{1}{N} \sum_{\mathbf{k} \in \mathbb{Z}^{k-1}} \sum_{\substack{1 \leq n_{1}, \ldots, n_{k} \leq N \\ \text { distinct }}} f(N(\Delta-\mathbf{k}))
$$

where

$$
\Delta=\left(x_{n_{2}}-x_{n_{1}}, x_{n_{3}}-x_{n_{2}}, \ldots, x_{n_{k}}-x_{n_{k-1}}\right) .
$$

- Poissonian k-level correlation:

$$
\lim _{N \rightarrow \infty} R_{k, N}(f)=\int_{\mathbb{R}^{k-1}} f(x) d x
$$

- If all the k-level correlations are Poissonian, then the gap distribution is also Poissonian.

The Sequences $\left(n^{\alpha}\right)$ and $\left(\alpha^{n}\right)$

Theorem (Technau-Y., 2020)

The sequence (n^{α}) has Poissonian k-level correlation for almost all $\alpha>4 k^{2}-4 k-1$.
> - This gives Poisson pair correlation for almost all $\alpha>7$. Can one improve the range of α all the way down to $\alpha>0$?

Theorem (Aistleitner-Baker, 2020)

The sequence $\left(\alpha^{n}\right)$ has Poissonian nair correlation for almost all
\square

- Aistleitner and Baker conjectured that for almost all $\alpha>1$, all k-level correlations are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>1$

Theorem (Technau-Y., 2020)
 The sequence (n^{α}) has Poissonian k-level correlation for almost all $\alpha>4 k^{2}-4 k-1$.

- This gives Poisson pair correlation for almost all $\alpha>7$. Can one improve the range of α all the way down to $\alpha>0$?

Theorem (Aistleitner-Baker, 2020)
The sequence $\left(\alpha^{n}\right)$ has Poissonian pair correlation for almost all

- Aistleitner and Baker conjectured that for almost all $\alpha>1$, all k-level correlations are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>1$.

Theorem (Technau-Y., 2020)

The sequence (n^{α}) has Poissonian k-level correlation for almost all $\alpha>4 k^{2}-4 k-1$.

- This gives Poisson pair correlation for almost all $\alpha>7$. Can one improve the range of α all the way down to $\alpha>0$?

Theorem (Aistleitner-Baker, 2020)

The sequence $\left(\alpha^{n}\right)$ has Poissonian pair correlation for almost all $\alpha>1$.

- Aistleitner and Baker conjectured that for almost all $\alpha>1$, all k-level correlations are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>1$.

Theorem (Technau-Y., 2020)

The sequence (n^{α}) has Poissonian k-level correlation for almost all $\alpha>4 k^{2}-4 k-1$.

- This gives Poisson pair correlation for almost all $\alpha>7$. Can one improve the range of α all the way down to $\alpha>0$?

Theorem (Aistleitner-Baker, 2020)

The sequence $\left(\alpha^{n}\right)$ has Poissonian pair correlation for almost all $\alpha>1$.

- Aistleitner and Baker conjectured that for almost all $\alpha>1$, all k-level correlations are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>1$.

The Sequence $\left(\alpha^{n}\right)$

> Theorem (Aistleitner-Baker-Technau-Y., 2020)
> For almost all $\alpha>1$, all k-level correlations of $\left(\alpha^{n}\right)$ are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>1$.

Theorem (Aistleitner-Baker-Technau-Y., 2020)
Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that
 for all sufficiently large n. Then for almost all $\alpha>0$, all k-level correlations of ($\left.e^{\alpha a_{n}}\right)$ are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>0$

- The case $\left(\alpha^{n}\right)$ follows by setting $a_{n}=n$ and $\tilde{\alpha}=e^{\alpha}$. This cannot be used directly for the sequence (n^{α}) corresponding to $a_{n}=\log n$, since the condition $\lim _{n \rightarrow \infty} \frac{a_{n}}{\log n}=\infty$ fails to hold.

