THE FROBENIUS AUTOMORPHISM

The purpose of these notes is to introduce the Frobenius automorphism and its action on roots of polynomials. This will help us justify the assertion in Chapter 3 of Rosen that for a monic irreducible polynomial $P(x) \in \mathbb{F}_q[x]$, we can write

$$P(x) = \prod_{j=0}^{n-1} (x - \alpha^{q^j})$$

where α is any root of P(x) in an extension of \mathbb{F}_q .

0.1. Let \mathbb{F}_q be a finite field of q elements, and \mathbb{E} an finite extension of \mathbb{F}_q , that is a finite field containing \mathbb{F}_q as a subfield. We define a map

$$Frob = Frob_{\mathbb{E}/\mathbb{F}_q} : \mathbb{E} \to \mathbb{E}$$
$$\alpha \mapsto \alpha^q$$

Lemma 1. The fixed points of Frob are precisely \mathbb{F}_q .

Proof. If $c \in \mathbb{F}_q$ then $c^q = c$, which follows from the Euler-Fermat theorem. Moreover there cannot be any other fixed points, because the solutions of the equation $\alpha^q = \alpha$ are the roots of a polynomial $x^q - x \in \mathbb{F}_q[x]$ of degree q, hence there cannot be more that q such solutions in \mathbb{E} , and since we have found q such solutions, namely the elements of \mathbb{F}_q , we have found all solutions. \Box

We note the following claim, which follows from Euler-Fermat:

Lemma 2. If $[\mathbb{E} : \mathbb{F}_q] = n$ then $\operatorname{Frob}_{\mathbb{E}/\mathbb{F}_q}^n = \operatorname{Id}_{\mathbb{E}}$ is the identity map.

Here $[\mathbb{E} : \mathbb{F}_q]$ is the degree of the extension, which is the dimension of \mathbb{E} as a vector space over \mathbb{F}_q ; and hence $\#\mathbb{E} = q^{[\mathbb{E}:\mathbb{F}_q]}$.

Proposition 3. The Frobenius map is an automorphism of \mathbb{E} over \mathbb{F}_q , that is it is a field isomorphism $\mathbb{E} \to \mathbb{E}$ restricting to the identity on \mathbb{F}_q .

Proof. The Frobenius clearly maps \mathbb{E} to itself. That the restriction of Frob to the base field \mathbb{F}_q is the identity means that if $c \in \mathbb{F}_q$ then $c^q = c$, which is precisely Lemma 1.

To show that Frob is a field isomorphism, we need to show that it preserves addition and multiplication, and is 1 - 1 and onto.

That it preserves multiplication $\operatorname{Frob}(\alpha\beta) = \operatorname{Frob}(\alpha) \operatorname{Frob}(\beta)$ is clear from the definition.

To see that it preserves addition, i.e. that

$$(\alpha + \beta)^q = \alpha^q + \beta^q$$

requires an idea: By the binomial theorem,

$$(\alpha + \beta)^q = \alpha^q + \beta^q + \sum_{j=1}^{q-1} \binom{q}{j} \alpha^j \beta^{q-j}$$

and so we need to show that the binomial coefficients vanish in \mathbb{F}_q :

$$\begin{pmatrix} q \\ j \end{pmatrix} = 0 \text{ in } \mathbb{F}_q, \quad 1 \le j \le q-1$$

Of course this is not true in \mathbb{Z} ; what it means that, if the prime p is the characteristic of the field \mathbb{F}_q (so that $q = p^m$), then we need to show that p divides $\binom{p^m}{j}$ for $1 \leq j \leq p^m - 1$. That is left as an exercise. To show that Frob is 1 - 1, we first note that Frob : $\mathbb{E} \to \mathbb{E}$ being

To show that Frob is 1 - 1, we first note that Frob : $\mathbb{E} \to \mathbb{E}$ being a field homomorphism over \mathbb{F}_q , it is in particular a linear map of \mathbb{E} as vector space over \mathbb{F}_q . Hence it suffices to show that its *kernel* is $\{0\}$. But if $\alpha^q = 0$ then certainly $\alpha = 0$ because \mathbb{E} being a field, has no zero divisors.

