Quantum chaos and random surfaces of large genus

Tuomas Sahlsten

Manchester, UK

Joint work with
Cliff Gilmore (Cork, Ireland)
Etienne Le Masson (Cergy-Pontoise, France) Joe Thomas (Manchester, UK)

Quantum Unique Ergodicity

- X : compact negatively curved Riemann surface.
- $\lambda_{0}=0<\lambda_{1} \leq \lambda_{2} \leq \ldots$: eigenvalues of the Laplacian on X.
- $\left\{\psi_{\lambda_{j}}\right\}_{j \in \mathbb{N}}$: orthonormal basis of $L^{2}(X)$ of eigenfunctions of the Laplacian with eigenvalues λ_{j}.

Conjecture (Rudnick, Sarnak, 1990s)

If $a: X \rightarrow \mathbb{C}$ is continuous, then

$$
\lim _{j \rightarrow \infty} \int_{X} a(x)\left|\psi_{\lambda_{j}}(x)\right|^{2} d x=\int_{X} a(x) \frac{1}{|X|} d x
$$

Examples?

- Do there exist X that satisfies QUE?
- Is there a random model of compact negatively curved surfaces X, where with positive probability QUE holds?

Graphs

Let $G=(V, E)$ be a d-regular graph.

- Laplacian on $G: \Delta_{G} f(x)=\frac{1}{d} \sum_{y \in V, y \sim x} f(y)-f(x)$.
- Uniform probability model $\mathbb{P}_{N, d}$ for the space $\mathcal{G}_{N, d}$ of d-regular graphs with $|V|=N$ is given by $\mathbb{P}_{N, d}(\mathcal{A})=\frac{|\mathcal{A}|}{\left|\mathcal{G}_{N, d}\right|}, \quad \mathcal{A} \subset \mathcal{G}_{N, d}$.
- \mathcal{E}_{G} : set of all L^{2} normalized eigenfunctions on G.

Theorem (Bauerschmidt, Knowles, Yau 2017)

Let G be a $\mathbb{P}_{N, d}$ random regular graph. Then for any $\psi_{\lambda} \in \mathcal{E}_{G}$ with eigenvalue λ we have

$$
\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda) \frac{(\log N)^{2}}{\sqrt{N}}
$$

with probability at least $1-e^{-2(\log N)^{3}}$ as long as $d \geq(\log N)^{4}$.

Note: $\left\|\frac{1}{\sqrt{N}}\right\|_{\infty}=\frac{1}{\sqrt{N}}$ and $\left\|\frac{1}{\sqrt{N}}\right\|_{2}=1$.

Surfaces?

$$
\text { "large cardinality }|V| \quad \leftrightarrow \quad \text { large area }|X| \text { " }
$$

For arithmetic surfaces there is the level aspect theory.
Example:

Theorem (Saha 2014)

Fix a level $n \in \mathbb{N}$ and let $X:=\Gamma_{0}(n) \backslash \mathbb{H}$, where

$$
\Gamma_{0}(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod n\right\} .
$$

If ψ_{λ} is L^{2}-normalized Hecke-Maass cuspidal newform on X of Laplacian eigenvalue λ, then for all $\varepsilon>0$ we have

$$
\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda, \varepsilon)|X|^{-1 / 12+\varepsilon}
$$

Random surfaces

- \mathcal{M}_{g} : moduli space of compact hyperbolic surfaces of genus g.
- \mathbb{P}_{g} : uniform probability on \mathcal{M}_{g} w.r.t. Weil-Petersson volume.
- \mathcal{E}_{X} : set of all L^{2} normalized eigenfunctions on X.

Theorem (Gilmore, Le Masson, S., Thomas 2019)
Let X be a \mathbb{P}_{g} random hyperbolic surface of genus g. Then for any $\varepsilon>0$ and $\psi_{\lambda} \in \mathcal{E}_{X}$ with eigenvalue $\lambda \geq 1 / 4$ we have

$$
\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda, \varepsilon) \frac{1}{\sqrt{\log |X|}}
$$

with probability at least $1-O\left(g^{-1 / 2+\varepsilon}\right)$.
Note: $\left\|\frac{1}{\sqrt{|X|}}\right\|_{\infty}=\frac{1}{\sqrt{|X|}}$ and $\left\|\frac{1}{\sqrt{|X|}}\right\|_{2}=1$.

