Zeros of derivatives of the Riemann zeta function and relations to the Riemann hypothesis

Ade Irma Suriajaya (Chacha)

- partly a joint work with Fan Ge -

Kyushu University

- Faculty of Mathematics -

TAU number theory seminar @ Zoom, 22 October 2020

This work was partly supported by Nitori International Scholarship Foundation, the Iwatani Naoji Foundation, RIKEN iTHEMS, JSPS KAKENHI Grant Number 15J02325 and 18K13400. Further, a part of this work was conducted under RIKEN SPDR program.

Riemann zeta function

The *Riemann zeta function* $\zeta(s)$ is the analytic function on $\mathbb{C} \setminus \{1\}$ satisfying

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \text{when } \operatorname{Re}(s) > 1. \tag{1}$$

Remarks

• $\zeta(s)$ has a simple pole at s = 1 as its only singularity.

► The equality
$$\sum_{n} n^{-s} = \prod_{p} (1 - p^{-s})^{-1}$$
 tells us that $\zeta(s)$ has no zeros in $\operatorname{Re}(s) > 1$.

Subtracting the term $(s-1)^{-1}$ from the Dirichlet series (1) and using its integral representation, we find that $\zeta(s)$ can be analytically continued to $\operatorname{Re}(s) > 0$ $(s \neq 1)$.

Functional equation and trivial zeros of $\zeta(s)$

 $\zeta(s)$ satisfies the functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s).$$
(2)

From this we can deduce:

► $\zeta(1-s)$ has simple zeros at s = 3, 5, 7, ... due to poles of $\Gamma(1-s)$.

Hence $\zeta(s)$ has trivial zeros at $s = -2, -4, -6, -8, -10, \dots$

Zeros of $\zeta(s)$

From

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p: \text{prime}} \frac{1}{1 - p^{-s}} \qquad (\text{Re}(s) > 1),$$

we immediately find that $\zeta(s) \neq 0$ when $\operatorname{Re}(s) > 1$.

From the functional equation (2), $\zeta(s) \neq 0$ when Re(s) < 0, except when $s = -2, -4, -6, -8, -10, \ldots$

Hence, zeros of $\zeta(s)$ other than $s = -2, -4, -6, -8, -10, \ldots$, if exist, should lie within $0 \leq \text{Re}(s) \leq 1$.

The Prime Number Theorem

 $\pi(x) := \# \left\{ p \le x \mid p \text{ is a prime number} \right\}, \quad \operatorname{Li}(x) := \int_2^x \frac{1}{\log t} \, \mathrm{d}t$

Observation (Riemann, 1859)

$$\pi(x) = \text{Li}(x) + (\text{small order terms})$$

Theorem (Hadamard, de la Vallée Poussin; 1896)

1.
$$\zeta(1+it) \neq 0, \quad t > 0$$

2. $\pi(x) = \operatorname{Li}(x) + O\left(\frac{x}{\exp\left(a\sqrt{\log x}\right)}\right), \quad \exists a > 0$

Nontrivial zeros of $\zeta(s)$

$$\{-2, -4, -6, -8, -10, \cdots\}$$
 = the set of all *trivial* zeros of $\zeta(s)$

$$\mathcal{Z} := \{ \rho \in \mathbb{C} \mid \zeta(\rho) = 0, \ \rho \notin -2\mathbb{N} \}$$

= the set of all *nontrivial* zeros of $\zeta(s)$

$$\begin{array}{ll} \rho \in \mathcal{Z}: \\ & 1. \ \mathsf{Im}(\rho) \neq 0, \\ & 3. \ \zeta(\overline{\rho}) = 0, \end{array} \qquad \begin{array}{ll} 2. \ 0 < \mathsf{Re}(\rho) < 1, \\ & 4. \ \zeta(1 - \overline{\rho}) = 0. \end{array}$$

$$\begin{aligned} \mathcal{Z} &= \{ \rho \in \mathbb{C} \mid \zeta(\rho) = 0, \ \operatorname{Im}(\rho) \neq 0 \} \\ &= \{ \rho \in \mathbb{C} \mid \zeta(\rho) = 0, \ \operatorname{Re}(\rho) > 0 \} \end{aligned}$$

Riemann hypothesis (RH): For any $\rho \in \mathcal{Z}$, Re(ρ) = 1/2.

