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Uniform Distribution mod one
ϑ = (ϑn)n≥1 in [0, 1)is called uniformly distributed mod 1 if

# {1 ≤ n ≤ N : ϑn ∈ I}
N −→

N→∞
meas(I)

for each sub-interval I ⊆ [0, 1].

Sketch of a uniformly distributed sequence in [0, 1) ∼= R/Z.

Abbreviation: ϑ u.d.
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Examples I

Lemma 1 (Weyl’s Criterion [3]).

A sequence sϑ is u.d. if and only if

1
N
∑
n≤N

e2πihϑn −→
N→∞

0

for each h ∈ Z \ {0}.

Let α ∈ (0,∞).
1 The Kronecker sequence (〈αn〉)n≥1 is u.d. iff α /∈ Q; Bohl,

Sierpinski, Weyl independently (1909–1910).
2 More generally, (

〈
αnd〉)n≥1, d ∈ N, is u.d. iff α /∈ Q; Weyl (1916).

3 The sequence (〈nα〉)n≥1 is u.d. iff α /∈ N; Fejér and Csillag (≈1930).
4 If ϑn : [0, 1)→ [0, 1) are [0, 1]-uniformly distributed, independent

random variables, then (ϑn(α))n≥1 is almost surely u.d. .
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Gap Distributions I

(a) Let ϑ′n denote the nth (largest) element of {ϑn : n ≤ N}. Note that
the average gap of ϑ′n is 1/N.

Unordered points on the unit circle.
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Gap Distributions II

Ordered points on the unit circle.

(b) Put δn,N = N(ϑ′n+1 − ϑ′n), where n = 1, . . . ,N (and ϑ′n+1 := ϑn + 1).
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Gap Distributions III

Definition 1.
If P exists such that

# {n ≤ N : δn,N ∈ I}
N −→

N→∞

∫
I
P (s) ds

for each interval I ⊆ R≥0, then P is called the gap distribution of ϑ. If
P (s) = e−s , then ϑ has Poissonian gap distribution.

Remark.
There are other interesting statistics. E.g. the size of the minimal gap
minn≤N δn,N , as N →∞.
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The Berry–Tabor conjecture

Conjecture 1 (Berry and Tabor [4]).
A “generic” quantum system whose underlying classical dynamics is
completely integrable, the gaps between the energy levels have a
Poissonian limiting distribution.

Remark.
The energy levels of a boxed 2-dimensional oscillator are decoded by(〈
αn2

〉)
n≥1. For further reading: Rudnick [7].
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Examples II

1 If ϑn : [0, 1)→ [0, 1) are [0, 1]-uniformly distributed, independent
random variables, then (ϑn(α))n≥1 has a.s. Poissonian gap
distribution.

2 Quadratic residues mod q, as the number of prime factors
ω (q)→∞, have a Poissonian gap distribution; Rudnick and
Kurlberg (1999).

3 (Not-example) (
〈√

n
〉
)n≥1 has non-Poissonian gap distribution;

Elkies and McMullen (2002).
4 Almost surely (

〈
α2n〉)n≥1 has Poissonian gap distribution; Rudnick

and Zaharescu (1999); see [5], [10], [6].
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k-point Correlation Function I

Definition 2.
For f ∈ C∞c (Rk−1) or f being an indicator function of a parallelepiped,
put

FM (t) :=
∑

u∈Zk−1

f (M(t + u)) .

