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Quantum Unique Ergodicity

• X : compact negatively curved Riemann surface.
• λ0 = 0 < λ1 ≤ λ2 ≤ . . . : eigenvalues of the Laplacian on X.
• {ψλj}j∈N : orthonormal basis of L2(X) of eigenfunctions of the

Laplacian with eigenvalues λj .

Conjecture (Rudnick, Sarnak, 1990s)

If a : X → C is continuous, then

lim
j→∞

ˆ
X
a(x)|ψλj (x)|2 dx =

ˆ
X
a(x)

1

|X|
dx.



Examples?

• Do there exist X that satisfies QUE?

• Is there a random model of compact negatively curved surfaces X,
where with positive probability QUE holds?



Graphs
Let G = (V,E) be a d-regular graph.
• Laplacian on G: ∆Gf(x) = 1

d

∑
y∈V,y∼x f(y)− f(x).

• Uniform probability model PN,d for the space GN,d of d-regular
graphs with |V | = N is given by PN,d(A) = |A|

|GN,d| , A ⊂ GN,d.

• EG : set of all L2 normalized eigenfunctions on G.

Theorem (Bauerschmidt, Knowles, Yau 2017)

Let G be a PN,d random regular graph. Then for any ψλ ∈ EG with
eigenvalue λ we have

‖ψλ‖∞ ≤ C(λ)
(logN)2

√
N

with probability at least 1− e−2(logN)3 as long as d ≥ (logN)4.

Note: ‖ 1√
N

‖∞ = 1√
N

and ‖ 1√
N

‖2 = 1.



Surfaces?

“large cardinality |V | ↔ large area |X|”

For arithmetic surfaces there is the level aspect theory.

Example:

Theorem (Saha 2014)

Fix a level n ∈ N and let X := Γ0(n) \H, where

Γ0(n) =
{(a b

c d

)
∈ SL2(Z) : c ≡ 0 modn

}
.

If ψλ is L2-normalized Hecke-Maass cuspidal newform on X of Laplacian
eigenvalue λ, then for all ε > 0 we have

‖ψλ‖∞ ≤ C(λ, ε)|X|−1/12+ε.



Random surfaces

• Mg : moduli space of compact hyperbolic surfaces of genus g.
• Pg : uniform probability onMg w.r.t. Weil-Petersson volume.
• EX : set of all L2 normalized eigenfunctions on X.

Theorem (Gilmore, Le Masson, S., Thomas 2019)

Let X be a Pg random hyperbolic surface of genus g. Then for any ε > 0
and ψλ ∈ EX with eigenvalue λ ≥ 1/4 we have

‖ψλ‖∞ ≤ C(λ, ε)
1√

log |X|

with probability at least 1−O(g−1/2+ε).

Note: ‖ 1√
|X|

‖∞ = 1√
|X|

and ‖ 1√
|X|

‖2 = 1.



Possible future work
Conjecture

Let X be a Pg random hyperbolic surface of genus g. Then for any ε > 0
and ψλ ∈ EX with eigenvalue λ > 1/4 we have

‖ψλ‖∞ ≤ C(λ)
(log |X|)α(ε)√

|X|

with probability tending to 1 as g →∞, where α(ε) > 0 is some function.

Theorem (Bauerschmidt, Knowles, Yau 2017)

Let G be a PN,d random regular graph. Then for any ψλ ∈ EG with
eigenvalue λ we have

‖ψλ‖∞ ≤ C(λ)
(logN)2

√
N

with probability at least 1− e−2(logN)3 as long as d ≥ (logN)4.



Lp norms

Theorem (Gilmore, Le Masson, S., Thomas 2019)

Let X be a Pg random hyperbolic surface of genus g. Then for any ε > 0

and ψλ ∈ EX with eigenvalue λ ≥ 1/4 and p ≥ 2 + 4
√

max{1
4 − λ1(X), 0}

we have
‖ψλ‖p ≤ C(p, λ, ε)

1√
log |X|

with probability at least 1−O(g−1/2+ε).



Proof structure
• Nr(X) : maximal number of primitive geodesic loops of length ≤ r

passing through a point in X.
• Short Loop Condition: suppose there exists R(X) ≥ 0 such that for

any r ≤ R(X) and δ > 0 we have

Nr(X) ≤ C(δ)eδr.

• Under the S.L.C. above, study convolution operators with smoothened
cosine wave kernels originating in the work of Iwaniec-Sarnak (1995)
and apply Selberg transform to prove

‖ψλ‖∞ ≤ C(λ)
‖ψλ‖2√
R(X)

.

