NOTES ON THE PRIME POLYNOMIAL THEOREM
COURSE NOTES, 2015

Z. RUDNICK

0.1. Basics. Let F; be a finite field of ¢ elements, and FF,[t] the ring of
polynomials with coefficients in F,. The units (invertible elements) are the
scalars IF';, and any nonzero polynomial may be uniquely written as cf(t)
with ¢ € Fy and f(t) = " + An_11""1 4 -+ + ag a monic polynomial. We
denote by M, the set of monic polynomials, whose cardinality is

#M, = qn

The ring F,[t] is a Euclidean ring: Given A, B # 0 in F,[t], there are
Q, R € F,[t] so that

A=QB+R

and R = 0 (in which case B | A) or deg R < deg B.

A standard consequence of this property is that irreducible polynomials
are prime, that is if P | AB then either P | A or P | B. Moreover the Fun-
damental Theorem of Arithmetic holds: Any polynomial of positive degree
is “uniquely” a product of irreducible polynomials, that is up to ordering
and multiplication by scalars.

Let m4(n) be the number of monic irreducibles P € Fy[z] of degree n. Our
goal is to prove the Prime Polynomial Theorem (PPT):

Theorem 0.1 (PPT). As ¢" — oo,

q" qn/Z
=—+0(—).
mm) =L+ 0(T )
Moreover for all n we have an inequality
qTL
n)< —.
mg(n) < n

This is an analogue of the Prime Number Theorem (PNT), which states
that the number 7(z) of primes p < x is asymptotically equal to

rodt x
~ Li(z) := ~ .
m(@) i(@) /2 logt logx

Exercise 1. Compute my(n) for n =2,3,4,5,6.
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1. THE ZETA FUNCTION

The proof we give goes via the zeta function for F[¢], which is defined as

1
Cqls) = Z 7 R(s) > 1
07 fEFy|t]

f monic

Here the norm of a nonzero polynomial is defined as

|f| = #F[t]/ (£),
the number of residue classes modulo f. The norm depends only on the
degree of f:
£ =g
As we shall see below, the series converges absolutely in the half-plane
R(s) > 1, and uniformly in every closed half-plane R(s) > 1+, 6 > 0,
and hence defines an anlytic function in ®(s) > 1.

1.1. Analytic continuation.

Proposition 1.1. (,(s) is absolutely convergent for R(s) > 1, and has an
analytic continuation for all s € C, save for simple poles where q° = q, that

is ats:l—l-%foi‘g?n, n € 7, in fact
1
(1.1) Cals) = [

Proof. We rearrange the series (which is allowed because we have absolute
convergence):

2 rfl\s:i( Z_ \f118>

0 f€F ]

J monic f monic
=1
- Z %#{f € Fylz], monic ,deg f = n}
n=0
oy Ly
s qns

since the number of monic polynomials of degree n is ¢".
Thus we find that for R(s) > 1,

S —S\Nn 1
) = 0 =

since when R(s) > 1, we have |¢'~*| = ¢" %) < 1. The right-hand side
of (1.1) now defines the required analytic continuation of (,(s) to the entire
complex plane, with the exception of simple poles at ¢° = ¢', that is at

s=1+2Tn n=041,42,.... 0
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Exercise 2. Compute the residue at s =1 of (.

1.2. The Euler product. We next show that (,(s) admits an Euler prod-
uct representation

Theorem 1.2. For Re(s) > 1,
()= [ a-1p=™"
P prime

Here the infinite product means the limit of the finite subproducts as
follows: For M > 0 define

¢Ms)y= [ a-1p)

deg P<M

to be the partial Euler product; this is a finite product. The infinite product
is defined as the limit limp;_,oo (™) (s) (assuming it exists).

