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Riemann zeta function

The Riemann zeta function ζ(s) is the analytic function on C\{1}
satisfying

ζ(s) =
∞∑
n=1

1

ns
when Re(s) > 1. (1)

*Remarks*

I ζ(s) has a simple pole at s = 1 as its only singularity.

I The equality
∑
n

n−s =
∏
p

(1− p−s)−1 tells us that ζ(s) has no

zeros in Re(s) > 1.

I Subtracting the term (s − 1)−1 from the Dirichlet series (1) and
using its integral representation, we find that ζ(s) can be
analytically continued to Re(s) > 0 (s 6= 1).



Functional equation and trivial zeros of ζ(s)

ζ(s) satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s). (2)

From this we can deduce:

I Since ζ(s) is analytic on Re(s) > 0 (s 6= 1),
sin (πs/2)Γ(1− s)ζ(1− s) is too.

I At s = 2, 4, 6, . . ., sin (πs/2) = 0 cancels out poles of Γ(1− s).

I ζ(1− s) has simple zeros at s = 3, 5, 7, . . . due to poles of
Γ(1− s).

Hence ζ(s) has trivial zeros at s = −2,−4,−6,−8,−10, . . ..



Zeros of ζ(s)

From

ζ(s) =
∞∑
n=1

1

ns
=

∏
p:prime

1

1− p−s
(Re(s) > 1),

we immediately find that ζ(s) 6= 0 when Re(s) > 1.

From the functional equation (2), ζ(s) 6= 0 when Re(s) < 0,
except when s = −2,−4,−6,−8,−10, . . ..

Hence, zeros of ζ(s) other than s = −2,−4,−6,−8,−10, . . ., if
exist, should lie within 0 ≤ Re(s) ≤ 1.
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The Prime Number Theorem

π(x) := # {p ≤ x | p is a prime number} , Li(x) :=

∫ x

2

1

log t
dt

Observation (Riemann, 1859)

π(x) = Li(x) + (small order terms)

Theorem (Hadamard, de la Vallée Poussin; 1896)

1. ζ(1 + it) 6= 0, t > 0

2. π(x) = Li(x) + O

(
x

exp
(
a
√

log x
)) , ∃a > 0

Theorem (Koch, 1900)

RH ⇐⇒ π(x) = Li(x) + O
(
x1/2+ε

)
, ∀ε > 0



Nontrivial zeros of ζ(s)

{−2,−4,−6,−8,−10, · · · } = the set of all trivial zeros of ζ(s)

Z := {ρ ∈ C | ζ(ρ) = 0, ρ /∈ −2N}
= the set of all nontrivial zeros of ζ(s)

ρ ∈ Z:
1. Im(ρ) 6= 0, 2. 0 < Re(ρ) < 1,

3. ζ(ρ) = 0, 4. ζ(1− ρ) = 0.

Z = {ρ ∈ C | ζ(ρ) = 0, Im(ρ) 6= 0}
= {ρ ∈ C | ζ(ρ) = 0, Re(ρ) > 0}

Riemann hypothesis (RH): For any ρ ∈ Z, Re(ρ) = 1/2.



Properties of zeros of ζ(s)



Zeros of ζ(s)

(by Matthew R. Watkins)
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Equivalence for RH

Theorem (Speiser, 1935)

RH
ζ(s) 6= 0 in 0 < Re(s) < 1/2

is equivalent to

ζ ′(s) 6= 0 in 0 < Re(s) < 1/2.

Theorem (Levinson and Montgomery, 1974)

N−(T ) (resp. N−1 (T )) := the number of zeros of ζ(s) (resp. ζ ′(s))
in {σ + it | 0 < σ < 1/2, 0 < t < T}, counted w/ multiplicity.

For T ≥ 2 we have

N−(T ) = N−1 (T ) + O(logT ).



