THE ARITHMETIC LARGE SIEVE WITH AN APPLICATION TO THE LEAST QUADRATIC NON-RESIDUE

1. THE LEAST QUADRATIC NON-RESIDUE

Given a large prime \(p \) how large can the least quadratic non-residue be? Let

\[
n_p = \min \left\{ 1 \leq m \leq (p + 1)/2 : \left(\frac{m}{p} \right) = -1 \right\}.
\]

Vinogradov conjectured that

\[
n_p \ll p^\varepsilon.
\]

From the Polya-Vinogradov inequality it follows that \(n_p \ll p^{1/2+o(1)} \) and this estimate was subsequently improved by Vinogradov who showed \(n_p \ll p^{1/4+o(1)} \). In the 1960’s Burgess gave the estimate

\[
n_p \ll p^{1/4} + o(1),
\]

which up to the \(p^o(1) \) factor is the best known result today. Conjecturally, Ankeny showed that GRH gives an even better estimate than Vinogradov conjectured, showing GRH implies

\[
n_p \ll (\log p)^2.
\]

We will prove a result of Linnik which shows that Vinogradov’s conjecture holds for all but very few primes.

Theorem 1.1 (Linnik). Let \(\varepsilon > 0 \). Then the number of primes \(p \leq N \) such that \(n_p > N^\varepsilon \) is \(\ll \varepsilon \) as \(N \to \infty \).

2. THE ARITHMETIC LARGE SIEVE

We begin by describing a sieving problem. Suppose we are given the following

- \(\mathcal{A} \) a set of integers with \#\(\mathcal{A} = X \).
- \(\mathcal{P} \) a subset of primes \(\leq z \)
- for each \(p \in \mathcal{P} \) a set \(\Omega_p \subset \{ h \pmod{p} \} \) of “excluded” residue classes with \(\omega(p) := \#\Omega_p \)

The problem is to estimate

\[
\mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega) = \#\{ a \in \mathcal{A} : a \notin \Omega_p \text{ for each } p \in \mathcal{P} \}
\]

For square-free \(n = p_1 \cdots p_r \) define \(\omega(n) = \omega(p_1) \cdots \omega(p_r) \).

\[\text{Date: June 4, 2015.}\]
Theorem 2.1 (The arithmetic large sieve). In the above notation

\[S(\mathcal{A}, \mathcal{P}, \Omega) \leq \frac{X + z^2}{S(z)} \]

where

\[S(z) = \sum_{n \leq z, \text{n-square-free}} \frac{\omega(n)}{n \prod_{p|n} (1 - \frac{\omega(p)}{p})} \]

Remark. If \(\omega(p) \) is typically large, say, \(> cp \) then the sieve bound is typically effective. That is, the sieve works well if one excludes a “large” number of residue classes \((\mod p)\). This is the reason for the name “the large sieve”.

A trivial lower bound for \(S(z) \), which we will use later, is

\[S(z) \geq \sum_{p \leq z} \frac{\omega(p)}{p} \]

Definition. An integer \(n \) is called \(Y \)-smooth if \(p|n \Rightarrow p \leq Y \).

Before proving Theorem 1.1 we first require the following auxiliary lemma for a lower bound on the number of \(N^\varepsilon \)-smooth numbers \(\leq N \).

Lemma 2.2. Let \(\varepsilon > 0 \). Then

\[\sum_{n \leq N} 1 \gg \varepsilon N. \]

Proof. We claim that the set of \(N^\varepsilon \)-smooth numbers \(\leq N \) contains the set

\[B := \{ m \leq N : m = np_1 \cdots p_k \text{ where } N^{\varepsilon - \varepsilon^2} \leq p_j \leq N^\varepsilon \text{ for } j = 1, \ldots, k \} \]

where \(k = 1/\varepsilon \) (it suffices to prove the lemma for \(\varepsilon^{-1} \in \mathbb{Z} \)). To see this note that for \(m \in B \), \(m = np_1 \cdots p_k \) with \(N^{\varepsilon - \varepsilon^2} < p_j \leq N^\varepsilon \). We need to show that \(n \) is \(N^\varepsilon \)-smooth. This is clear since

\[n \leq \frac{N}{p_1 \cdots p_k} \leq \frac{N}{N^{k(\varepsilon - \varepsilon^2)}} = N^\varepsilon. \]
Thus, to finish the proof we use Mertens’ theorem to get

\[
\#B = \sum_{np_1 \cdots p_k \leq N} \sum_{N^{\varepsilon - 2} \leq p_1, \ldots, p_k \leq N^\varepsilon} \frac{N}{p_1 \cdots p_k} \\
\geq N \sum_{N^{\varepsilon - 2} \leq p \leq N^\varepsilon} \frac{1}{p} \\
= N \left(\sum_{N^{\varepsilon - 2} \leq p \leq N^\varepsilon} \frac{1}{p} \right)^k \\
= N \left(\log \frac{\log(N^\varepsilon)}{\log(N/\varepsilon)} + O(1/(\varepsilon \log N)) \right)^k \gg \varepsilon N.
\]

\[
\square
\]