Properties of zeros of $\zeta(s)$

Zeros of $\zeta(s)$

(by Matthew R. Watkins)

The Prime Number Theorem

 $\pi(x) := \# \left\{ p \le x \mid p \text{ is a prime number} \right\}, \quad \operatorname{Li}(x) := \int_2^x \frac{1}{\log t} \, \mathrm{d}t$

Observation (Riemann, 1859)

$$\pi(x) = \text{Li}(x) + (\text{small order terms})$$

Theorem (Hadamard, de la Vallée Poussin; 1896)

1.
$$\zeta(1+it) \neq 0, \quad t > 0$$

2. $\pi(x) = \operatorname{Li}(x) + O\left(\frac{x}{\exp\left(a\sqrt{\log x}\right)}\right), \quad \exists a > 0$

Theorem (Koch, 1900)

$$\mathsf{RH} \quad \iff \quad \pi(x) = \mathsf{Li}(x) + O\left(x^{1/2+\epsilon}\right), \quad \forall \epsilon > 0$$

Equivalence for RH

Theorem (Speiser, 1935)

RH

$$\zeta(s) \neq 0$$
 in $0 < \operatorname{Re}(s) < 1/2$

is equivalent to

$$\zeta'(s)
eq 0$$
 in $0 < \operatorname{Re}(s) < 1/2$

Theorem (Levinson and Montgomery, 1974)

 $N^{-}(T)$ (resp. $N_{1}^{-}(T)$) := the number of zeros of $\zeta(s)$ (resp. $\zeta'(s)$) in { $\sigma + it \mid 0 < \sigma < 1/2, 0 < t < T$ }, counted w/ multiplicity. For $T \ge 2$ we have

$$N^{-}(T) = N_{1}^{-}(T) + O(\log T).$$

Zeros of $\zeta(s)$ on $\operatorname{Re}(s) = 1/2$

Riemann hypothesis (RH): For any $\rho \in \mathcal{Z}$, $\operatorname{Re}(\rho) = 1/2$.

N(T) := the number of nontrivial zeros ρ of $\zeta(s)$ with $0 < \text{Im}(\rho) < T$, counted with multiplicity $N_0(T) :=$ the number of zeros $\rho_0 = 1/2 + i\gamma$ of $\zeta(s)$ with $0 < \gamma < T$, counted with multiplicity

Riemann hypothesis (RH): $N(T) = N_0(T)$ for all T.

Theorem (Hardy, 1914)

$$N_0(T) \to \infty$$
 as $T \to \infty$.

Theorem (Hardy and Littlewood, 1921)

 $N_0(T) \gg T$

Simple zeros of $\zeta(s)$ on $\operatorname{Re}(s) = 1/2$

```
Theorem (Selberg, 1942)
```

There exists c > 0 (effective) such that $N_0(T) > c N(T)$.

```
Theorem (Levinson, 1974)
```

 $N_0(T) \ge 0.3474 N(T)$

 $N_0^*(T) :=$ the number of zeros $ho_0 = 1/2 + i\gamma$ of $\zeta(s)$ with $0 < \gamma < T$ where $\zeta'(
ho_0) \neq 0$

Theorem (Levinson, 1974)

 $N_0^*(T) \ge 0.3474 N(T)$

Shifting zeros of $\zeta(s)$ on $\operatorname{Re}(s) = 1/2$ by $\zeta'(s)$

• Study the change of argument of

$$G(\frac{1}{2} + it) = \zeta(\frac{1}{2} + it) + \frac{\zeta'(\frac{1}{2} + it)}{\log \frac{t}{2\pi} + O(\frac{1}{|t|})}$$

for large t.

• The number of zeros of G(s) is essentially that of $\zeta(s)$ in $\{\sigma + it \mid 1/2 < \sigma < 1, 0 < t < T\}.$

 $N_G(T) :=$ the number of zeros of G(s) in $\{\sigma + it \mid 1/2 \le \sigma < 3, \ 0 < t < T\}$, counted w/ multiplicity.

Shifting zeros of $\zeta(s)$ on $\operatorname{Re}(s) = 1/2$ by $\sum a_k(s)\zeta^{(k)}(s)$

Instead of

$$G(\frac{1}{2} + it) = \zeta(\frac{1}{2} + it) + \frac{\zeta'(\frac{1}{2} + it)}{\log \frac{t}{2\pi} + O(\frac{1}{|t|})},$$

consider

$$g(\frac{1}{2}+it) = \zeta(\frac{1}{2}+it) + \sum_{n\geq 1} a_n(t)\zeta^{(n)}(\frac{1}{2}+it),$$

with t large.

