Number Theory Homework #10

Prof. Zeev Rudnick

To be handed in on Monday, January 16, 2017.

WARNING: SAVE A COPY OF THE HOMEWORK ASSIGNMENT IN CASE YOU DON'T HAVE TIME TO COLLECT IT !

- Show that if an integer is a sum of two squares: n=x² + y², then in the prime power decomposition of n, all primes p=3 mod 4 appear with <u>even</u> exponents: for p=3 mod 4, if p^k | n but p^{k+1} ∤ n then k is even.
- 2. Show that the ring $\mathbb{Z}[\sqrt{-6}] = \{m + n\sqrt{-6}: m, n \in \mathbb{Z}\}$ does <u>not</u> have unique factorization into irreducibles.
- 3. Show that $\mathbb{Z}[\sqrt{-2}] = \{m + n\sqrt{-2} : m, n \in \mathbb{Z}\}$ is a Euclidean ring with respect to the standard complex norm $N(z) = z \cdot \overline{z}$.
- 4. Show that if $n = 5,7 \mod 8$ then it is not of the form $x^2 + 2y^2$. (Here *n*, *x*, *y* are integers).
- 5. Show that an odd prime *p* is of the form $p = x^2 + 2y^2$ if and only if $p=1,3 \mod 8$.

Mailbox 085, first floor of Schreiber building

Course homepage: http://www.math.tau.ac.il/~rudnick/courses/int_numth.html