Zeros of ζ(s) on Re(s) = 1/2

Riemann hypothesis (RH): For any ρ ∈ Z, Re(ρ) = 1/2.

N(T ) := the number of nontrivial zeros ρ of ζ(s) with
0 < Im(ρ) < T , counted with multiplicity

N0(T ) := the number of zeros ρ0 = 1/2 + iγ of ζ(s) with
0 < γ < T , counted with multiplicity

Riemann hypothesis (RH): N(T ) = N0(T ) for all T .

Theorem (Hardy, 1914)

N0(T )→∞ as T →∞.

Theorem (Hardy and Littlewood, 1921)

N0(T )� T



Simple zeros of ζ(s) on Re(s) = 1/2

Theorem (Selberg, 1942)

There exists c > 0 (effective) such that N0(T ) > c N(T ).

Theorem (Levinson, 1974)

N0(T ) ≥ 0.3474N(T )

N∗0 (T ) := the number of zeros ρ0 = 1/2 + iγ of ζ(s) with
0 < γ < T where ζ ′(ρ0) 6= 0

Theorem (Levinson, 1974)

N∗0 (T ) ≥ 0.3474N(T )



Shifting zeros of ζ(s) on Re(s) = 1/2 by ζ ′(s)

• Study the change of argument of

G (
1

2
+ it) = ζ(

1

2
+ it) +

ζ ′(12 + it)

log t
2π + O( 1

|t|)

for large t.

• The number of zeros of G (s) is essentially that of ζ(s) in
{σ + it | 1/2 < σ < 1, 0 < t < T}.

 


NG (T ) < 1

3N(T ),

N0(T ) = N(T )− 2NG (T ) + O(logT ),

NG (T ) := the number of zeros of G (s) in
{σ + it | 1/2 ≤ σ < 3, 0 < t < T}, counted w/ multiplicity.



Shifting zeros of ζ(s) on Re(s) = 1/2 by
∑

ak(s)ζ
(k)(s)

Instead of

G (
1

2
+ it) = ζ(

1

2
+ it) +

ζ ′(12 + it)

log t
2π + O( 1

|t|)
,

consider

g(
1

2
+ it) = ζ(

1

2
+ it) +

∑
n≥1

an(t)ζ(n)(
1

2
+ it),

with t large.

Theorem (Conrey, 1989)

N0(T ) ≥ 0.4088N(T ), N∗0 (T ) ≥ 0.4013N(T )



Nontrivial (= non-real) zeros of ζ(k)(s)

A zero-free region of ζ(k)(s):

Z = {ρ ∈ C | ζ(ρ) = 0, Im(ρ) 6= 0}

Z(k) := {ρ ∈ C | ζ(k)(ρ) = 0, Im(ρ) 6= 0}
= the set of all nontrivial zeros of ζ(k)(s)



Nontrivial zeros of ζ(s), ζ ′(s), ζ ′′(s)

R. Spira, Zero-free regions of ζ(k)(s),
J. Lond. Math. Soc. 40 (1965), p. 681



RH and zeros of ζ ′′(s) & ζ ′′′(s)

Theorem (Yıldırım, 1996)

RH implies

ζ ′′(s) 6= 0 and ζ ′′′(s) 6= 0 in 0 ≤ Re(s) < 1/2.

Theorem (Yıldırım, 1996)

ζ ′′(s) and ζ ′′′(s) have only one pair of non-real zeros in Re(s) < 0.

Corollary (Yıldırım, 1996)

RH implies

ζ ′′(s) and ζ ′′′(s) have only one pair of non-real zeros in
Re(s) < 1/2.



RH and non-real zeros of ζ(k)(s)

Theorem (Levinson and Montgomery, 1974)

Let m ≥ 0.

ζ(m)(s) has only finitely many non-real zeros in Re(s) < 1/2

⇒

ζ(m+j)(s) (j ≥ 1) also has only finitely many non-real zeros in
Re(s) < 1/2.