Possible future work

Conjecture

Let X be a \mathbb{P}_{g} random hyperbolic surface of genus g. Then for any $\varepsilon>0$ and $\psi_{\lambda} \in \mathcal{E}_{X}$ with eigenvalue $\lambda>1 / 4$ we have

$$
\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda) \frac{(\log |X|)^{\alpha(\varepsilon)}}{\sqrt{|X|}}
$$

with probability tending to 1 as $g \rightarrow \infty$, where $\alpha(\varepsilon)>0$ is some function.
Theorem (Bauerschmidt, Knowles, Yau 2017)
Let G be a $\mathbb{P}_{N, d}$ random regular graph. Then for any $\psi_{\lambda} \in \mathcal{E}_{G}$ with eigenvalue λ we have

$$
\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda) \frac{(\log N)^{2}}{\sqrt{N}}
$$

with probability at least $1-e^{-2(\log N)^{3}}$ as long as $d \geq(\log N)^{4}$.

L^{p} norms

Theorem (Gilmore, Le Masson, S., Thomas 2019)
Let X be a \mathbb{P}_{g} random hyperbolic surface of genus g. Then for any $\varepsilon>0$ and $\psi_{\lambda} \in \mathcal{E}_{X}$ with eigenvalue $\lambda \geq 1 / 4$ and $p \geq 2+4 \sqrt{\max \left\{\frac{1}{4}-\lambda_{1}(X), 0\right\}}$ we have

$$
\left\|\psi_{\lambda}\right\|_{p} \leq C(p, \lambda, \varepsilon) \frac{1}{\sqrt{\log |X|}}
$$

with probability at least $1-O\left(g^{-1 / 2+\varepsilon}\right)$.

Proof structure

- $N_{r}(X)$: maximal number of primitive geodesic loops of length $\leq r$ passing through a point in X.
- Short Loop Condition: suppose there exists $R(X) \geq 0$ such that for any $r \leq R(X)$ and $\delta>0$ we have

$$
N_{r}(X) \leq C(\delta) e^{\delta r}
$$

- Under the S.L.C. above, study convolution operators with smoothened cosine wave kernels originating in the work of Iwaniec-Sarnak (1995) and apply Selberg transform to prove

$$
\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda) \frac{\left\|\psi_{\lambda}\right\|_{2}}{\sqrt{R(X)}}
$$

- Prove an effective version of Mirzakhani-Petri (2017), which gives us: $\exists \delta>0$ s.t. $\forall c>0$:

$$
\mathbb{P}_{g}(X: R(X) \geq c \log |X|) \geq 1-O\left(g^{-1 / 2+\delta c}\right)
$$

Proof of $\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda) \frac{\left\|\psi_{\lambda}\right\|_{2}}{\sqrt{R(X)}}$

- Short Loop Condition is trivially satisfied with $R(X)=\operatorname{InjRad}(X)$.
- $R(X)=\operatorname{Inj} \operatorname{Rad}(X)$ case is a quite direct application of Selberg pre-trace formula (next slide)
- However: Mirzakhani (2013) proved \mathbb{P}_{g} random X has $\operatorname{InjRad}(X)$ uniformly bounded in g with positive probability

Proof of $\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda) \frac{\left\|\psi_{\lambda}\right\|_{2}}{\sqrt{R(X)}}$ with $R(X)=\operatorname{InjRad}(X)$

- Let ψ_{λ} be L^{2} normalized and $\Delta \psi_{\lambda}=\lambda^{2} \psi_{\lambda}, X=\mathbb{H} / \Gamma$
- Let $R=R(X)$ and $\chi_{R}(s)=R \chi(R s)$ where $\chi: \mathbb{R} \rightarrow \mathbb{R}_{+}$is smooth even rapid decaying with $\operatorname{supp}(\widehat{\chi}) \subset[-1,1], \int \chi=1\left(\right.$ so $\left.\chi_{R}(0) \approx R\right)$
- Selberg pre-trace formula:

$$
\begin{aligned}
\sum_{j=1}^{\infty} \chi_{R}\left(\lambda_{j}-\lambda\right)\left|\psi_{\lambda_{j}}(z)\right|^{2} & =\frac{1}{2 \pi} \int_{0}^{\infty} \chi_{R}\left(\sqrt{\frac{1}{4}+r^{2}}-\lambda\right) r \tanh (\pi r) d r \\
& +\sum_{\gamma \in \Gamma-\{\mathrm{id}\}} k_{R, \lambda}(d(z, \gamma z))
\end{aligned}
$$

where $k_{R, \lambda}(\varrho)$ is the radial kernel of

$$
\int_{0}^{\infty} e^{-i t \lambda} \widehat{\chi_{R}}(t) \cos (t \sqrt{\Delta}) d t
$$

- $\operatorname{supp}\left(k_{R, \lambda}\right) \subset[-R, R]$ so $\sum_{\gamma \in \Gamma-\{i d\}}=0$, so by $\chi_{R}(t)=O\left((R t)^{-2}\right)$

$$
R\left|\psi_{\lambda}(z)\right|^{2} \lesssim \frac{s}{2 \pi} \tanh (\pi s)+O\left(R^{-2}\right), \quad s=\sqrt{\lambda^{2}-\frac{1}{4}}
$$