Theorem (Conrey, 1989)

 $N_0(T) \ge 0.4088 N(T), \qquad N_0^*(T) \ge 0.4013 N(T)$

Nontrivial (= non-real) zeros of $\zeta^{(k)}(s)$

A zero-free region of $\zeta^{(k)}(s)$:

$$\begin{aligned} \mathcal{Z} &= \{ \rho \in \mathbb{C} \mid \zeta(\rho) = 0, \ \operatorname{Im}(\rho) \neq 0 \} \\ \mathcal{Z}^{(k)} &:= \{ \rho \in \mathbb{C} \mid \zeta^{(k)}(\rho) = 0, \ \operatorname{Im}(\rho) \neq 0 \} \\ &= \text{the set of all nontrivial zeros of } \zeta^{(k)}(s) \end{aligned}$$

Nontrivial zeros of $\zeta(s)$, $\zeta'(s)$, $\zeta''(s)$

R. Spira, Zero-free regions of $\zeta^{(k)}(s)$, J. Lond. Math. Soc. **40** (1965), p. 681

RH and zeros of $\zeta''(s) \& \zeta'''(s)$

Theorem (Yıldırım, 1996)

RH implies

$$\zeta''(s)
eq 0$$
 and $\zeta'''(s)
eq 0$ in $0 \le \operatorname{Re}(s) < 1/2$.

Theorem (Yıldırım, 1996)

 $\zeta''(s)$ and $\zeta'''(s)$ have only one pair of non-real zeros in ${
m Re}(s) < 0.$

Corollary (Yıldırım, 1996)

RH implies

 $\zeta''(s)$ and $\zeta'''(s)$ have only one pair of non-real zeros in ${
m Re}(s) < 1/2.$

RH and non-real zeros of $\zeta^{(k)}(s)$

Theorem (Levinson and Montgomery, 1974) Let $m \ge 0$.

 $\zeta^{(m)}(s)$ has only finitely many non-real zeros in $\operatorname{Re}(s) < 1/2$ \Rightarrow

 $\zeta^{(m+j)}(s)$ $(j \ge 1)$ also has only finitely many non-real zeros in ${
m Re}(s) < 1/2.$

Corollary (Levinson and Montgomery, 1974)

 $\mathsf{RH} \Rightarrow$

 $\zeta^{(k)}(s)$ has at most finitely many non-real zeros in ${\sf Re}(s) < 1/2.$

Theorem 1: Number of nontrivial zeros of $\zeta^{(k)}(s)$ (under RH)

N(T) (resp. $N_k(T)$) := the number of nontrivial zeros ρ of $\zeta(s)$ (resp. $\zeta^{(k)}(s)$) with $0 < \text{Im}(\rho) < T$, counted with multiplicity

$$g(T) := rac{T}{2\pi} \log rac{T}{2\pi} - rac{T}{2\pi}, \quad h(T) := rac{T}{2\pi} \log rac{T}{4\pi} - rac{T}{2\pi}$$

	N(T)	$N_k(T)$
unconditional	$g(T) + O(\log T)$	$h(T) + O_k(\log T)$
	[von Mangoldt, 1905]	[Berndt, 1970]
under RH	$g(T) + O\left(\frac{\log T}{\log\log T}\right)$	$h(T) + O_k\left(\frac{\log T}{(\log\log T)^{1/2}}\right)$
	[Littlewood, 1924]	k = 1 : [Akatsuka, 2012]
		$k \ge 2$: [A.I.S., 2015]

An improvement by Fan Ge (under RH)

N(T) (resp. $N_k(T)$) = the number of nontrivial zeros ρ of $\zeta(s)$ (resp. $\zeta^{(k)}(s)$) with $0 < \text{Im}(\rho) < T$, counted with multiplicity

$$g(T) = rac{T}{2\pi} \log rac{T}{2\pi} - rac{T}{2\pi}, \quad h(T) = rac{T}{2\pi} \log rac{T}{4\pi} - rac{T}{2\pi}$$

	N(T)	$N_k(T)$
unconditional	$g(T) + O(\log T)$	$h(T) + O_k(\log T)$
	[von Mangoldt, 1905]	[Berndt, 1970]
under RH	$g(T) + O\left(\frac{\log T}{\log\log T}\right)$	$h(T) + O\left(\frac{\log T}{\log\log T}\right)$
	[Littlewood, 1924]	k = 1 : [Ge, 2017]
		$k \ge 2$: XoX

Theorem 2: Improved $N_k(T)$ (under RH)

N(T) (resp. $N_k(T)$) = the number of nontrivial zeros ρ of $\zeta(s)$ (resp. $\zeta^{(k)}(s)$) with $0 < \text{Im}(\rho) < T$, counted with multiplicity

$$g(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi}, \quad h(T) = \frac{T}{2\pi} \log \frac{T}{4\pi} - \frac{T}{2\pi}$$

