ARTIN’S PRIMITIVE ROOT CONJECTURE
COURSE NOTES, 2015

1. ARTIN’S PRIMITIVE ROOT CONJECTURE

Given a prime p, a primitive root modulo p is a generator of the cyclic
group (Z/pZ)* of invertible residues modulo p, that is its order in the mul-
tiplicative group is p — 1, the maximal possible value. Gauss seemed to have
observed that 10 occurs often as a primitive root, for instance in 39 of the
first 100 primes. Likewise, 2 is a primitive root for 41 of the first 100 primes.

Exercise 1. i) If p 1 10 then 1/p has a periodic decimal expansion, e.g.
1/7 = 0.142857 142857 ... has period 6, 1/11 =0.09 09... has period 2.
ii) The order of 10 mod p is the length of the minimal period.

Exercise 2. If p is a prime of the form p = 4p’ + 1 where p’ is also prime,
then 2 is a primitive root modulo p.

The problem with this approach is that we do not know that there are
infinitely many primes of this form.

It is clear that a perfect square cannot be a primitive root if p > 2. In
1927, Artin conjectured that for any integer g # —1,], there are infinitely
many prime p for which ¢ is a primitive root modulo p. A quantitative
version is that

Conjecture. If g # —1 or a perfect square, then there is C(g) > 0 such
that

#{p < z : g is a primitive root modulo p} ~ C(g)

. T =00
log z

The constant C(g) is known; for the simple case g = 2, we have
1
c@= ] 0-—=)=03739...
q prime q(q N 1)

In 1967, Hooley [1] proved Artin’s conjecture, assuming the Generalized
Riemann Hypothesis (GRH) for the Dedekind zeta function of a certain
infinite family of number fields (Kummer extensions). Below we will explain
his argument. For further reading, see the surveys of Murty [3] and Moree

[2].

Date: June 17, 2015.
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2. HOOLEY’S APPROACH

From now on, we will take g = 2, so we want primes p for which 2 is a
primitive root modulo p. Set

N(z):={p < x prime, p{2, 2is a primitive root modulo p}

and we want to show that #N (z) ~ C(2)z/log .
We observe that for p {2, the condition 2 is a primitive root modulo p is
equivalent to the condition

(1) V prime g s.t. ¢ | p—1, o(p=1)/q %1 modp
that is we have not(R(p;q)) for all primes ¢, where R(p; q) is the condition
(2) R(p;q) : p=1modq and 2P D/9=1 modp
For z < z, set
N'(z,2):={2<p<z: Vprimeq < z, notR(p;q)}

so that
N(z) =N (2,2 —1)
and
N(z) CN'(z,2)

for all z < z.
We also set, for w < z,

N"(z;w,2) ={2 < p < x:Iprimew < ¢ < 2, s.t. R(p,q) holds}
Then clearly
N'(z;2) CN(z) UN" (z; 2, 2)
and hence
#N () = #N(2;2) + O (#N”(x; =)
We will take z = log x/6 and show

T T

o L _
®) #N (@ §lo8%) = C(2>logaz ol (log x)Q)
and
1 1
(4) H#N (; 6 logz,r) < m log log x

which will give our Theorem.
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3. EVALUATING #MN(z; ¢ log z)
Let

I »w~ ot

2<p<z

if z ~ (logz)/6. For d | P(z) (necessarily squarefree), set
(5) P(z;d) == #{p <z : R(p;q) holds V prime ¢ | d}
(for d = 1 there is no condition).

Theorem 3.1. Assume the Generalized Riemann Hypothesis. Then for
squarefree d,

P(x;d) = n(ld) Li(z) + O(x1/2 log(da:))

where n(d) = dp(d).

