Number Theory Homework #3

Prof. Zeev Rudnick

To be handed in on Monday, November 28, 2016.

1. Given integers a_0 ; a_1 , ..., a_N with $a_i \ge 1$ for i > 0, we denote by $[a_0; a_1, ..., a_N]$ the continued fraction

$$[a_0; a_1, \dots, a_N] = a_0 + \frac{1}{a_1 + \frac{1}{a_{2} + \frac{1}{a_N}}}$$

Define $p_{-1} = 1$, $q_{-1}=0$, $p_0 = a_0$, $q_0=1$, and by recursion:

$$p_n = a_n p_{n-1} + p_{n-2}$$
, $q_n = a_n q_{n-1} + q_{n-2}$.

Show that i) $p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$

ii)
$$p_n q_{n-2} - p_{n-2} q_n = (-1)^n \alpha_n$$

2. Find the greatest common divisor of the polynomials

$$f(x) = x^3 - 2x^2 + x - 2$$
, $g(x) = x^4 - 2x^3 + 7x - 14$ in $\mathbb{Z}/p\mathbb{Z}[x]$, for all primes p up to 19.

3. i) Find the decomposition into monic irreducibles of the following polynomials in $\mathbb{Z}/5\mathbb{Z}[x]$:

$$x^{2} + 1$$
, $x^{2} - 2$, $x^{3} - 2$, $x^{3} + 3x^{2} + 2x + 6$.

ii) Do the same in $\mathbb{Z}/7\mathbb{Z}[x]$.

Mailbox: 085, first floor of Schreiber building

Course homepage: http://www.math.tau.ac.il/~rudnick/courses/int_numth.html