To show that Frob is onto, note that since it is a 1-1 map of the *finite* set \mathbb{E} to itself, it is necessarily onto.

0.2. We now examine the effect of the Frobenius map on roots of polynomials.

Lemma 4. Let $f(x) \in \mathbb{F}_q[x]$ be a polynomial and α a root of f(x) in some extension \mathbb{E} , that is $f(\alpha) = 0$. Then $\operatorname{Frob}(\alpha)$ is also a root of f.

Proof. Suppose

$$f(x) = a_n x^n + \dots + a_1 x + a_0, \quad a_j \in \mathbb{F}_q$$

Then because Frob respects addition and multiplication,

$$\operatorname{Frob}(f(\alpha)) = \operatorname{Frob}(\sum_{j=0}^{n} a_j \alpha_j) = \sum \operatorname{Frob}(a_j) \operatorname{Frob}(\alpha)^j$$

Moreover, since Frob is the identity on \mathbb{F}_q , and $a_j \in \mathbb{F}_q$, we have $\operatorname{Frob}(a_j) = a_j$. Thus we find

$$\operatorname{Frob}(f(\alpha)) = f(\operatorname{Frob}(\alpha))$$

But we assume $f(\alpha) = 0$ and $\operatorname{Frob}(0) = 0$, hence we find $f(\operatorname{Frob}(\alpha)) = 0$, that is $\operatorname{Frob}(\alpha)$ is also a root of f.

Thus we see Frob *permutes* these roots.

We next assume that f(x) is *irreducible*. We show that Frob permutes the roots *transitively*.

Lemma 5. If $P(x) \in \mathbb{F}_q[x]$ is irreducible (over \mathbb{F}_q) of degree n and α is a root of f lying in an extension \mathbb{E} of \mathbb{F}_q . Then Frob acts transitively on the roots: All roots of f are $\alpha_1 = \alpha$, $\alpha_2 = \operatorname{Frob}(\alpha), \ldots, \alpha_n =$ $\operatorname{Frob}^{n-1}(\alpha)$. In particular all roots lie in $\mathbb{F}_q(\alpha)$, the minimal extension of \mathbb{F}_q containing α , which is of degree n. We can write

$$P(x) = \prod_{j=0}^{n-1} (x - \alpha^{q^j})$$

Proof. We may and will assume that P is monic, hence that $P(x) = \prod_{i=1}^{n} (x - \alpha_i)$.

We show that if the action is not transitive, then P is reducible. Suppose that we can partition the roots into two distinct, nonempty, sets $A = \{\alpha_1 = \alpha, \ldots, \alpha_r\}$ and $B = \{\alpha_{r+1}, \ldots, \alpha_n\}$ $(1 \le r \le n-1)$ which are both stable under Frob. Let

$$g(x) = \prod_{j=1}^{r} (x - \alpha_j), \quad h(x) := \prod_{j=r+1}^{n} (x - \alpha_j) \in \mathbb{E}[x]$$

so that P = gh is a factorization in $\mathbb{E}[x]$.

Note that Frob permutes the factor of h and of g, hence $\operatorname{Frob}(h) = h$ and $\operatorname{Frob}(g) = g$. Hence the coefficients of h and of g are fixed by Frob, and are therefore in the base-field \mathbb{F}_q . Thus $h, g \in \mathbb{F}_q[x]$ give a factorization of P in $\mathbb{F}_q[x]$ into polynomials of positive degree, contradicting irreducibility of P.

Since the action is transitive, we may index the roots of P(x) as $\alpha_1 = \alpha, \alpha_2 = \operatorname{Frob}(\alpha) = \alpha^q, \ldots, \alpha_n = \operatorname{Frob}^{n-1}(\alpha) = \alpha^{q^{n-1}}$, with $n = \deg P$. Then all roots lie in $\mathbb{F}_q(\alpha)$, and $P(x) = \prod_{j=0}^{n-1} (x - \alpha^{q^j})$ as claimed.