• Prove an effective version of Mirzakhani-Petri (2017), which gives us:
∃δ > 0 s.t. ∀c > 0:

Pg(X : R(X) ≥ c log |X|) ≥ 1−O(g−1/2+δc)



Proof of ‖ψλ‖∞ ≤ C(λ) ‖ψλ‖2√
R(X)

• Short Loop Condition is trivially satisfied with R(X) = InjRad(X).
• R(X) = InjRad(X) case is a quite direct application of Selberg

pre-trace formula (next slide)
• However: Mirzakhani (2013) proved Pg random X has InjRad(X)

uniformly bounded in g with positive probability



Proof of ‖ψλ‖∞ ≤ C(λ) ‖ψλ‖2√
R(X)

with R(X) = InjRad(X)

• Let ψλ be L2 normalized and ∆ψλ = λ2ψλ, X = H/Γ
• Let R = R(X) and χR(s) = Rχ(Rs) where χ : R→ R+ is smooth

even rapid decaying with supp(χ̂) ⊂ [−1, 1],
´
χ = 1 (so χR(0) ≈ R)

• Selberg pre-trace formula:
∞∑
j=1

χR(λj − λ)|ψλj (z)|
2 =

1

2π

ˆ ∞
0

χR

(√1

4
+ r2 − λ

)
r tanh(πr) dr

+
∑

γ∈Γ−{id}

kR,λ(d(z, γz))

where kR,λ(%) is the radial kernel ofˆ ∞
0

e−itλχ̂R(t) cos(t
√

∆) dt.

• supp(kR,λ) ⊂ [−R,R] so
∑

γ∈Γ−{id} = 0, so by χR(t) = O((Rt)−2)

R|ψλ(z)|2 .
s

2π
tanh(πs) +O(R−2), s =

√
λ2 − 1

4



Proof of ‖ψλ‖∞ ≤ C(λ) ‖ψλ‖2√
R(X)

: general case

• Key: cos(t
√

∆) has finite speed of propagation (kernel non-zero only
when d(x, y) ≤ t).

• Essentially replace cos(t
√

∆) by cos(t
√

∆)√
cosh(π

2

√
∆)

• Has rapid enough decay outside balls of radius 4t and also exponential
L∞ bounds
• For Lp norms we need to employ a TT ∗ argument.



Geometric side

Enough to prove: there exists δ > 0 s.t. for all c > 0

Pg(Ac) = O(g−1/2+δc),

where

Ac =

X ∈Mg

∣∣∣∣∣∣∣
There exists x ∈ X such that there are
at least two primitive geodesic loops γ in X
of length `(γ) ≤ c log(g) passing through x





Geometric side: Simple geodesics case
• Pick X ∈ Ac and pick two such loops α, β of length ≤ c log g.
• Assume α, β are simple
• Then we can extract a separating multicurve Γ = (γ1, . . . , γ4) of 4

components with total length ≤ 4c log g.

• In general: if geodesics are not simple, Γ has O(g2c) curves.



To Weil-Petersson integrals

Markov inequality: if F :Mg → R+ is Pg integrable, then

Pg(F(X) > t) ≤ 1

t

1

Vol(Mg)

ˆ
Mg

F(X) dX



Moduli space notation

Sg,n : topological surface of genus g with n boundary components
• T (Sg,n) : Teichmüller space of Sg,n
• Mod(Sg,n) : Mapping class group of Sg,n
• Mg,n = T (Sg,n)/Mod(Sg,n) moduli space of Sg,n

Compact case: Sg = Sg,0,Mg =Mg,0



Applying Weil-Petersson volume estimates
• Define F : R4

+ → R+ by

F (x) = 1(x1 + · · ·+ x4 ≤ 4c log g)

and for X ∈Mg

FΓ(X) =
∑

[αi]∈Mod(Sg)·Γ

F (`X(α1), . . . , `X(α4)).

• Mirzakhani’s integration formula:ˆ
Mg

FΓ(X) dX = CΓ

ˆ
R4
+

F (x)Vg,n(Γ, x)x1 . . . x4dx1 . . . dx4

Here
• Vg,n(Γ, x) : Volume of the moduli spaceM(Sg,n(Γ), `Γ = x)
• Sg,n(Γ) : surface with n+ 4 boundary components obtained by

cutting Sg,n along the 4 curves of the multicurve Γ

Then using quantitative estimates for Vg,n(Γ, x) (in terms of g and n):

lim
g→∞

∑
Γ

1

Vol(Mg)

ˆ
Mg

FΓ(X) dX = 0.