The Sequence (α^{n})

Theorem (Aistleitner-Baker-Technau-Y., 2020)

For almost all $\alpha>1$, all k-level correlations of $\left(\alpha^{n}\right)$ are
Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>1$.

Theorem (Aistleitner-Baker-Technau-Y., 2020)

Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{\log n}=\infty$, and such that $a_{n+1}-a_{n} \geq n^{-C}$ for some $C>0$ for all sufficiently large n. Then for almost all $\alpha>0$, all k-level correlations of ($\left.e^{\alpha a_{n}}\right)$ are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>0$.

- The case $\left(\alpha^{n}\right)$ follows by setting $a_{n}=n$ and $\tilde{\alpha}=e^{\alpha}$. This cannot be used directly for the sequence (n^{α}) corresponding to $a_{n}=\log n$, since the condition $\lim _{n \rightarrow \infty} \frac{a_{n}}{\log n}=\infty$ fails to hold.

The Sequence (α^{n})

> Theorem (Aistleitner-Baker-Technau-Y., 2020)
> For almost all $\alpha>1$, all k-level correlations of $\left(\alpha^{n}\right)$ are
> Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>1$.

Theorem (Aistleitner-Baker-Technau-Y., 2020)

Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{\log n}=\infty$, and such that $a_{n+1}-a_{n} \geq n^{-C}$ for some $C>0$ for all sufficiently large n. Then for almost all $\alpha>0$, all k-level correlations of ($\left.e^{\alpha a_{n}}\right)$ are Poissonian, and hence the gap distribution is Poissonian for almost all $\alpha>0$.

- The case $\left(\alpha^{n}\right)$ follows by setting $a_{n}=n$ and $\tilde{\alpha}=e^{\alpha}$. This cannot be used directly for the sequence (n^{α}) corresponding to $a_{n}=\log n$, since the condition $\lim _{n \rightarrow \infty} \frac{a_{n}}{\log n}=\infty$ fails to hold.
- Consider the (smooth) pair correlation $R_{2, N}(f)$ of the sequence ($e^{\alpha a_{n}}$), where $\alpha \in \mathcal{J}:=[A, A+1]$. Applying the Poisson summation formula and using the rapid decay of the Fourier coefficients, we get

$$
\begin{aligned}
R_{2, N}(f) & =\left(1-\frac{1}{N}\right) \hat{f}(0) \\
& +\frac{1}{N^{2}} \sum_{0 \neq|k| \leq N^{1+\epsilon}} \widehat{f}\left(\frac{k}{N}\right) \sum_{1 \leq n \neq m \leq N} e^{2 \pi i k\left(e^{\alpha a_{n}}-e^{\alpha a_{m}}\right)} \\
& +O\left(N^{-\infty}\right)
\end{aligned}
$$

and we would like to show that for almost all $\alpha>0$, the middle term vanishes as $N \rightarrow \infty$.

- By a standard Borel-Cantelli argument, it is enough to show that the variance of $R_{2, N}$ decays with a polynomial rate, which reduces to showing that

$$
\frac{1}{N^{4}} \sum_{\substack{0 \neq\left|k_{1}\right| \leq N^{1+\epsilon} \\ 0 \neq\left|k_{2}\right| \leq N^{1+\epsilon}}} \sum_{\substack{1 \leq m_{1} \neq m_{2} \leq N \\ 1 \leq n_{1} \neq n_{2} \leq N}}\left|\int_{\mathcal{J}} e^{2 \pi i \phi(\alpha)} d \alpha\right|=O\left(N^{-\delta}\right)
$$

for some $\delta>0$, where

$$
\phi(\alpha)=k_{1}\left(e^{\alpha a_{m_{1}}}-e^{\alpha a_{m_{2}}}\right)+k_{2}\left(e^{\alpha a_{n_{1}}}-e^{\alpha a_{n_{2}}}\right) .
$$