If, for any such f , the k-point correlation function

Rk (ϑ,N, f ) := 1
N

∑
n1,...,nk≤N

ni distinct

FN
(
ϑn1 − ϑn2 , ϑn2 − ϑn3 , . . . ϑnk−1 − ϑnk

)

converges to
∫
Rk−1 f (t) dt, as N →∞, then ϑ has Poissonian k-point

correlations.
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k-point Correlation Function II

Remark.
(a) If k = 2 (resp. k = 3) we speak of the pair (resp. triple) correlation
function.
(b) If ϑ (α) is a function, we simply set Rk (α,N, f ) = Rk (ϑ (α) ,N, f ).
(c) Poissonian pair correlation imply uniform distribution. The converse
fails: (〈αn〉)n≥1 has for no α ∈ (0, 1) the Poissonian pair correlation.
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Pair Correlation Function
Let k = 2, f = 1[0,s]. Then FN (t) = 1[0,s] (N ‖t‖) which equals
1[0,s/N] (‖t‖). So,

R2 (ϑ,N, f ) = 1
N

∑
n 6=m≤N

1[0,s/N](
∥∥ϑn − ϑm

∥∥).

What does it mean that this function is !
≈
∫
R 1[0,s] (‖t‖) dt = 2s?

Heuristic for the pair correlation function. Each green neighborhood
contains ≈ 2s points on average.
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Metric Theory of the Pair Correlation Function I

Theorem 1 (Marklof, Vinogradov, El-Baz [2]).

The sequence
(〈√

n
〉)

n≥1 has Poissonian pair correlation.

Problem 1.
Has

(〈√
2n2
〉)

n≥1 Poissonian pair correlation?

Definition 3.
A strictly increasing sequence

(
an
)

n≥1 ⊆ Z≥1 is said to have the metric
Poissonian pair correlation property if for (Lebesgue) almost every
α ∈ (0, 1) the sequence (

〈
αan
〉
)n≥1 has Poissonian pair correlations.

For I ⊂ Z, define
E (I) :=

∑
a+b=c+d

a,b,c,d∈I

1, and observe (#I)2 ≤ E (I) ≤ (#I)3 .
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Metric Theory of the Pair Correlation Function II

Theorem 2 (T. F. Bloom, A. Walker [8]).
There is a universal constant C > 0 such that if the cut-offs
AN := {an : n ≤ N} satisfy

E (AN)� N3

(logN)C , (1)

then (an)n≥1 has the metric Poissonian pair correlations.

Remark.
(1) is satisfied, e.g., for lacunary sequences, or

(
nd)

n≥1 with d ∈ Z≥2.
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Metric Theory of the Pair Correlation Function III

Theorem 3 (A. Walker [9]).
The prime numbers (pn)n≥1 does not have metric Poissonian pair
correlation.

Remark.
Does the metric Poissonian pair correlation property follows a zero–one
law? Suppose, say,∑

N≥1

E (AN)
N3 <∞, E (AN)

N3 well− behaved,

if and only if (an)n≥1 has the metric Poissonian pair correlation property?
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Metric Theory for the Pair Correlation Function IV

This fails on logarithmic scales:

Theorem 4 (Aistleitner, Lachmann, N.T. [1]).
There is a metric Poissonian sequence (an)n≥1 such that

E (AN)� N3

(logN) 3
4 +ε

.
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The Borel–Cantelli lemma

Lemma 2 (Borel–Cantelli).

Suppose Lebesgue measurable sets Ωn ⊆ [0, 1) satisfy∑
n≥1

λ (Ωn) <∞.

Then, {α ∈ [0, 1) : α ∈ Ωn for∞manyn} has measure zero.
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A blue-print for dilated squares I

An L2-approach: Fix s, and let
R2
(
α,N, 1[−s,s]

)
= 1

N
∑

n 6=m≤N 1[0,s/N]
(∥∥α(n2 −m2)

∥∥) denote the pair
correlation function of (

〈
αn2

〉
)n≥1.

1 First show that R2
(
α,Nm, 1[−s,s]

)
−→

m→∞
2s a.s. on a

(polynomially-thin) sub-sequence (Nm)m≥1.
2 Then deduce convergence on the full sequence, i.e.