Corollary (Levinson and Montgomery, 1974)

RH ⇒

ζ(k)(s) has at most finitely many non-real zeros in Re(s) < 1/2.



Theorem 1: Number of nontrivial zeros of ζ(k)(s) (under RH)

N(T ) (resp. Nk(T )) := the number of nontrivial zeros ρ of ζ(s)
(resp. ζ(k)(s)) with 0 < Im(ρ) < T , counted with multiplicity

g(T ) :=
T

2π
log

T

2π
− T

2π
, h(T ) :=

T

2π
log

T

4π
− T

2π

N(T ) Nk(T )

unconditional g(T ) + O(logT ) h(T ) + Ok(logT )

[von Mangoldt, 1905] [Berndt, 1970]

under RH g(T ) + O
(

logT
log logT

)
h(T ) + Ok

(
logT

(log logT )1/2

)
[Littlewood, 1924] k = 1 : [Akatsuka, 2012]

k ≥ 2 : [A.I.S., 2015]



An improvement by Fan Ge (under RH)

N(T ) (resp. Nk(T )) = the number of nontrivial zeros ρ of ζ(s)
(resp. ζ(k)(s)) with 0 < Im(ρ) < T , counted with multiplicity

g(T ) =
T

2π
log

T

2π
− T

2π
, h(T ) =

T

2π
log

T

4π
− T

2π

N(T ) Nk(T )

unconditional g(T ) + O(logT ) h(T ) + Ok(logT )

[von Mangoldt, 1905] [Berndt, 1970]

under RH g(T ) + O
(

logT
log logT

)
h(T ) + O

(
logT

log logT

)
[Littlewood, 1924] k = 1 : [Ge, 2017]

k ≥ 2 : XoX



Theorem 2: Improved Nk(T ) (under RH)

N(T ) (resp. Nk(T )) = the number of nontrivial zeros ρ of ζ(s)
(resp. ζ(k)(s)) with 0 < Im(ρ) < T , counted with multiplicity

g(T ) =
T

2π
log

T

2π
− T

2π
, h(T ) =

T

2π
log

T

4π
− T

2π

N(T ) Nk(T )

uncon- g(T ) + O(logT ) h(T ) + Ok(logT )

ditional [von Mangoldt, 1905] [Berndt, 1970]

under g(T ) + O
(

logT
log logT

)
h(T ) + Ok

(
logT

log logT

)
RH [Littlewood, 1924] k = 1 : [Ge, 2017]

k ≥ 2 : [Ge and A.I.S., 2020]



Theorem 3: A more general statement (under RH)

Suppose that the error term bound in N(T )

N(T ) =
T

2π
log

T

2π
− T

2π
+ E0(T )

is E0(T ) = O(Φ(T )) for some increasing function
log logT � Φ(T )� logT .

Theorem 3 (Ge and A.I.S., 2020)

Assume RH. Then

Nk(T ) =
T

2π
log

T

4π
− T

2π
+Ok

(
max

{
Φ(2T ),

√
logT log logT

})
.



Counting zeros

Argument principle

f : meromorphic in and on a closed contour C, but has neither
zeros nor poles on C,
N (resp. P): the number of zeros (resp. poles) of f inside C,
counted with multiplicity,

N − P =
1

2πi

∫
C

f ′(z)

f (z)
dz .

Jensen’s lemma

Let f (z) be analytic for |z | < R and suppose that f (0) 6= 0. Let
n(x) denote the number of zeros of f (z) in the disc |z | ≤ x , then if
r < R, ∫ r

0

n(x)

x
dx =

1

2π

∫ 2π

0
log |f (re iθ)|dθ − log |f (0)|.