A van der Corput type Lemma

Lemma

Let $\phi: \mathcal{J} \rightarrow \mathbb{R}$ be a C^{∞}-function. Fix $\ell \geq 1$, and suppose that $\phi^{(\ell)}(\alpha)$ has at most C zeros, and that the inequality $\max _{1 \leq i \leq \ell}\left|\phi^{(i)}(\alpha)\right| \geq \lambda>0$ holds throughout the interval \mathcal{J}. If $\ell=1$, assume additionally that ϕ^{\prime} is monotone on \mathcal{J}. Then

$$
\int_{\mathcal{J}} e^{2 \pi i \phi(\alpha)} d \alpha<_{\ell, C} \lambda^{-1 / \ell}
$$

- The crux of the argument is therefore to prove that at each $\alpha \in \mathcal{J}$, at least some derivative of

is large ("repulsion principle").

A van der Corput type Lemma

Lemma

Let $\phi: \mathcal{J} \rightarrow \mathbb{R}$ be a C^{∞}-function. Fix $\ell \geq 1$, and suppose that $\phi^{(\ell)}(\alpha)$ has at most C zeros, and that the inequality $\max _{1 \leq i \leq \ell}\left|\phi^{(i)}(\alpha)\right| \geq \lambda>0$ holds throughout the interval \mathcal{J}. If $\ell=1$, assume additionally that ϕ^{\prime} is monotone on \mathcal{J}. Then

$$
\int_{\mathcal{J}} e^{2 \pi i \phi(\alpha)} d \alpha \lll \ell, C \lambda^{-1 / \ell}
$$

- The crux of the argument is therefore to prove that at each $\alpha \in \mathcal{J}$, at least some derivative of

$$
\phi(\alpha)=k_{1}\left(e^{\alpha a_{m_{1}}}-e^{\alpha a_{m_{2}}}\right)+k_{2}\left(e^{\alpha a_{n_{1}}}-e^{\alpha a_{n_{2}}}\right)
$$

is large ("repulsion principle").

Repulsion Principle

- To prove repulsion, note that

$$
\left(\begin{array}{l}
\phi^{(1)}(\alpha) \\
\phi^{(2)}(\alpha) \\
\phi^{(3)}(\alpha) \\
\phi^{(4)}(\alpha)
\end{array}\right)=\left(\begin{array}{cccc}
a_{m_{1}} & a_{m_{2}} & a_{n_{1}} & a_{n_{2}} \\
a_{m_{1}}^{2} & a_{m_{2}}^{2} & a_{n_{1}}^{2} & a_{n_{2}}^{2} \\
a_{m_{1}}^{3} & a_{m_{2}}^{3} & a_{n_{1}}^{3} & a_{n_{2}}^{3} \\
a_{m_{1}}^{4} & a_{m_{2}}^{4} & a_{n_{1}}^{4} & a_{n_{2}}^{4}
\end{array}\right)\left(\begin{array}{c}
k_{1} e^{\alpha a_{m_{1}}} \\
-k_{1} e^{\alpha a_{m_{2}}} \\
k_{2} e^{\alpha a_{n_{1}}} \\
-k_{2} e^{\alpha a_{n_{2}}}
\end{array}\right) .
$$

- Assume for simplicity that $m_{1}>m_{2}>n_{1}>n_{2}$. Then if we denote the Vandermonde matrix by M, then

so that an appropriate lower bound for $\max _{1 \leq i \leq 4}\left|\phi^{(i)}(\alpha)\right|$ will follow from an upper bound for $\left\|M^{-1}\right\|_{\infty}$, which we will get from our assumptions.
- There are "degenerate" configurations, e.g., when $m_{1}=n_{1}$, where $\phi(\alpha)$ depends on fewer independent terms. These are handled combinatorially.

