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Uniform Distribution Modulo One

@ Let (x,) be a sequence of real numbers. We are interested in
the distribution of the fractional parts {x,} in the unit interval
[0,1).
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Uniform Distribution Modulo One

@ Let (x,) be a sequence of real numbers. We are interested in

the distribution of the fractional parts {x,} in the unit interval
[0,1).

e We say that (x,) is uniformly distributed modulo 1, if for
every interval / C [0, 1), we have

lim —#{1<n<N {xn} €1} =11].

N—oo N

In other words, every interval gets its proportional share of
fractional parts.

e Example: Take x, = v/2n. The fractional parts are:

0.414214,0.828427,0.242641,0.656854,0.0710678, 0.485281,
0.899495,0.313708, 0.727922,0.142136, . ..
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Example — The Distribution of (\/ﬁn) mod 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure: The first 100 fractional parts of the sequence (ﬂ )

0.2 0.4 0e 0 1.0

Figure: The distribution of the first 1000 fractional parts of the sequence

(V2n).
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The Weyl Criterion

Theorem (The Weyl criterion, 1914)

The sequence (x,) is uniformly distributed mod 1 if and only if for
every fixed integer k # 0, we have

1
lim — e2mikon — 0,
N—oo N nE—:l
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Theorem (The Weyl criterion, 1914)
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Theorem (Bohl, Sierpinski, Weyl, 1909-10)

Let o« € R be an irrational number. Then the sequence (an) is
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The Weyl Criterion

Theorem (The Weyl criterion, 1914)

The sequence (x,) is uniformly distributed mod 1 if and only if for
every fixed integer k # 0, we have

Theorem (Bohl, Sierpinski, Weyl, 1909-10)

Let o« € R be an irrational number. Then the sequence (an) is
uniformly distributed mod 1.

A\

Proof (Weyl, 1914): Fix integer k # 0. Then
‘ 1N ‘1 . e27rikNa’ ) 1

2mik _
Nzemna

= - < - = .
N|1 — e?mike| = N |1 — e2mika|  N|sin Tkal

n=1
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Examples

Theorem (Weyl, 1914)

Let p(x) = amx™ + -+ + a1x + ap be a polynomial with real
coefficients, with at least one of the coefficients a; (i > 1)
irrational. Then the sequence (p(n)) is u.d. mod 1.

o Example: Take p(x) = v/2x%. The sequence (ﬁnz) is u.d.
mod 1.

6/28



Theorem (Weyl, 1914)

Let p(x) = amx™ + -+ + a1x + ap be a polynomial with real
coefficients, with at least one of the coefficients a; (i > 1)
irrational. Then the sequence (p(n)) is u.d. mod 1.

o Example: Take p(x) = v/2x%. The sequence (ﬂnz) is u.d.
mod 1.

A\

Theorem (Fejér, Csillag 1930)
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Examples

Theorem (Weyl, 1914)

Let p(x) = amx™ + -+ + a1x + ap be a polynomial with real
coefficients, with at least one of the coefficients a; (i > 1)
irrational. Then the sequence (p(n)) is u.d. mod 1.

o Example: Take p(x) = v/2x%. The sequence (ﬂnz) is u.d.
mod 1.

Theorem (Fejér, Csillag 1930)

For any a # 0 and o > 0 with o not integer, the sequence (an?) is
u.d. mod 1.

e Example: The sequence (\/n) is u.d. mod 1.

Theorem (Koksma, 1935)

The sequence (a") is u.d. mod 1 for almost all o > 1.
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Comparison of Uniformly Distributed Sequences

o {V2n}

o {V2n?}

o {vn]
{,13/2)
{117

« Random points

L L L L L L
0.0 0.2 0.4 0.6 0.8 1.0

Figure: Some uniformly distributed sequences modulo one

@ The definition of uniform distribution mod 1 does not capture
the fact that some sequences look much more equidistributed
than others. It also fails to fully capture the “randomness” of
the sequences.
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Fine-Scale Statistics

@ Uniform distribution modulo 1 measures the number of points
in fixed intervals | C [0, 1).
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Fine-Scale Statistics

@ Uniform distribution modulo 1 measures the number of points
in fixed intervals | C [0, 1).

@ Subtler aspects of a sequence may be revealed by considering
fine-scale statistics, i.e., statistics in intervals of length 1/N
(the average gap), after restricting to the first N elements of
the sequence.