	N(T)	$N_k(T)$
uncon-	$g(T) + O(\log T)$	$h(T) + O_k(\log T)$
ditional	[von Mangoldt, 1905]	[Berndt, 1970]
under	$g(T) + O\left(\frac{\log T}{\log\log T}\right)$	$h(T) + O_k\left(\frac{\log T}{\log\log T}\right)$
RH	[Littlewood, 1924]	k = 1 : [Ge, 2017]
		$k \ge 2$: [Ge and A.I.S., 2020]

Theorem 3: A more general statement (under RH)

Suppose that the error term bound in N(T)

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + E_0(T)$$

is $E_0(T) = O(\Phi(T))$ for some increasing function log log $T \ll \Phi(T) \ll \log T$.

Theorem 3 (Ge and A.I.S., 2020)

Assume RH. Then

$$N_k(T) = \frac{T}{2\pi} \log \frac{T}{4\pi} - \frac{T}{2\pi} + O_k \left(\max\left\{ \Phi(2T), \sqrt{\log T} \log \log T \right\} \right).$$

Counting zeros

Argument principle

f: meromorphic in and on a closed contour C, but has neither zeros nor poles on C,

N (*resp.* P): the number of zeros (*resp.* poles) of f inside C, counted with multiplicity,

$$N-P=rac{1}{2\pi i}\int_{\mathcal{C}}rac{f'(z)}{f(z)}dz.$$

Jensen's lemma

Let f(z) be analytic for |z| < R and suppose that $f(0) \neq 0$. Let n(x) denote the number of zeros of f(z) in the disc $|z| \le x$, then if r < R,

$$\int_{0}^{r} \frac{n(x)}{x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{i\theta})| d\theta - \log |f(0)|$$

Counting zeros with a distance to a line

Littlewood's lemma

Let *C* denote the rectangle bounded by the lines $x = x_1$, $x = x_2$, $y = y_1$, and $y = y_2$, where $x_1 < x_2$, $y_1 < y_2$. Let f(z) be analytic and not zero on *C*, and meromorphic inside it. We define the logarithm log f(z) by continuous variation along the line $y = y_0$ from log $f(x_2 + iy_0)$ for $y_1 \le y_0 \le y_2$, provided that $[x + iy_0, x_2 + iy_0]$ does not contain any zero or pole of f(z). Otherwise, we put log $f(z) = \log f(z - i0)$. Then

$$\int_C \log f(z) dz = -2\pi i \sum_{\substack{\beta+i\gamma,\\f(\beta+i\gamma)=0,\\x_1<\beta< x_2, y_1<\gamma< y_2}} (\beta-x_1),$$

where the sum is counted is multiplicity.

A preliminary lemma (by argument principle)

Assume RH. Let

$$G_k(s) := (-1)^k \frac{2^s}{(\log 2)^k} \zeta^{(k)}(s)$$

Let $T \ge 2$ satisfy $\zeta(\sigma + iT) \ne 0$, $\zeta^{(k)}(\sigma + iT) \ne 0$ ($\forall \sigma \in \mathbb{R}$). Then

$$N_k(T) = \frac{T}{2\pi} \log \frac{T}{4\pi} - \frac{T}{2\pi} + \frac{1}{2\pi} \arg G_k\left(\frac{1}{2} + iT\right) + \frac{1}{2\pi} \arg \zeta\left(\frac{1}{2} + iT\right) + O_k(1).$$

The arguments are taken such that $\log \zeta(s)$ and $\log G_k(s)$ tend to 0 as $\sigma \to \infty$, and are holomorphic on $\mathbb{C} \setminus \{\rho + \lambda \mid \zeta(\rho) = 0 \text{ or } \infty, \ \lambda \leq 0\}$ and $\mathbb{C} \setminus \{\rho + \lambda \mid \zeta^{(k)}(\rho) = 0 \text{ or } \infty, \ \lambda \leq 0\}$, respectively.