Proof of Theorem 1.1. Let

\[A = \{1, \ldots, N\}, \quad \mathcal{P} = \left\{ p \leq N^{1/2}: \left(\frac{n}{p} \right) = 1 \text{ for all } n \leq N^\varepsilon \right\} \]

and

\[\Omega_p = \left\{ h \pmod{p} : \left(\frac{h}{p} \right) = -1 \right\}, \]

so \(\omega(p) = \#\Omega_p = (p - 1)/2, p > 2\). The large sieve gives that

\[S(A, \mathcal{P}, \Omega) \leq \frac{2N}{S(z)} \]

where

\[S(A, \mathcal{P}, \Omega) = \#\{n \leq N : n \notin \Omega_p \text{ for all } p \in \mathcal{P} \} \]

and

\[S(z) \geq \sum_{p \leq z} \omega(p) \frac{1}{p} = \frac{1}{2} \sum_{p \in \mathcal{P}} \left(1 - \frac{1}{p} \right). \]

We now proceed in a slightly unusual way. We will derive a lower bound for \(S(A, \mathcal{P}, \Omega)\) and then use this and the sieve estimate above to get an upper bound for

\[\sum_{p \in \mathcal{P}} \left(1 - \frac{1}{p} \right). \]

This will imply that the cardinality of the set \(\mathcal{P}\) is small, which means there are very few primes \(\leq N\) for which \(n_p > N^\varepsilon\).

To obtain a lower bound on \(S(A, \mathcal{P}, \Omega)\) we claim that the set

\[\{n \leq N : n \notin \Omega_p \text{ for all } p \in \mathcal{P} \} \]
contains the set of $n \leq N$ such that n is N^ε-smooth. To see this note that if n is N^ε-smooth and $n = p_1 \cdots p_r$ (not necessarily distinct) it follows by the definition of P that for $p \in P$

$$\left(\frac{n}{p} \right) = \left(\frac{p_1}{p} \right) \cdots \left(\frac{p_r}{p} \right) \neq -1,$$

i.e. $n \notin \Omega_p$ for all $p \in P$. Thus, by Lemma 2.2

$$S(A, P, \Omega) \gg \varepsilon N$$

so that

$$\# \{ p \leq N^{1/2} : n_p > N^\varepsilon \} = \sum_{p \in P} 1 \ll \frac{N}{S(z)} \ll \varepsilon.$$

□

3. Proof of the arithmetic large sieve

The arithmetic large sieve is a consequence of the analytic large sieve which we will discuss in the following lecture. Let

$$L(\alpha) = \sum_{n \in S} e(\alpha n)$$

where $e(x) = e^{2\pi i x}$ and $S \subset [M + 1, M + N]$. (For us $\#S = L(0) = S(A, P, \Omega)$ so S is the remaining set after the sifting has been carried out.)

Let a_n be complex numbers and let

$$\mathcal{L}(\alpha) = \sum_{M < n \leq M+N} a_n e(\alpha n).$$

Theorem 3.1 (The analytic large sieve). In the above notation

$$\sum_{q \leq Q} \sum_{a \pmod{q}}^* \left| \mathcal{L} \left(\frac{a}{q} \right) \right|^2 \leq \left(Q^2 + N - 1 \right) \sum_{M < n \leq N+M} |a_n|^2$$

We now require a few additional lemmas.

Lemma 3.2. For complex numbers a_n supported on S we have

$$\left| \sum_{h \pmod{p}} \left| \sum_{n \in S : n \equiv h \pmod{p}} a_n \right|^2 \right| = \frac{1}{p} \sum_{a \pmod{p}} \left| \mathcal{L} \left(\frac{a}{p} \right) \right|^2.$$

Proof. Let

$$Z(p, h) = \sum_{n \in S : n \equiv h \pmod{p}} a_n.$$

Observe that

$$\mathcal{L} \left(\frac{a}{p} \right) = \sum_{n \in S} a_n e(an/p) = \sum_{h \pmod{p}} e(ah/p) Z(p, h).$$
Thus,
\[
\sum_{a \pmod{p}} \left| L \left(\frac{a}{p} \right) \right|^2 = \sum_{a \pmod{p}} \left| \sum_{h \pmod{p}} e(ah/p)Z(p,h) \right|^2
= \sum_{h \pmod{p}} \sum_{k \pmod{p}} Z(p,h)Z(p,k) \sum_{a \pmod{p}} e \left(\frac{a(h-k)}{p} \right).
\]

One has that
\[
\sum_{a \pmod{p}} e \left(\frac{a(h-k)}{p} \right) = \begin{cases} p & \text{if } h \equiv k \pmod{p} \\ 0 & \text{otherwise.} \end{cases}
\]

So that
\[
\sum_{a \pmod{p}} \left| L \left(\frac{a}{p} \right) \right|^2 = p \sum_{h \pmod{p}} |Z(p,h)|^2
\]
as claimed.

\[\square\]

Lemma 3.3. For complex numbers \(a_n\) supported on \(S\) we have
\[
|L(0)|^2 \frac{\omega(p)}{p - \omega(p)} \leq \sum_{h \pmod{p}}^* |L(a/p)|^2.
\]

