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Quantum Unique Ergodicity

e X : compact negatively curved Riemann surface.
e \g=0< )\ <)X <...: eigenvalues of the Laplacian on X.

e {t¥, }jen : orthonormal basis of L?(X) of eigenfunctions of the
Laplacian with eigenvalues \;.

Conjecture (Rudnick, Sarnak, 1990s)

If a: X — C is continuous, then

lim [ a(2), @) dz = /X o(z)—— da.
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Examples?

e Do there exist X that satisfies QUE?

e s there a random model of compact negatively curved surfaces X,
where with positive probability QUE holds?



Graphs

Let G = (V, E) be a d-regular graph.

e Laplacian on G: Agf(z) = ézyev,ywx fly) — f(x).
e Uniform probability model Py 4 for the space Gy 4 of d-regular
graphs with [V| = N is given by Py 4(A) = AL Ac ON.d-

 1Gn,al’

o & : set of all L? normalized eigenfunctions on G.

Theorem (Bauerschmidt, Knowles, Yau 2017)

Let G be a Py 4 random regular graph. Then for any 1) € &g with
eigenvalue A we have

(log N)?
VN

with probability at least 1 — e =208 ¥)* a5 long as d > (log N)*.

[¥alle < C(A)

Note: || Lo lloo = —ic and || A2 = 1.



Surfaces?

“large cardinality |V| < large area | X|"

For arithmetic surfaces there is the level aspect theory.

Example:
Theorem (Saha 2014)
Fix a level n € N and let X :=Ty(n) \ H, where

To(n) = { (Z 2) € SLy(Z) : c=0 modn}.

If ¢y is L?-normalized Hecke-Maass cuspidal newform on X of Laplacian
eigenvalue A, then for all € > 0 we have

[¥allee < C(A, €)X |71/12F,



Random surfaces

e M, : moduli space of compact hyperbolic surfaces of genus g.
e P, : uniform probability on M, w.r.t. Weil-Petersson volume.

o Ex : set of all L? normalized eigenfunctions on X.

Theorem (Gilmore, Le Masson, S., Thomas 2019)

Let X be a P; random hyperbolic surface of genus g. Then for any € > 0
and ¥ € Ex with eigenvalue A > 1/4 we have

[¥alle < C(Ase)

_ bt
Vlog | X|
with probability at least 1 — O(g—1/2%).
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Note: ”ﬁ“w = ol and Hﬁ\b =1.



Possible future work
Conjecture

Let X be a P; random hyperbolic surface of genus g. Then for any € > 0
and ¥ € Ex with eigenvalue A > 1/4 we have

(log | X))
VIXI

with probability tending to 1 as g — oo, where a(e) > 0 is some function.

[¥alloe < C(A)

Theorem (Bauerschmidt, Knowles, Yau 2017)

Let G be a Py 4 random regular graph. Then for any 1) € &g with
eigenvalue A we have

(log N)?
VN

with probability at least 1 — e=21°8¥)* a5 long as d > (log N ).

[¥alloe < C(A)



LP norms

Theorem (Gilmore, Le Masson, S., Thomas 2019)

Let X be a P; random hyperbolic surface of genus g. Then for any € > 0
and ¢ € Ex with eigenvalue A > 1/4 and p > 2+4\/max{% — i (X),0}

we have

1

Vlog | X|

HT/)/\Hp S C(pa >\7 6)

with probability at least 1 — O(g—1/2%).



Proof structure

e N,(X) : maximal number of primitive geodesic loops of length < r
passing through a point in X.

e Short Loop Condition: suppose there exists R(X) > 0 such that for
any 7 < R(X) and § > 0 we have

N, (X) < C(6)e’.

e Under the S.L.C. above, study convolution operators with smoothened
cosine wave kernels originating in the work of lwaniec-Sarnak (1995)
and apply Selberg transform to prove

[¥all2
R(X)

[¥alle < C(A)

e Prove an effective version of Mirzakhani-Petri (2017), which gives us:
36 > 0s.t. Ve > 0:

By(X : R(X) > clog |X]) > 1 - O(g~1/>%)



Proof of [l < C(N) L2l

e Short Loop Condition is trivially satisfied with R(X) = InjRad(X).

e R(X) = InjRad(X) case is a quite direct application of Selberg
pre-trace formula (next slide)

e However: Mirzakhani (2013) proved P, random X has InjRad(X)
uniformly bounded in g with positive probability



Proof of ||1h)]|e < C(A)&% with R(X) = InjRad(X)
e Let ¢, be L? normalized and Aty = A%y, X = H/T’
e Let R = R(X) and xr(s) = Rx(Rs) where x : R — R is smooth
even rapid decaying with supp(X) C [-1,1], [ x =1 (so xr(0) = R)
e Selberg pre-trace formula:

ZXR()\j — Ao (2)]? = 2177/0 XR(\/F— )\)rtanh(ﬂr) dr
j=1

+ Z kra(d(z,7v2))

~yel—{id}

where kg »(0) is the radial kernel of

/000 e MAR(t) cos(tVA) dt

o supp(kr) C [=R, R] 50 35 cp_piqy = 0, s0 by xr(t) = O((Rt)~?)

1
Rgx(2) $ o tanh(ms) + O(R?), s =1/ -
T



Proof of ||1h)]|e < C(A)M' general case

VER(X)

Key: cos(tv/A) has finite speed of propagation (kernel non-zero only
when d(z,y) < t).

Essentially replace cos(tv/A) b _cos(tVA)
e ( ) by cosh(ZVA)

Has rapid enough decay outside balls of radius 4¢ and also exponential
L*° bounds

e For LP norms we need to employ a 77T argument.



Geometric side

Enough to prove: there exists § > 0 s.t. for all ¢ > 0
Py(Ac) = O(g~1/*+%),

where

There exists x € X such that there are
Ac = ¢ X € Mg | at least two primitive geodesic loops v in X
of length ¢(v) < clog(g) passing through x



Geometric side: Simple geodesics case

e Pick X € A, and pick two such loops a, 3 of length < clogg.
e Assume «, (3 are simple

e Then we can extract a separating multicurve I' = (y1,...,74) of 4
components with total length < 4clogg.

e In general: if geodesics are not simple, I' has O(g%¢) curves.




To Weil-Petersson integrals

Markov inequality: if 7 : My — Ry is P integrable, then

1

Py(F(X)>1t) < W ,

F(X)dX

~+ | =



Moduli space notation

Sg.n : topological surface of genus g with n boundary components
e T(Syn): Teichmiiller space of S,
e Mod(Sy,n) : Mapping class group of S,
e Myn=T(Sgn)/Mod(Sy,,) moduli space of S ,,

Compact case: Sy = S0, My = My



Applying Weil-Petersson volume estimates
o Define F: RY — Ry by
F(z)=1(z1 + -+ + x4 < 4clogyg)
and for X € M,
FI(X) = > Flx(ea), ... Lx(ou)).
[e;]€Mod(Sy)-T
e Mirzakhani’s integration formula:

FF(X) dX = Cp/ F(x)Vyn(T,z)x1 ... 24dxy ... day
M, RY
Here
e Vyn(T,z) : Volume of the moduli space M(Sy(T), r = )
e Sy n(I') : surface with n + 4 boundary components obtained by
cutting Sy, along the 4 curves of the multicurve I'

Then using quantitative estimates for V; ,(I', ) (in terms of g and n):

: 1 r _