To explain Theorem 3.1, we will need a major bit of input from algebraic
number theory, the explanation of which is deferred to later on.
By the sieve of Eratosthenes,

#N(;2) = D p(d)P(a;d)

d|P(z)

and inputing Theorem 3.1 gives

HN'(5;2) = > (d)( ($)+o( 12 log(da) ) )

do(d
4P) #ld)
1 1/2
— (2 (1+0 )Ll )+ 0@ ?logz 3 1)
diP(2)
1 1/2 z
= <1+O;>L1 )+ O(z/*logx - 27)

because

1 1 1
2 dp(d) 1;([)(1 CEDM 0(2)(1 " O(?))

prime
Taking into account z ~ (logz)/6, so that 2% < z'/3, we get

log T T

6 )=C@) O((log:c)2

#N'(x; )

log =

giving (3).
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4. ESTIMATING #N"(z; 2 log z, z)

To bound #N”(x; élog x,x), which is the number of primes 2 < p < z
for which there is some primes z < ¢ < = such that R(p;q) holds, that is
such that p = 1 mod ¢ and 2(?~1/¢ = 1 mod p, we use a union bound

1
HN" (@3 ¢ log,2) <

1 NZ N7
1 . 1 v N// .V 1 N” : 1 7

#N" (x; Glos, (logx)2)+# (x; (loga:)Q’\/E og x)+#N" (z;/xlogz, )

where the summands put conditions on the existence of a prime ¢ which is

“small” (that is (log x)/6 < ¢ < /7 /(logx)?), “medium”, meaning /z/(log r)? <

q < y/xlogx, and “large”, meaning \/xlogxr < ¢ < x. We will apply sepa-

rate considerations for each summand.

4.1. Small primes. For the small primes, we use a union bound together
with Theorem 3.1 (so we use GRH here)

#N”(w;élogx, VI o > Pz

(log x)?
%log r<g< (lo\g/i)z
1
< Z (7 :E +Vxlog I)
) s~ Nalg—1)logz
§ logz<g< 7(1%;2
x 1 Vi
< — 1 .
~ logx Z q? + Valogx 7T((logaz)Q)
1 VT
g logz<g< (g 2)2
<=
(log z)?

which is an admissible bound.

4.2. Medium primes. To handle the contribution of “medium” primes g,
we replace the condition p = 1 mod ¢ and 2P~/ — 1 mod p with just the
first condition, so that

P(z;q) <#{p<z:p=1modq} =m(zr;q,1)

Now we use the Brun Titchmarsh theorem, which gave a good upper bound

for the number of primes in an arithmetic progression with large modulus:
x

¢(q) log(z/q)

Taking into account that we are in the range that ¢ is close to \/x gives

m(x;q,1) <2

P(z;q) <m(x;3¢,1) €

qlogzx
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and hence we find

AN YT g ) < > P(z;q)

(logz)?’ v
Ly <a<yloga

x
< Z qlogx

=
log q
(lo‘g/i)Q <q</zlogx

To estimate the sum over ¢ (which are prime), we use Merten’s theorem

1 1
Z p =loglogy + C + O(——)

= logy
prime
which gives
1 log log x
v L loslose
q log
(lo\g/i)2 <q<V/zlogz
and therefore
" N3 xloglog
#N (:1:7 (log x)z ) \/5 Og .T) << (log x)Q

which is an admissible bound.

4.3. Large primes. Finally, we need to bound the contribution of “large”
primes, that is y/zlogx < ¢ < .

We note that the primes p counted by N (x;, /xlogz, z) satisfy ¢ | p—1
and 2(»~1/4 = 1 modp and that in our range of ¢’s, the fraction m :=
(p—1)/q < \/x/logx. Thus these p’s must all divide some 2™ — 1 for some
m < y/z/logx, so that they are at most the number of prime divisors of the
product of these factors 2™ — 1:

#N"(z;,Vrlogz,z) <w(  J[ @"-1)
m<y/xz/logx
Using the crude bound w(n) < logy n gives

o I er-m< Y me

(log )2
m<y/z/logz m<y/z/logz

giving
x

#N"(z;,Vxlogx, ) < (og2)?

which is an admissible bound.
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5. ALGEBRAIC NUMBER THEORY

We now give some background in algebraic number theory needed for
understanding Theorem 3.1.

5.1. Splitting of primes. Given a number field K, that is a finite extension
of the rationals, a principal goal of algebraic number theory is to understand
the splitting of rational primes in the ring of integers of K. Here the ring
of integers of K is the set of all algebraic integers contained in K, namely
a € Q which are roots of a monic polynomial with integer coefficients.

