
PRIMES IN ARITHMETIC PROGRESSIONS: VARYING

MODULUS

1. Discussion on PNT in arithmetic progressions with varying
modulus

The prime number theorem for arithmetic progressions gives for fixed q

(1) π(x; q, a) ∼ x

φ(q) log x
.

It is much more difficult and interesting to establish this asymptotic for q
that grows in terms of x, and this is often crucial for applications. In this
direction the Siegel-Walfisz theorem states that for q ≤ (log x)A (1) holds.
The Generalized Riemann Hypothesis (GRH) for Dirichlet L-functions im-

plies that this is true for q ≤ x1/2−o(1).
A conjecture of Hugh Montgomery predicts that the asymptotic should

hold in even a greater range q ≤ x1−o(1) 1, and work of Friedlander and
Granville [1] shows that this is essentially best possible. This should be
compared to the distribution of primes in short intervals and of the work of
Maier [6], which we have previously discussed.

Although GRH is still open we can say quite a bit more about the re-
mainder term

E(x; q, a) := ψ(x; q, a)− x

φ(q)

with uniformity on q, on average. First note that this is only interesting when
q < x since for q > x there are not many primes ≤ x in progressions modulo
q. The Barban-Davenport-Halberstam-Montgomery-Hooley theorem see [8]
and [4] states that

1

Q

∑
q≤Q

∑
a (mod q)
gcd(a,q)=1

|E(x; q, a)|2 ∼ x logQ

for x/(log x)A < Q < x and on GRH for x1/2+o(1) < Q < x. Assuming a
conjecture on the second moment of the one level density of zeros of Dirichlet
L-functions it follows that this holds for xo(1) < Q < x.
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1Montgomery’s conjecture states ψ(x; q, a) = x/ϕ(q)+O(xo(1)(x/q)1/2) (this version of

the conjecture was first given by Friedlander and Granville [1]). In the original formulation

(see [9]) of the conjecture the error term was stated as (x/ϕ(q))1/2+o(1) log x and this was
proven to be false.
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Another result in this direction is the famous theorem of Bombieri and
Vinogradov which asserts that for any A ≥ 1 and Q < x1/2/(log x)B, for
B = B(A),

1

Q

∑
q≤Q

max
a (mod q)
gcd(a,q)=1

|E(x; q, a)| � x

Q(log x)A

It may be the case that even moreis true and it has been conjectured by
Elliot and Halberstam that for Q < x1−o(1)

1

Q

∑
q≤Q

max
a (mod q)
gcd(a,q)=1

|E(x; q, a)| � x

Q(log x)A
.

Friedlander and Granville [1] showed that this does not hold for Q = x.

2. The Brun Titchmarsh Inequality

In a different direction the Brun-Titchmarsh theorem gives an upper
bound for the number of primes congruent to a (mod q) with great uni-
formity in q.

Theorem 2.1 (Brun-Titchmarsh Inequality). Let a, q be integers with gcd(a, q) =
1 and suppose that q = o(x). Then

π(x; q, a) ≤ 2x

ϕ(q) log x/q
(1 + o(1)) .

Remark. Using the large sieve, Montgomery and Vaughan have shown that
the 1 + o(1) factor on the RHS of the above inequality can be removed.

We can rewrite the RHS as

C
x

ϕ(q) log x

with

C =
2

1− log q
log x

.

Improving the value of C is a problem that has been studied by several authors
including Motohashi [10], Goldfeld [3], Iwaniec [5], Friedlander and Iwaniec
[2], and Maynard [7]. Establishing a version of Brun-Titchmarsh with C < 2
would have important consequences.

We first require the following lemma

Lemma 2.2. For any integer q∑
n≤z

gcd(n,q)=1

µ2(n)

ϕ(n)
≥ ϕ(q)

q
log z.
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Proof. The strategy is to compare∑
n≤z

gcd(n,q)=1

µ2(d)

ϕ(d)
to

∑
n≤z

µ2(d)

ϕ(d)
.

the later sum is easily seen to be bounded below by (ζ(2))−1 log z and with
a bit more effort the (ζ(2))−1 factor can be removed. Observe that∑

n≤z

µ2(d)

ϕ(d)
=
∑
`|q

∑
n≤z

gcd(n,q)=`

µ2(d)

ϕ(d)

=
∑
`|q

∑
h≤z/`

gcd(h,q/`)=1,gcd(h,`)=1

µ2(h`)

ϕ(h`)

=
∑
`|q

µ2(`)

ϕ(`)

∑
h≤z/`

gcd(h,`)=1

µ2(h)

ϕ(h)

≤
∑
`|q

µ2(`)

ϕ(`)

∑
h≤z

gcd(h,`)=1

µ2(h)

ϕ(h)
.

To complete the proof note that∑
`|q

µ2(`)

ϕ(`)
=
∏
p|q

(
1 +

1

p− 1

)
=
∏
p|q

(
1− 1

p

)−1
=

q

ϕ(q)
.

�

Proof of Brun-Titchmarsh Inequality. We want to bound

π(x; q, a) = #{p ≤ x : p ≡ a (mod q)}.

Let

A = {n ≤ x : n ≡ a (mod q)}

and P = {p : gcd(p, q) = 1}. Our key observation is that if p′ ∈ {p ≤ x :
p ≡ a (mod q)} then p′ ∈ {n ≤ x : n ≡ a (mod q), gcd(n, P (z)) = 1} or
p′ ∈ {p ≤ z} so that

(2) π(x; q, a) ≤ #{n ≤ x : n ≡ a (mod q), gcd(n, P (z)) = 1}+ z.

Write S(A,P, z) for the first term on the RHS of the above inequality.
For each d such that if p|d then p ∈ P

Ad = {n ∈ A : d|n}.
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Observe that

#Ad =
∑
n≤x

n≡a (mod q),d|n

1

=
∑
`≤x/d

d`≡a (mod q)

1

Since if p|d then p ∈ P we know gcd(d, q) = 1 so that d is invertible modulo q.
Writing d for the multiplicative inverse of d modulo q (i.e. dd ≡ 1 (mod q))
we have ∑

`≤x/d
d`≡a (mod q)

1 =
∑
`≤x/d

`≡da (mod q)

1.

The condition ` ≡ da (mod q) implies we can write ` = qm + r with r ≡ da
(mod q) and |r| < q. Thus,∑

`≤x/d
`≡da (mod q)

1 =
∑

m:qm+r≤x/d

1 =
x

qd
+O(1).

Note that X := #A = x
q +O(1). Hence, we can write

#Ad =
X

f(d)
+Rd

with f(d) = d, X = x/q+O(1) and Rd = O(1). Therefore the Selberg sieve
gives

S(A,P, z) ≤ X

S(z)
+R(z)

where, by Lemma 2.2

S(z) =
∑
d≤z

d|P (z)

µ2(d)

(µ ∗ f)(d)
=

∑
d≤z

gcd(d,q)=1

µ2(d)

ϕ(d)
≥ ϕ(q)

q
log z

and

R(z) =
∑

d1,d2≤z
d1,d2|P (z)

|R[d1,d2]| � z2.

Thus, by these estimates along with (2) we have

π(x; q, a) ≤ x

ϕ(q) log z
+O(z2)

Taking z = (x/q)1/2−o(1) completes the proof.
�
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