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Froof.  If these fields have p™ clements, by the above coroliary they are.

both splitting ficlds of the polynomial #*" — ¥, over J» whence they are’

isomorphic,

Thus for any integer m and any prime number g there is, up to Iso- .

morphism, at most one field having 4™ elements. The purpose of the next
lemma is t¢ demonstrate that for any prime number # and any integer m
there is a ficld having #™ elements. When this is done we shall know that
there is exactly one field having " clements where p Is an arbitrary prime
and m an arbitrary integer,

LEMMA 714 For eoery prime number p and every positive intoger m there exists
a field having p™ eloments.

izl

Proof.  Consider the polynomial " — xin \Li, the ring of polynomials

in x over [, the field of integers mod 4. Let K be the splitting field of this -

polynomial. In K let F = {a= K | = a}. The elements of # arc thus

the roots of 7 — 5, which by Corollary 2 to Lemma 5.5.2 arc distinet;

whence F has ™ clements. We now claim that /7 is a feld. IF a, beF
then a”™ = a, 6" = b and so (2" = oP"pr" = ab; thus abelF. Also
since the characteristic is p, (2 + 5)"" = ¢ + 67" = q + b, hence
a + beF. Consequently # is a subficld of X and so is a feld. Having
exhibited the field # having p™ elements we have proved Lemma 7.1.4.

Combining Lemmas 7.1.3 aud 7.1.4 we have

THEOREM 711 For coery prime number p and euery positive inleger m there
is @ unique field having p™ elements.

We now return o group theory for a moment, The group-theocretic

result we seck will determine the structure of any [nite H.sz:%:nmmaﬁ..

subgroup of the group of nonzero elements of any field, and, in particular,
it will determine the multiplicative structure of any finite field.

LEMMA 715 Lot G be a finite abelian growp empoying the froperty that the
e 15 satisfied by af most n elements of G, for svery integer n. Then G
s a cyelic group.

relaiion x"

Froof. Il the order of G is a power of some prime number g then the
result is very easy. For suppose that a € G is an element whose order is as
large as possible; its order must be ¢* for some integer r. The clements:
e, 0%, .. ,a¥ " give us ¢ distinct sohitions of the equation x¥ =g,
which, by our hypothesis, implies that these are all the solutens of this

: : : s\ qr—s
equation. Now il b e G its order is ¢° where 5 < 7, hence 64 = ()T 7 =g

&
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By the ohservation made above this forecs § — a._“,,_ for some ¢, and so & is
cyclic. :

. The general finite abelian group & can be realized as & = Sy oy S,
-where the g, arc the distinct prime divisors of o(G) and where the §,, are
-the Sylow subgroups of . Morcover, every element g = & can be written
N A wnigue way as g = sy5,, ..., 5, where 5; €48, (sce Section 2.7). Any
solution of " = ¢ in Sy 15 one of 2" = ¢ in G so that ecach kwf inherits the
. hypothesis we have imposed on (. By the remarks of the first paragraph
ol the prool, each S, is a cyciic group; let a; he a generator of S We
caim that ¢ = wa,,. .., @ 1s a cyclic generawor of (. To vertfy this all
we must do is prove thal o((7) divides m, the order of 6. §

ince 6" =g, we
have that ayMa,m g

e. By the uniquencss of representation of an
clement of (7 as a product of elements in the Sy we conclude that cach
a; ¢ Thus q.a.:v {mfor every 7. Thus of¢) = {5, Yol
However, m | o(() and so o{G) = m

* .NL e Qng.m.?
- This proves that G is cyalic.

V] m.

Lemma 7.1.5 ltas as an Important conseqgilence

LEMMA 716 Lot K e a figld and let (3 be a_finite siebgroup af the muitiplicative
| group of nonzero clements of K. Then G is a cyelic group.

Froof. Since Kisa .mlgn any polynomiai of degree # in K[x] has at most
nroots in K. Thus in particular, for any integer n, the polynomial +* — |
Fhas al most 7 roots in K, and all the more so, at most 7 roots in G. The
hypothesis of Lemma 7.1.5 s satisfied, so 7 is cyclic.

Even though the siwation of a finite field is me

rely a special case of
Lemma 7.1.6, it is of such widespread intcrest th

at we single it out as

THEOREM 712 The multiplicative group of nomzera elements of a finite Jield
is ¢pelic. : : i

FProof.  Let F be a finite ficld, By merciy applying Letmma 7.1.6 with
K and G = the group of nonzero elements of F, the

F esult drops out.

We conclude this section by using a counting argument to prove the
existence of solutions of ¢ereain cqualions in a finite field. We

‘the result in one proof of the Wedderburn thearern

shail need

LEMMA 7.7.7 If Fis a finite field and o + 0, B # 0 are tww clements of
then wwe can find eloments @ and b in F such that | + aa® + pEY = 0.

Proof.  1f the characieristic of F7 is 2, F has 2" clements
clement x in /7 satisfies x2"
= T

and cvery
= x. Thus every element in 7 is a square. In
a® for some ae k. Using this a and # = 0, we have

particular g




