Number Theory Homework #4

Prof. Zeev Rudnick

To be handed in on Monday, December 5, 2016.

1) Let $F_2=\mathbb{Z}/2\mathbb{Z}$. Find representatives for the residue classes of $F_2[x]$ modulo the polynomial f(x), and compute the multiplication table for the ring $F_2[x]/(f(x))$, where

i) f(x) = x + 1 ii) $f(x) = x^2 + x + 1$ iii) $f(x) = x^2 + 1$

Which of these rings are fields?

- 2) Let **F** be a field. Show that there are infinitely many <u>monic</u> irreducible polynomials in **F**[x]. (A <u>monic</u> polynomial is of the form $\mathbf{1} \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0$).
- 3) Let $\mathbf{F}_3 = \mathbf{Z}/3\mathbf{Z}$ be the field with 3 elements. Show that there are infinitely many <u>monic</u> irreducible polynomials $P(x) = x^n + a_{n-1}x^{n-1} + \dots \in \mathbf{F}_3[x]$ such that P(0) = -1.
- Find the last two digits in the decimal expansion of 3¹¹²³. (For example the last two digits of 1729 are 29). Explain how to do the same for 3ⁿ for any n.
- 5) For an invertible residue b mod N, the order ($\neg \neg \neg$) of b mod N is the least integer k≥1 for which $b^k \equiv 1 \mod N$. Find the order of 3 mod p for all primes 3 < p < 50.

Mailbox 085, first floor of Schreiber building

Course homepage: http://www.math.tau.ac.il/~rudnick/courses/int_numth.html