@ To study “randomness” of a sequence, we can compare these
statistics to those of random points in the unit interval.

o Let Xy, X5,..., Xy bei.i.d. random variables uniformly
distributed in the unit interval. The order statistics
X1) < Xp) < -+ < X are distributed like the first N points
of a Poisson point process N (t) on R (conditional on the

event N (1) = N).

8/28



Gap Distribution

@ For the first N elements of a sequence (x,), denote the
ordered fractional parts by
N N N N
X1 SX2) S S X)) S X

where by convention X(N+1) 1+ X(1)
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Gap Distribution

@ For the first N elements of a sequence (x,), denote the
ordered fractional parts by
N N N N
X1 SX2) S S X)) S X

where by convention X(IXI+1) =1+ x(’\ll).

o Let N =N (x(ﬁﬂ) — x(’X)) be the normalized gaps.

e Poisson statistics: For any / C [0, c0)

. 1 . SN _ —5
lim N#{lSnSN.(S,,EI}—/Ie ds.

N—o00
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The Three-Gap Theorem

o Consider the gaps in the sequence (an).

Theorem (Sés, Suranyi, Swierczkowski, 1957-1959)

Let o € R. For any N, consider the gaps 6V of the fractional parts
of the sequence (an). Then 6"V attains at most three distinct
values.

0.0 0.2 0.4 0.6 0.8 1.0

Figure: The first 15 fractional parts of the sequence v/2n. The (rescaled)
gaps are: 1.06602, 1.06602, 0.441559, 1.06602, 1.06602, 0.441559,
1.06602, 1.06602, 1.50758, 1.06602, 1.06602, 0.441559, 1.06602,
1.06602, 1.50758.
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The Sequence (and)

@ We say that an irrational « is Diophantine, if for all ¢ > 0 and
all integers p, g # 0

p’> Clae)

a— =
‘ q q2+e

By Roth's theorem all algebraic irrationals are Diophantine,
and by Khinchin's theorem, almost all o € R are Diophantine.
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@ We say that an irrational « is Diophantine, if for all ¢ > 0 and
all integers p, g # 0

p’> Clae)

a— =
‘ q q2+e

By Roth's theorem all algebraic irrationals are Diophantine,
and by Khinchin's theorem, almost all o € R are Diophantine.

e Conjecture (Rudnick—Sarnak, 1998): Let d > 2, and let « be
a Diophantine irrational. Then the gap distribution of the
fractional parts of the sequence (and> is Poissonian.

@ Rudnick—Sarnak’s conjecture is open even for the simplest
choices of a, e.g., is the gap distribution of the fractional
parts of (ﬁn2> Poissonian? We do not even have a “metric”
result (i.e., a result holding for almost all ).
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The gaps of (v/2n?)

08

0.0

o 1

Figure: The gap distribution of the first 10000 fractional parts of the
sequence (v/2n?).
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The Sequence (n®)

@ Conjecture: Let a > 0 such that « in not an integer, and
a # 1/2. Then the gap distribution of the fractional parts of
the sequence (n®) is Poissonian.
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The Sequence (n®)

@ Conjecture: Let a > 0 such that « in not an integer, and
a # 1/2. Then the gap distribution of the fractional parts of
the sequence (n®) is Poissonian.

@ Here again, not a single case is known. The case 0 =1/2 is
special:

Theorem (Elkies—McMullen, 2004)

The gap distribution of the fractional parts of the sequence (1/n)
converges to a non Poissonian limit distribution.
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The gaps of (n**)

104,
{

osl h

.__1

N
0sf 3
I\
R
ozt
0 1 2 3 s

Figure: The gap distribution of the first 10° fractional parts of the
sequence (n*/*).
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The gaps of (1/n)

0.0 0.5 .0 E: 20 2.5 2.0 3.5

Figure: The gap distribution of the first 107 fractional parts of the

sequence (1/n).
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Intervals around Points

e Given N points (x,) in the unit interval and s > 0, a random
interval of the form [x — %, x + 7] is expected to contain 2s
points.

@ When the centre of the interval is one of the given points x,,
it contains

#{lgnSN: n#m, Hx,,—x,,,Hg;/}

other points.