R2
(
α,N, 1[−s,s]

)
−→

N→∞
2s a.s., via a sandwiching argument.
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A blue-print for dilated squares II: Sub-sequence step

For any integer d ∈ Z, we have
∫

[0,1] 1[0,δ] (‖dα‖) dα = 2δ. So,

E (R) :=
∫

[0,1]
R
(
α,Nm, 1[0,s]

)
dα = 1

NN (N − 1) 2sN = 2s + Os(N−1),

By Chebycheff,

meas
({
α ∈ [0, 1) :

∣∣R (α,Nm, 1[0,s]
)
− E (R)

∣∣ > k
})
≤ Var (R)

k2 ,

for each k > 0, where

Var (R) :=
∫

[0,1]

(
R
(
α,Nm, 1[0,s]

)
− E (R)

)2 dα.

Show that Var (R)� N−1+ε . (More details soon.)
Apply Lemma 2 with k = N−1/4m and Nm = m2.
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A blue-print for dilated squares III: Variance Estimate
Recall

R2
(
α,N, 1[−s,s]

)
= 1

N
∑

n 6=m≤N
1[0,s/N]

(∥∥α(n2 −m2)
∥∥)

≈
∑

n 6=m≤N

∑
0≤|k|≤N1+ε

cke2πik(n2−m2) + Error.

Indeed,

Var (R)� 1
N4 #

{
k1(n21 −m2

1) + k2(n22 −m2
2) = 0 : ni ,mi , ki as above

}
� 1

N4

∑
d

#
{
k2(n22 −m2

2) = d : n2,m2, k2 as above
}

where the summation runs over � N3 many values of d � N3.Using
that # {y ∈ Z : y | d} � dε produces

Var (R)� N−1+ε.
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Theorem 5 (N. T. & Nadav Yesha).

The k-point correlation function of (
〈
nα
〉
)n≥1 is Poissonian for almost

every α� k2. In particular, (
〈
nα
〉
)n≥1 has Poissonian pair correlations

for almost every α > 7.

Conjecture 2.
The gap distribution of (

〈
nα
〉
)n≥1 is Poissonian if α ∈ R>0 \

(
N ∪

{ 1
2
})

.
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The Rudnick–Sarnak Conjecture

Conjecture (Z. Rudnick and P. Sarnak [11]).

If α ∈ (0, 1) is Diophantine, i.e. ‖nα‖ �ε n−(1+ε) for all ε > 0, and
d ≥ 2 is an integer, then (〈

αnd〉)
n≥1

has Poissonian gap distribution.

Remark.
For d = 2, see also work of Heath-Brown.
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The Rudnick–Sarnak Obstruction

Recall FM (t) =
∑

u∈Z2 f (M(t + u)) for f ∈ C∞c (R2). Put

R3 (α,N, L, f ) := 1
N3

∑
x1,x2,x3≤N

xi distinct

FN/L(α(x21 − x22 ), α(x22 − x23 )).

Now we expect R3 (α,N, L, f ) ∼ L2
∫
R2 f (t) dt.

Proposition 1 (Z. Rudnick and P. Sarnak [11]).

If ε > 0 and 1 ≤ L ≤ N 1
3−ε, then there exists f ∈ C∞c

(
R2) such that

1
L2

∫
[0,1]

(R3(α,N, L, f ))2 dα −→
N→∞

∞.

Why?
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Figure: The pair correlation function plotted with Mathematica, for N = 10
and f = 1[0,1]. Observe the large peaks at rationals with small denominator; in
particular at 0

1 and 1
1 !
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Beyond the Obstruction

Theorem 6 (N.T., Aled Walker).

If ε > 0 and N 1
4 +ε < L < N1−ε, then

R3 (α,N, L, f ) = (1 + oα,ε,f (1))L2
∫
R2

f (t) dt

for almost all α ∈ [0, 1] for each f ∈ C∞c (R2), uniformly in L.

Remark.

Note: 1
4 <

1
3 . In the regime N 1

2 +ε ≤ L ≤ N one can use metric
discrepancy theory.
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The End

Thank you very much for your attention!
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