Example: The Gaussian integers K = Q(v/—1). Here the ring of integers
is O = Z[\/—1], the Gaussian integers, which is a Euclidean ring, hence
a principal ideal domain, hence has unique factorization into irreducibles.
To find what are the irreducibles of Z[v/—1], we check the factorization of
rational primes. The result is that there are three possibilities:

e The split case p = 1 mod 4, in which case p = 77 splits as a product
of two nonassociate primes of K, so that if 7 = a+ib then p = a®+b°.
e The inert case p = 3 mod 4, in which case p remains irreducible in

K.
e The ramified case p = 2 which factors as 2 = —i(1 + 7).

For other number fields, even quadratic, there is no longer unique factor-
ization into irreducibles and what replaces it is the unique factorization of
ideals in the ring of integers O into prime ideals. Recall an ideal P C Og
is primeifa-be Piffae€ Porbe P.

Given a rational prime, we can uniquely factor the principal ideal pO as

pOg = P{' ... Py’
where P; are distinct prime ideals. Defining the norm of a nonzero ideal
(0) # I C Ok as N(I) = #Ox /I (which is finite if I # (0)), one has
N(Py) =pP
for some f; > 1, called the degree of the prime ideal P;, and there is a
conservation law involved in the numbers here:

g
> eifi=[K:Q]
i=1

We say that a rational prime p splits completely in K if all e; =1 = f;, so
that
pOg =Py ...P,, n=[K:Q

is a product of degree one primes.

5.2. Examples. i) In the case of the Gaussian integers, the split primes are
precisely p = 1 mod 4.

ii) Another important example are the cyclotomic fields Z, = Q((,),
where (, is a primitive g-th root of unity. These have degree [Z, : Q] = ¢(q),
and the split primes are precisely those such that p = 1 mod gq.
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iii) The example we shall need is that of a Kummer extension, specifically
for prime g > 2, let
K, = Q(21/q’ CQ)
be the splitting field of the polynomial 9 — 2 over the rationals, where (; is
a primitive ¢g-th root of unity. For ¢ prime (odd),

[Kq: Q] =qlqg—1)
since K, is obtained from the rationals by the sequence Q C Q(V2) c
Q(+¥/2)(¢,) and assuming the extension Q(+4/2), whose degree is g, is disjoint

from the cyclotomic extension Q((,), whose degree is ¢(g) = ¢—1, we obtain
[K,:Q] =q(qg—1). It is then a fact that for p {2,

p splits completely in K, < p =1 mod ¢ and 2(p=1/a — 1 mod p .

iv) For (odd) squareefree d, define K4 to be the compositum of all the
fields K for prime ¢ | d, whose degree we denote by n(d) := [K4 : Q]. Then
p 1 2d splits completely in K iff p{2 and for all primes ¢ | d,

p=1mod ¢ and 2?~1/7 = 1 mod p

Thus the number of primes p < x, p { 2d, which split completely in Ky is
(maybe up to O(w(d))) the quantity P(z;d) defined in (5).

5.3. Using GRH. For any normal extension K/Q (equivalently, Galois
here because we are in characteristic zero), Landau showed that there are
always infinitely many split primes, in fact that

1
(K : Q)

This is valid for K/Q fixed, and z — oco. We need a version where K
varies with x, much as we needed to study the prime number theorem in
arithmetic progressions with growing modulus; the case of the progressions

p =1 mod ¢ being precisely that of the cyclotomic fields.
For a number field K/Q, the Dedekind zeta function is defined as

1
W= 2 Ny

(0)£ICOK

#{p < x : p splits completely in K} ~ Li(z), = —o0.

the sum over all nonzero ideals of O, which is shown to converge absolutely
for Re(s) > 1, and in that region by the unique factorization into prime ideals
one has an Euler product

)= T =5
PCOk

prime

Is is known that (x(s) has an analytic continuation to the entire complex
plane, save for a simple pole at s = 1, and satisfies a functional equation
s = 1 —s. The Generalized Riemann Hypothesis for (x(s) is that all
(nontrivial) zeros of (x(s) lie on the critical line Re(s) = 1/2.
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Hooley showed that the assumption of the Generalized Riemann Hypoth-
esis for the Dedekind zeta function of K; implies that the number of primes
p < z which split completely in K, satisfies

Li
#{p < z : p splits completely in Ky} = [Kl(mg@ + O(x1/2 log(a:d))
d:

Since this number is essentially our P(x;d), we obtain Theorem 3.1.
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