02 0.4 0.8 0.e

Figure: Counting the number of points in an interval around a point
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Pair Correlation

@ Averaging over all centres x,,,, we get the pair correlation
function

Rom(l=s.s) = g {1 n s m< Ny =l < 2}

which measures the average number of (other) points in an
interval around a point.
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Pair Correlation

@ Averaging over all centres x,,,, we get the pair correlation
function

Rom(l=s.s) = g {1 n s m< Ny =l < 2}

which measures the average number of (other) points in an
interval around a point.

e For N random points (Poisson model), it converges to the
Lebesgue measure

lim Ry n ([—s,s]) = 2s.
N—o0
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Smoothed Pair Correlation

e For f € C°(R) we can equivalently work with the smooth
pair correlation function

Ron () :%Z > F(N(xn—xm —k)).

k€Z 1<n#m<N
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Smoothed Pair Correlation

e For f € C°(R) we can equivalently work with the smooth
pair correlation function

Ron () :%Z > F(N(xn—xm —k)).

k€Z 1<n#m<N

@ Poissonian pair correlation (smooth version):

fim R2N(f):/ F (x) dx.
N—oo 7 —00
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The Pair Correlation of (and)

Theorem (Rudnick=Sarnak, 1998)

Let d > 2. For almost all o € R, the sequence <and) has
Poissonian pair correlation.

@ Very little is known for specific values of a.. For example, is
the pair correlation of v/2n? Poissonian?

Figure: The pair correlation measure of the first 2000 fractional parts of
the sequence (\/§n2).
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The Pair Correlation of (1/n)

Theorem (EI—Baz—Marhof—Vinogradov, 2013)

The pair correlation of the sequence (\/n) ¢z 15 Poissonian.

Figure: The pair correlation measure of the first 2000 fractional parts of
the sequence (ﬁ)ﬁ¢2'
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Higher Correlations

@ For f € C* (Rk_1>, the k—Ilevel correlation is defined by

Rin (f Z Z f(N(A—k))

keZk 11<ny,...,n, <N
dlstlnct

where

A = (Xny — Xnys Xng — Xngs« + s Xng — Xny_y) -
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Higher Correlations

@ For f € C* (Rk_1>, the k—Ilevel correlation is defined by

Rin (f Z Z f(N(A—k))

keZ" 11<n,...,nk <N
distinct

where

A = (Xny — Xnys Xng — Xngs« + s Xng — Xny_y) -

@ Poissonian k—Ilevel correlation:

I|m Rin () = /]ka1 f(x) dx.

N—oo0

o If all the k—level correlations are Poissonian, then the gap
distribution is also Poissonian.
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The Sequences (n®) and (a")

Theorem (Technau-Y., 2020)

The sequence (n®) has Poissonian k—level correlation for almost
all o > 4k* — 4k — 1.
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The Sequences (n®) and (a")

Theorem (Technau-Y., 2020)

The sequence (n®) has Poissonian k—level correlation for almost
all o > 4k* — 4k — 1.

@ This gives Poisson pair correlation for almost all & > 7. Can
one improve the range of « all the way down to o > 07

Theorem (Aistleitner—Baker, 2020)

The sequence (a) has Poissonian pair correlation for almost all
o> 1.

@ Aistleitner and Baker conjectured that for almost all « > 1, all
k—level correlations are Poissonian, and hence the gap
distribution is Poissonian for almost all o > 1.
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The Sequence (a”)

Theorem (Aistleitner—Baker-Technau-Y., 2020)

For almost all o > 1, all k—level correlations of (o) are

Poissonian, and hence the gap distribution is Poissonian for almost
all o« > 1.
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The Sequence (a”)

Theorem (Aistleitner—Baker-Technau-Y., 2020)

For almost all o > 1, all k—level correlations of (o) are
Poissonian, and hence the gap distribution is Poissonian for almost
all o« > 1.

Theorem (Aistleitner—Baker—Technau-Y., 2020)

Let (a,) be a sequence of positive real numbers such that
lim |ag"n = 00, and such that a1 — ap, > n=C for some C > 0

for all sufficiently large n. Then for almost all o > 0, all k—level
correlations of (e*?) are Poissonian, and hence the gap
distribution is Poissonian for almost all o > 0.
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The Sequence (a”)

Theorem (Aistleitner—Baker-Technau-Y., 2020)

For almost all o > 1, all k—level correlations of (o) are
Poissonian, and hence the gap distribution is Poissonian for almost
all o« > 1.