Repulsion Principle

- To prove repulsion, note that

$$
\left(\begin{array}{l}
\phi^{(1)}(\alpha) \\
\phi^{(2)}(\alpha) \\
\phi^{(3)}(\alpha) \\
\phi^{(4)}(\alpha)
\end{array}\right)=\left(\begin{array}{cccc}
a_{m_{1}} & a_{m_{2}} & a_{n_{1}} & a_{n_{2}} \\
a_{m_{1}}^{2} & a_{m_{2}}^{2} & a_{n_{1}}^{2} & a_{n_{2}}^{2} \\
a_{m_{1}}^{3} & a_{m_{2}}^{3} & a_{n_{1}}^{3} & a_{n_{2}}^{3} \\
a_{m_{1}}^{4} & a_{m_{2}}^{4} & a_{n_{1}}^{4} & a_{n_{2}}^{4}
\end{array}\right)\left(\begin{array}{c}
k_{1} e^{\alpha a_{m_{1}}} \\
-k_{1} e^{\alpha a_{m_{2}}} \\
k_{2} e^{\alpha a a_{1}} \\
-k_{2} e^{\alpha a_{n_{2}}}
\end{array}\right) .
$$

- Assume for simplicity that $m_{1}>m_{2}>n_{1}>n_{2}$. Then if we denote the Vandermonde matrix by M, then

$$
\max _{1 \leq i \leq 4}\left|\phi^{(i)}(\alpha)\right|\left\|M^{-1}\right\|_{\infty} \geq e^{\alpha a_{m_{1}}}
$$

so that an appropriate lower bound for $\max _{1 \leq i \leq 4}\left|\phi^{(i)}(\alpha)\right|$ will follow from an upper bound for $\left\|M^{-1}\right\|_{\infty}$, which we will get from our assumptions.

There are "degenerate" configurations, e.g., when $m_{1}=n_{1}$, where $\phi(\alpha)$ depends on fewer independent terms. These are handled combinatorially.

- To prove repulsion, note that

$$
\left(\begin{array}{l}
\phi^{(1)}(\alpha) \\
\phi^{(2)}(\alpha) \\
\phi^{(3)}(\alpha) \\
\phi^{(4)}(\alpha)
\end{array}\right)=\left(\begin{array}{llll}
a_{m_{1}} & a_{m_{2}} & a_{n_{1}} & a_{n_{2}} \\
a_{m_{1}}^{2} & a_{m_{2}}^{2} & a_{n_{1}}^{2} & a_{n_{2}}^{2} \\
a_{m_{1}}^{3} & a_{m_{2}}^{3} & a_{n_{1}}^{3} & a_{n_{2}}^{3} \\
a_{m_{1}}^{4} & a_{m_{2}}^{4} & a_{n_{1}}^{4} & a_{n_{2}}^{4}
\end{array}\right)\left(\begin{array}{c}
k_{1} e^{\alpha a m_{1}} \\
-k_{1} e^{\alpha a_{m_{2}}} \\
k_{2} e^{\alpha a a_{1}} \\
-k_{2} e^{\alpha a_{n_{2}}}
\end{array}\right) .
$$

- Assume for simplicity that $m_{1}>m_{2}>n_{1}>n_{2}$. Then if we denote the Vandermonde matrix by M, then

$$
\max _{1 \leq i \leq 4}\left|\phi^{(i)}(\alpha)\right|\left\|M^{-1}\right\|_{\infty} \geq e^{\alpha a_{m_{1}}}
$$

so that an appropriate lower bound for $\max _{1 \leq i \leq 4}\left|\phi^{(i)}(\alpha)\right|$ will follow from an upper bound for $\left\|M^{-1}\right\|_{\infty}$, which we will get from our assumptions.

- There are "degenerate" configurations, e.g., when $m_{1}=n_{1}$, where $\phi(\alpha)$ depends on fewer independent terms. These are handled combinatorially.

Thank You!

Thank you!