Proof. Let
\[
Z(p,h) = \sum_{n \equiv h \pmod{p}} a_n.
\]

Applying Cauchy-Schwarz and Lemma 3.2 gives
\[
|L(0)|^2 = \left| \sum_{h \pmod{p}} Z(p,h) \right|^2
\leq \left(\sum_{h \pmod{p}} 1 \right) \left(\sum_{h \pmod{p}} |Z(p,h)|^2 \right)
= \left(\sum_{h \pmod{p}} 1 \right) \frac{1}{p} \sum_{a \pmod{p}} \left| L \left(\frac{a}{p} \right) \right|^2.
\]

Note that \(Z(p,h) = 0\) if \(h \in \Omega_p\) so that
\[
\sum_{h \pmod{p}} 1 \leq p - \omega(p).
\]
Also note

\[\sum_{a \pmod{p}} \left| \mathcal{L} \left(\frac{a}{p} \right) \right|^2 = \sum_{a \pmod{p}} \left| \mathcal{L} \left(\frac{a}{p} \right) \right|^2 + |\mathcal{L}(0)|^2. \]

Combining estimates gives

\[|\mathcal{L}(0)|^2 \frac{\omega(p)}{p - \omega(p)} \leq \sum_{a \pmod{p}} \left| \mathcal{L} \left(\frac{a}{p} \right) \right|^2. \]

\[\square \]

Proof of Theorem 2.1. Let \(\mathcal{A} \subset [M + 1, N + M] \) and

\[\mathcal{S} = \{n \in \mathcal{A} : n \notin \Omega_p \text{ for all } p \in \mathcal{P}\}, \]

also let

\[L(\alpha) = \sum_{n \in \mathcal{S}} e(\alpha n), \]

so that

\[L(0) = \mathcal{S}(\mathcal{A}, \mathcal{P}, \Omega). \]

By Lemma 3.3

\[L(0)^2 \frac{\omega(p)}{p - \omega(p)} \leq \sum_{a \pmod{p}} \left| \mathcal{L} \left(\frac{a}{p} \right) \right|^2. \]

Our goal is to establish a similar bound for square-free \(q \). First consider the case \(q = p_1 p_2 \) and observe

\[\sum_{a \pmod{q}} \left| \mathcal{L} \left(\frac{a}{q} \right) \right|^2 = \sum_{a_1 \pmod{p_1}} \sum_{a_2 \pmod{p_2}} \left| \mathcal{L} \left(\frac{a_1}{p_1} + \frac{a_2}{p_2} \right) \right|^2. \]

To see this write \(a = a_1 p_2 \overline{p_2} + a_2 p_1 \overline{p_1} \), where \(\overline{p_1} \) and \(\overline{p_2} \) denote the multiplicative inverses of \(p_1 \) modulo \(p_2 \) and \(p_2 \) modulo \(p_1 \) (resp.). By construction \(a \equiv a_1 \pmod{p_1} \) and \(a \equiv a_2 \pmod{p_2} \). The CRT implies that \(a \) runs over all residue classes \(\pmod{p_1 p_2} \) as \(a_1 \), and \(a_2 \) run over the residue classes \(\pmod{p_2} \) and \(\pmod{p_1} \) (resp.). At this point it is not hard to deduce the above identity.

Now take \(a_n = e(na_1/q_1) \) for \(n \in S \) and \(a_n = 0 \) otherwise so that by Lemma 3.3

\[\sum_{a_2 \pmod{p_2}} \left| \mathcal{L} \left(\frac{a_1}{p_1} + \frac{a_2}{p_2} \right) \right|^2 = \sum_{a_2 \pmod{p_2}} \left| \sum_{M < n \leq N + M} a_n e(na_2/q_2) \right|^2 \]

\[\geq \frac{\omega(p_2)}{p_2 - \omega(p_2)} |L(a_1/q_1)|^2. \]

Also by Lemma 3.3

\[\sum_{a_1 \pmod{p_1}} |L(a_1/q_1)|^2 \geq \frac{\omega(p_1)}{p_1 - \omega(p_1)} |L(0)|^2 \]
Thus, for $q = p_1p_2$ we have
\[
\sum_{a \pmod{q}}^* \left| L \left(\frac{a}{q} \right) \right|^2 \geq \frac{\omega(q)}{q \prod_{p \mid q} \left(1 - \frac{\omega(p)}{p} \right)} |L(0)|^2.
\]

By induction on the number of prime factors of q this holds for all square free q as well.

Summing over all square-free $q \leq z$ and applying the analytic large sieve, Theorem 3.1 we get that
\[
|L(0)|^2 \sum_{q \leq z} \frac{\omega(q)}{q \prod_{p \mid q} \left(1 - \frac{\omega(p)}{p} \right)} \leq \sum_{q \leq z} \sum_{a \pmod{q}}^* \left| L \left(\frac{a}{q} \right) \right|^2
\]
\[
\leq |L(0)|(N + z^2).
\]

So that
\[
S(A, \mathcal{P}, \Omega) = L(0) \leq \frac{N + z^2}{S(z)}.
\]

□