Proof. We will show that for Re(s) > 1,
i (M) (g} =
Jim (0 (s) = ¢, (s)

(in fact uniformly for any Re(s) > 1+ 6, 6 > 0), which is the meaning of
the claim.
We expand

=Y =Y
T= 1P T & PP T & 1P
k=0 k=0
and so obtain

o
1 1
(M) (g) — - -
deg P<M k=0 deg P;<M it
k; >0

The sum here goes over all monic f for which all prime factors have degree
< M, and each such f appears exactly once by the Fundamental Theorem
of Arithmetic in Fy[t] (unique factorization into primes).

Hence the difference ¢ — () is the sum over all monic f which have at
least one prime factor of degree > M:

1
G =M= Y
fstaP|f
deg P>M
Taking absolute values and using the triangle inequality (recall |A®| =
ARe(s)) gives
1

Glo) =M< X

fst3AP|f
deg P>M
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We note that each f appearing above has degree > M, hence if we replace
the sum by the sum over all f of degree > M, we will increase the result
because we are adding positive terms. Hence

1
ORSUOIENSY NZE)
deg f>M

The sum on the RHS tends to zero as M — oo (we should have seen this by
now) because

1 - 1
Z |f|Re(s) - Z Z |f|s

deg f>M n=M+1deg f=n
S|
= Z %#{degf = n, monic}
n=M+1
i q" qM(l—Re(s))
g _— ﬁ
n:M+1 qTLS 1 q S
which for any fixed Re(s) > 1 tends to zero as M — oo, O

1.3. The Explicit Formula. The von Mangoldt function is defined as
A(f) = deg P, if f = c¢P* is a power of a prime P (k > 1), and is zero
otherwise.

Exercise 3. Show that

D A(f) =deg f .

df
Define
U(n):= > Af)
c}egf:ﬂ

which counts prime powers weighted by the degree of the corresponding
prime.
From the definition it is easy to see that

Lemma 1.3.

U(n) =Y dry(d) .

din

The fundamental fact is that for F,[t], there is a closed-form expression
for ¥(n):

Proposition 1.4 (The “Explicit Formula”).
V(n) =q"
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Proof. Setting
ui=gq °

so that the half-plane R(s) > 1 is mapped to the disk |u| < ¢~ !, we define

Z) = Gls) = Y ut
0% fEF 1]

f monic
for which we have an Euler product representation
(1.2) Zwy= J] (1 —u®=P)" jul<q".
P prime

The resummation (1.1) of (,(s) is expressed as

1
1.3 Z(u) = .
(13) (W= =0
We compute the logarithmic derivative u% = u% log Z of Z(u) in two

different ways:
a) From the Euler product (1.2) we obtain

Ly = 3 LD u?

Z 1 — ydesP
P prime
oo
Sty 3
P prime m=1
= > A(f)us/
f monic
by the definition of the von Mangoldt function. Thus
z' .
(1.4) " (u) = > U(njun .
n=1
b) By the analytic continuation (1.3) of Z(u) we obtain
A4 d 1
(1.5) uf(u) =uo. log T qu = Z q"u" .
n>1
Comparing (1.4) and (1.5) gives the result. O

2. PrRoor oF THE PPT
We use Lemma 1.3 and the Explicit Formula to obtain
(2.1) Zdﬂq(d) =U(n)=4q".
dn
Hence we find that for all m > 1,
(2.2) mmg(m) < q™ .
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Furthermore, from (2.1) we get

(2.3) 0 < nmy(n) —¥(n) = Z drg(d) < Z ¢
dln din
d<n d<n

the last step by (2.2).

The sum over divisors of n is hard to understand, so we convert it to a
more tractable form by observing that a proper divisor d | n, d < n is at
most n/2, and then noting that throwing in some extra terms of the form
¢, which are non-negative, will only increase the result. Hence

gl g gl

d d n/2
S S e
dln d=1 q

Inserting in (2.3) gives
0 < nmy(n) —¥(n) < 2¢"?
and replacing ¥(n) by ¢" and dividing by n gives

q" n/2
”q(n):;‘i‘o( n )

which proves the Prime Polynomial Theorem. ([

q