Sketch of proof

Assume RH. Recall the estimate

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{1}{\pi} \arg \zeta \left(\frac{1}{2} + iT\right) + O(1).$$

To simplify we only consider the case when

$$\frac{1}{\pi}\arg\zeta\left(\frac{1}{2}+iT\right)=O\left(\frac{\log T}{\log\log T}\right).$$

Hence taking into acccount

$$\begin{split} N_k(T) &= \frac{T}{2\pi} \log \frac{T}{4\pi} - \frac{T}{2\pi} \\ &+ \frac{1}{2\pi} \arg G_k \left(\frac{1}{2} + iT\right) + \frac{1}{2\pi} \arg \zeta \left(\frac{1}{2} + iT\right) + O_k(1), \end{split}$$

it suffices to show that

$$\arg G_k\left(\frac{1}{2}+iT\right) = O_k\left(\frac{\log T}{\log\log T}\right).$$

Akatsuka's method

$$rg G_1(\sigma+iT)=O\left(rac{(\log T)^{2(1-\sigma)}}{(\log\log T)^{1/2}}
ight), \qquad rac{1}{2}\leq\sigma\leqrac{3}{4},$$

which gives us

$$N_1(T) = \frac{T}{2\pi} \log \frac{T}{4\pi} - \frac{T}{2\pi} + O\left(\frac{\log T}{(\log \log T)^{1/2}}\right).$$

Remark

$$\arg G_1(\sigma + iT) = O\left(\frac{(\log T)^{2(1-\sigma)}}{\log \log T}\right), \quad \frac{1}{2} + \frac{(\log \log T)^2}{\log T} \le \sigma \le \frac{3}{4}$$

Fan Ge's method

Write

$$U := \frac{Y}{\log \log T} = \frac{(\log \log T)^2}{\log T}$$

and set

$$\begin{split} \Delta_1 &:= \mathop{\Delta}_{\infty+iT \to 1/2+U+iT} \arg G_1(\sigma+iT), \\ \Delta_2 &:= \mathop{\Delta}_{1/2+U+iT \to 1/2+iT} \arg G_1(\sigma+iT). \end{split}$$

Then from

$$\arg G_1(\sigma + iT) = O\left(rac{(\log T)^{2(1-\sigma)}}{\log\log T}
ight), \quad rac{1}{2} + U \leq \sigma \leq rac{3}{4},$$

we easily deduce

$$\Delta_1 \ll rac{\log T}{\log\log T}.$$

$$\longrightarrow \Delta_2^2 O\left(\frac{\log T}{\log \log T}\right)$$

$$\gamma := \frac{(lylogT)^3}{lyT}$$

 $\gamma := \frac{(\log\log T)}{\log T}$

Ge's method (continued)

$$\begin{split} \Delta_{2} &= \operatorname{Im} \int_{1/2}^{1/2+U} \frac{G_{1}'}{G_{1}} (\sigma + iT) d\sigma \\ &= \operatorname{Im} \int_{1/2}^{1/2+U} \sum_{\substack{\rho_{1} \in \mathcal{D}, \\ \zeta'(\rho_{1}) = 0}} \frac{1}{\sigma + iT - \rho_{1}} d\sigma + O\left((\log\log T)^{2}\right) \\ &= \sum_{\substack{\rho_{1} \in \mathcal{D}, \\ \zeta'(\rho_{1}) = 0}} \left(\arg\left(\frac{1}{2} + U + iT - \rho_{1}\right) - \arg\left(\frac{1}{2} + iT - \rho_{1}\right)\right) \\ &\quad + O\left((\log\log T)^{2}\right) \\ &\ll \frac{\log T}{\log\log T}. \end{split}$$

Extending to higher derivatives - Ge's method

Write

$$X := \frac{1}{\sqrt{\log T}}$$

and set

$$\begin{split} \Delta_1 &:= \mathop{\Delta}_{\infty+iT \to 1/2+X+iT} \arg G_k(\sigma+iT), \\ \Delta_2 &:= \mathop{\Delta}_{1/2+X+iT \to 1/2+iT} \arg G_k(\sigma+iT). \end{split}$$

Then from

$$\arg \frac{G_k}{\zeta}(\sigma + iT) = O_k\left(\frac{\log\log T}{\sigma - \frac{1}{2}}\right), \quad \frac{1}{2} + \frac{(\log\log T)^2}{\log T} < \sigma < 1$$

we easily deduce

$$\Delta_1 \ll_k rac{\log T}{\log\log T}.$$

 $\Delta_2^{\frac{2}{2}}O_{\kappa}\left(\frac{\log T}{\log\log T}\right)$

感謝 Tak Dziękuję teşekkür ederim 감사합니다 Баярлалаа cảm ơn ban Vielen Dank Labai ačiū Obrigado Matur nuwun ขอบคุณค่ะ Спасибо धन्यवाद **Kiitos** நன்றி ধন্যবাদ 谢谢 Thank you شكرا Dankjewel Gracias Ευχαριστώ Tack Terima kasih Хвала вам بهت شکریه Merci Köszönöm ありがとうございます תודה Takk 多謝 Salamat po Grazie keep updating ...