Theorem (Aistleitner—Baker—Technau-Y., 2020)

Let (a,) be a sequence of positive real numbers such that
lim |ag"n = 00, and such that a1 — ap, > n=C for some C > 0

for all sufficiently large n. Then for almost all o > 0, all k—level
correlations of (e*?) are Poissonian, and hence the gap
distribution is Poissonian for almost all o > 0.

@ The case (a") follows by setting a, = n and & = e®. This
cannot be used directly for the sequence (n®) corresponding

to a, = log n, since the condition lim |oa" = oo fails to hold.
n—oo 108N
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Exponential Sums

o Consider the (smooth) pair correlation Ry y (f) of the
sequence (€“), where a € J := [A, A+ 1]. Applying the
Poisson summation formula and using the rapid decay of the
Fourier coefficients, we get

R ()= (1- )70

]_ -~ k 271'[/( «an __ p0am
b X F(y) X e
0| k| < N1+e 1<n#m<N
+ O (N~)

and we would like to show that for almost all o > 0, the
middle term vanishes as N — oc.
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An L? Approach

@ By a standard Borel-Cantelli argument, it is enough to show
that the variance of R, y decays with a polynomial rate,
which reduces to showing that

1

oo >
0#| ki |<NIte 1<mi#my <N
O#|k2‘§N1+5 1<m#m<N

[ 0 aaf = ()

for some § > 0, where

¢ () = ky (¥ — e*¥m2) 4 ko (e — %)

25/28



A van der Corput type Lemma

Lemma
Let ¢ : J — R be a C*°-function. Fix £ > 1, and suppose that
#©) (o) has at most C zeros, and that the inequality

[nax, ‘qb(") (a)‘ > A\ > 0 holds throughout the interval J. If { =1,

assume additionally that ¢' is monotone on J. Then

/ e27ri¢(a) da <uc )\—l/f.
J
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A van der Corput type Lemma

Lemma
Let ¢ : J — R be a C*°-function. Fix £ > 1, and suppose that
#©) (o) has at most C zeros, and that the inequality

[nax, ‘qb(") (a)‘ > A\ > 0 holds throughout the interval J. If { =1,

assume additionally that ¢' is monotone on J. Then

/ e27ri¢(a) da <uc )\—l/f.
J

@ The crux of the argument is therefore to prove that at each
a € J, at least some derivative of

¢(OJ) = kl (eaam1 _ eozamz) + k2 (eaanl - eaa”2)

is large (“repulsion principle”).
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Repulsion Principle

@ To prove repulsion, note that

1

¢( )( ) dm; dmp, dn;  Amy kleaaml
2 2 2 2 2 aa
(3) (o) | _ a,3n1 ag,2 agl ag2 —kqe%m

aa

O () a4m1 a272 aZ1 322 koe*?m
4 . aa
( ) (O[) aml 3m2 anl an2 k2e 2
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Repulsion Principle

@ To prove repulsion, note that

¢(1) (O‘) dm; dm; dnp am ST
o (a) | az, az, a3 ay || —kievom
() | | an am, @, a, || kee™™
¢K4)(00 a#l aﬁu aﬁl aﬁZ — ko e*an;

@ Assume for simplicity that my > my > ny > ny. Then if we
denote the Vandermonde matrix by M, then

2[00 @[] 2 e

so that an appropriate lower bound for maxi<j<4 ‘¢(’) (a)‘ will

follow from an upper bound for |[M~1||__, which we will get
from our assumptions.
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Repulsion Principle

@ To prove repulsion, note that

¢K1)(00 dm; dm; dnp am ST
»? (a) B a,2,,1 3,2,,2 a%l a?,Z —ky e¥@m2
() | | an am, @, a, || kee™™
¢K4)(00 a#l aﬁu aﬁl aﬁZ — ko e*an;

@ Assume for simplicity that my > my > ny > ny. Then if we
denote the Vandermonde matrix by M, then

2[00 @[] 2 e

so that an appropriate lower bound for maxi<j<4 ‘¢(’) (a)‘ will

follow from an upper bound for |[M~1||__, which we will get
from our assumptions.

@ There are “degenerate” configurations, e.g., when m; = nq,
where ¢ (a) depends on fewer independent terms. These are
handled combinatorially.
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Thank You!

Thank you!
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