Proof of $\left\|\psi_{\lambda}\right\|_{\infty} \leq C(\lambda) \frac{\left\|\psi_{\lambda}\right\|_{2}}{\sqrt{R(X)}}$: general case

- Key: $\cos (t \sqrt{\Delta})$ has finite speed of propagation (kernel non-zero only when $d(x, y) \leq t)$.
- Essentially replace $\cos (t \sqrt{\Delta})$ by $\frac{\cos (t \sqrt{\Delta})}{\sqrt{\cosh \left(\frac{\pi}{2} \sqrt{\Delta}\right)}}$
- Has rapid enough decay outside balls of radius $4 t$ and also exponential L^{∞} bounds
- For L^{p} norms we need to employ a $T T^{*}$ argument.

Geometric side

Enough to prove: there exists $\delta>0$ s.t. for all $c>0$

$$
\mathbb{P}_{g}\left(\mathcal{A}_{c}\right)=O\left(g^{-1 / 2+\delta c}\right)
$$

where

$$
\mathcal{A}_{c}=\left\{\begin{array}{l|l}
X \in \mathcal{M}_{g} & \begin{array}{l}
\text { There exists } x \in X \text { such that there are } \\
\text { at least two primitive geodesic loops } \gamma \text { in } X \\
\text { of length } \ell(\gamma) \leq c \log (g) \text { passing through } x
\end{array}
\end{array}\right\}
$$

Geometric side: Simple geodesics case

- Pick $X \in \mathcal{A}_{c}$ and pick two such loops α, β of length $\leq c \log g$.
- Assume α, β are simple
- Then we can extract a separating multicurve $\Gamma=\left(\gamma_{1}, \ldots, \gamma_{4}\right)$ of 4 components with total length $\leq 4 c \log g$.

- In general: if geodesics are not simple, Γ has $O\left(g^{2 c}\right)$ curves.

To Weil-Petersson integrals

Markov inequality: if $\mathcal{F}: \mathcal{M}_{g} \rightarrow \mathbb{R}_{+}$is \mathbb{P}_{g} integrable, then

$$
\mathbb{P}_{g}(\mathcal{F}(X)>t) \leq \frac{1}{t} \frac{1}{\operatorname{Vol}\left(\mathcal{M}_{g}\right)} \int_{\mathcal{M}_{g}} \mathcal{F}(X) d X
$$

Moduli space notation

$S_{g, n}$: topological surface of genus g with n boundary components

- $\mathcal{T}\left(S_{g, n}\right)$: Teichmüller space of $S_{g, n}$
- $\operatorname{Mod}\left(S_{g, n}\right)$: Mapping class group of $S_{g, n}$
- $\mathcal{M}_{g, n}=\mathcal{T}\left(S_{g, n}\right) / \operatorname{Mod}\left(S_{g, n}\right)$ moduli space of $S_{g, n}$

Compact case: $S_{g}=S_{g, 0}, \mathcal{M}_{g}=\mathcal{M}_{g, 0}$

Applying Weil-Petersson volume estimates

- Define $F: \mathbb{R}_{+}^{4} \rightarrow \mathbb{R}_{+}$by

$$
F(x)=\mathbf{1}\left(x_{1}+\cdots+x_{4} \leq 4 c \log g\right)
$$

and for $X \in \mathcal{M}_{g}$

$$
F^{\Gamma}(X)=\sum_{\left[\alpha_{i}\right] \in \operatorname{Mod}\left(S_{g}\right) \cdot \Gamma} F\left(\ell_{X}\left(\alpha_{1}\right), \ldots, \ell_{X}\left(\alpha_{4}\right)\right) .
$$

- Mirzakhani's integration formula:

$$
\int_{\mathcal{M}_{g}} F^{\Gamma}(X) d X=C_{\Gamma} \int_{\mathbb{R}_{+}^{4}} F(x) V_{g, n}(\Gamma, x) x_{1} \ldots x_{4} d x_{1} \ldots d x_{4}
$$

Here

- $V_{g, n}(\Gamma, x)$: Volume of the moduli space $\mathcal{M}\left(S_{g, n}(\Gamma), \ell_{\Gamma}=x\right)$
- $S_{g, n}(\Gamma)$: surface with $n+4$ boundary components obtained by cutting $S_{g, n}$ along the 4 curves of the multicurve Γ
Then using quantitative estimates for $V_{g, n}(\Gamma, x)$ (in terms of g and n):

$$
\lim _{g \rightarrow \infty} \sum_{\Gamma} \frac{1}{\operatorname{Vol}\left(\mathcal{M}_{g}\right)} \int_{\mathcal{M}_{g}} F^{\Gamma}(X) d X=0 .
$$