Counting zeros with a distance to a line

Littlewood’s lemma

Let C denote the rectangle bounded by the lines x = x1, x = x2,
y = y1, and y = y2, where x1 < x2, y1 < y2. Let f (z) be analytic
and not zero on C , and meromorphic inside it. We define the
logarithm log f (z) by continuous variation along the line y = y0
from log f (x2 + iy0) for y1 ≤ y0 ≤ y2, provided that
[x + iy0, x2 + iy0] does not contain any zero or pole of f (z).
Otherwise, we put log f (z) = log f (z − i0). Then∫

C
log f (z)dz = −2πi

∑
β+iγ,

f (β+iγ)=0,
x1<β<x2, y1<γ<y2

(β − x1),

where the sum is counted is multiplicity.
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A preliminary lemma (by argument principle)

Assume RH. Let

Gk(s) := (−1)k
2s

(log 2)k
ζ(k)(s)

Let T ≥ 2 satisfy ζ(σ+ iT ) 6= 0, ζ(k)(σ+ iT ) 6= 0 (∀σ ∈ R). Then

Nk(T ) =
T

2π
log

T

4π
− T

2π

+
1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
+ Ok(1).

The arguments are taken such that log ζ(s) and logGk(s) tend to 0 as σ →∞,
and are holomorphic on C\{ρ+ λ | ζ(ρ) = 0 or ∞, λ ≤ 0} and
C\{ρ+ λ | ζ(k)(ρ) = 0 or ∞, λ ≤ 0}, respectively.



Sketch of proof
Assume RH. Recall the estimate

N(T ) =
T

2π
log

T

2π
− T

2π
+

1

π
arg ζ

(
1

2
+ iT

)
+ O(1).

To simplify we only consider the case when

1

π
arg ζ

(
1

2
+ iT

)
= O

(
logT

log logT

)
.

Hence taking into acccount

Nk(T ) =
T

2π
log

T

4π
− T

2π

+
1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
+ Ok(1),

it suffices to show that

argGk

(
1

2
+ iT

)
= Ok

(
logT

log logT

)
.



Akatsuka’s method

argG1(σ + iT ) = O

(
(logT )2(1−σ)

(log logT )1/2

)
,

1

2
≤ σ ≤ 3

4
,

which gives us

N1(T ) =
T

2π
log

T

4π
− T

2π
+ O

(
logT

(log logT )1/2

)
.

*Remark*

argG1(σ + iT ) = O

(
(logT )2(1−σ)

log logT

)
,

1

2
+

(log logT )2

logT
≤ σ ≤ 3

4



Fan Ge’s method

Write

U :=
Y

log logT
=

(log logT )2

logT

and set

∆1 := ∆
∞+iT→1/2+U+iT

argG1(σ + iT ),

∆2 := ∆
1/2+U+iT→1/2+iT

argG1(σ + iT ).

Then from

argG1(σ + iT ) = O

(
(logT )2(1−σ)

log logT

)
,

1

2
+ U ≤ σ ≤ 3

4
,

we easily deduce

∆1 �
logT

log logT
.
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Ge’s method (continued)

∆2 = Im

∫ 1/2+U

1/2

G ′1
G1

(σ + iT )dσ

= Im

∫ 1/2+U

1/2

∑
ρ1∈D,
ζ′(ρ1)=0

1

σ + iT − ρ1
dσ + O

(
(log logT )2

)

=
∑
ρ1∈D,
ζ′(ρ1)=0

(
arg

(
1

2
+ U + iT − ρ1

)
− arg

(
1

2
+ iT − ρ1

))

+ O
(
(log logT )2

)
� logT

log logT
.



Extending to higher derivatives – Ge’s method

Write

X :=
1√

logT

and set

∆1 := ∆
∞+iT→1/2+X+iT

argGk(σ + iT ),

∆2 := ∆
1/2+X+iT→1/2+iT

argGk(σ + iT ).

Then from

arg
Gk

ζ
(σ + iT ) = Ok

(
log logT

σ − 1
2

)
,

1

2
+

(log logT )2

logT
< σ < 1

we easily deduce

∆1 �k
logT

log logT
.
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